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Abstract. Control theory is a mathematical description of how to act optimally to gain future
rewards. In this paper I give an introduction to deterministic and stochastic control theory and I
give an overview of the possible application of control theory to the modeling of animal behavior
and learning. I discuss a class of non-linear stochastic control problems that can be efficiently solved
using a path integral or by MC sampling. In this control formalism the central concept of cost-to-go
becomes a free energy and methods and concepts from statistical physics can be readily applied.
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INTRODUCTION

Animals are well equipped to survive in their natural environments. At birth, they already
possess a large number of skills, such as breathing, digestion of food and elementary
processing of sensory information and motor actions.

In addition, they acquire complex skills through learning. Examples are the recog-
nition of complex constellations of sensory patterns that may signal danger or food or
pleasure, and the execution of complex sequences of motor commands, whether to reach
for a cup, to climb a tree in search of food or to play the piano. The learning process is
implemented at the neural level, through the adaptation of synaptic connections between
neurons and possibly other processes.

It is not well understood how billions of synapses are adapted without central control
to achieve the learning. It is known, that synaptic adaptation results from the activity of
the nearby neurons, in particular the pre- and post-synaptic neuron that it connects. The
adaptation is quite complex: it depends on the temporal history of the neural activity;
it is different for different types of synapses and brain areas and the outcome of the
learning is not a static synaptic weight, but rather an optimized dynamical process that
implements a particular transfer between the neurons [1, 2].

The neural activity that causes the synaptic adaptation is determined by the sensory
data that the animal receives and by the motor commands that it executes. These data
are in turn determined by the behavior of the animal itself, i.e. which objects it looks
at and which muscles it contracts. Thus, learning affects behavior and behavior affects
learning.

In this feedback circuit, the learning algorithms itself is still to be specified. The
learning algorithm will determine what adaptation will take place given a recent history
of neural activity. It is most likely that this algorithm is determined genetically. Our
genes are our record of our successes and failures throughout evolution. If you have good



genes you will learn better and therefore have a better chance at survival and the creation
of off-spring. The genetic information may not only affect the learning algorithm, but
also affects our ’innate’ tendency to choose the environment that we live in. For instance,
a curious animal will tend to explore richer and more challenging environments and its
brain will therefore adapt to a more complex and more varied data set, increasing the
level of the skills that the animal learns.

Such genetic influences have been also observed in humans. For instance, it has been
observed that the heritability of intelligence increases with age: as we grow older, our
intelligence (in the sense of reasoning and novel problem-solving ability) reflects our
genotype more closely. This could be explained by the fact that as our genes determine
our ability to learn and our curiosity to explore novel, diverse, environments, such
learning will make us smarter the older we grow [3, 4]. On the other hand, if learning
would not have a genetic component, and would only be determined by the environment,
one would predict the opposite: the influence of the environment on our intelligence
increases with age, and therefore decreases the relative influence of our genetic material
with which we are born.

The most influential biological learning paradigm is Hebbian learning [5]. This learn-
ing rule was originally proposed by the psychologist Hebb to account for the learning
behavior that is observed in learning experiments with animals and humans and that can
account for simple cognitive behaviors such as habituation and classical conditioning
1. Hebbian learning states that neurons increase the synaptic connection strength be-
tween them when they are both active at the same time and slowly decrease the synaptic
strength otherwise. The rationale is that when a presynaptic spike (or the stimulus) con-
tributes to the firing of the post synaptic neuron (the response), it is likely that its contri-
bution is of some functional importance to the animal and therefore the synapse should
be strengthened. If not, the synapse is probably not very important and its strength is
decreased. The mechanism of Hebbian learning has been confirmed at the neural level
in some cases [6], but is too simple as a theory of synaptic plasticity in general. In par-
ticular, synapses display an interesting history dependent dynamics with characteristic
time scales of several msec to hours. Hebbian learning is manifest in many areas of the
brain and most neural network models use the Hebb rule in a more or less modified way
to explain for instance the receptive fields properties of sensory neurons in visual and
auditory cortical areas or the formation cortical maps (see [7] for examples).

Hebbian learning is instantaneous in the sense that the adaptation at time t is a function
of the neural activity or the stimuli at or around time t only. This is sufficient for learning
time-independent mappings such as receptive fields, where the correct response at time
t only depends on the stimulus at or before time t. The Hebbian learning rule can be
interpreted as a way to achieve this optimal instantaneous stimulus response behavior.

1 Habituation is the phenomenon that an animal gets accustomed to a new stimulus. For instance, when
ringing a bell, a dog will turn its head. When repeated many times, the dog will ignore the bell and no
longer turn its head. Classical conditioning is the phenomenon that a stimulus that does not produce a
response can be made to produce a response if it has been co-presented with another stimulus that does
produce a response. For instance, a dog will not salivate when hearing a bell, but will do so when seeing
a piece of meat. When the bell and the meat are presented simultaneously during a repeated number of
trials, afterwards the dog will also salivate when only the bell is rung.



However, many tasks are more complex than simple stimulus-response behavior. They
require a sequence of responses or actions and the success of the sequence is only known
at some future time. Typical examples are any type of planning task such as the execution
of a motor program or searching for food.

Optimizing a sequence of actions to attain some future goal is the general topic of
control theory [8, 9]. It views an animal as an automaton that seeks to maximize expected
reward (or minimize cost) over some future time period. Two typical examples that
illustrate this are motor control and foraging for food. As an example of a motor control
task, consider throwing a spear to kill an animal. Throwing a spear requires the execution
of a motor program that is such that at the moment that the spear releases the hand, it has
the correct speed and direction such that it will hit the desired target. A motor program
is a sequence of actions, and this sequence can be assigned a cost that consists generally
of two terms: a path cost, that specifies the energy consumption to contract the muscles
in order to execute the motor program; and an end cost, that specifies whether the spear
will kill the animal, just hurt it, or misses it altogether. The optimal control solution is
a sequence of motor commands that results in killing the animal by throwing the spear
with minimal physical effort. If x denotes the state space (the positions and velocities of
the muscles), the optimal control solution is a function u(x, t) that depends both on the
actual state of the system at each time and also depends explicitly on time.

When an animal forages for food, it explores the environment with the objective
to find as much food as possible in a short time window. At each time t, the animal
considers the food it expects to encounter in the period [t, t + T ]. Unlike the motor
control example, the time horizon recedes into the future with the current time and
the cost consists now only of a path contribution and no end-cost. Therefore, at each
time the animal faces the same task, but possibly from a different location in the
environment. The optimal control solution u(x) is now time-independent and specifies
for each location in the environment x the direction u in which the animal should move.

Motor control and foraging are examples of finite horizon control problems. Other
reward functions that are found in the literature are infinite horizon control problems,
of which two versions exist. One can consider discounted reward problems where the
reward is of the form C = 〈∑∞

t=0 γtRt〉 with 0 < γ < 1. That is, future rewards count
less than immediate rewards. This type of control problem is also called reinforcement
learning (RL) and is popular in the context of biological modeling. Reinforcement
learning can be applied even when the environment is largely unknown and well-known
algorithms are temporal difference learning [10], Q-learning [11] and the actor-critic
architecture [12]. RL has also been applied to engineering and AI problems, such
as an elevator dispatching task [13], robotic jugglers [14] and to play back-gammon
[15]. One can also consider infinite horizon average rewards C = limh→∞

1
h

〈
∑h

t=0 Rt
〉
.

A disadvantage of this cost is that the optimal solution is insensitive to short-term gains
since it makes a negligible contribution to the infinite average. Both these infinite horizon
control problems have time-independent optimal control solutions.

Note, that the control problem is naturally stochastic in nature. The animal does not
typically know where to find the food and has at best a probabilistic model of the
expected outcomes of its actions. In the motor control example, there is noise in the
relation between the muscle contraction and the actual displacement of the joints. Also,
the environment changes over time which is a further source of uncertainty. Therefore,



the best the animal can do is to compute the optimal control sequence with respect to
the expected cost. Once, this solution is found, the animal executes the first step of this
control sequence and re-estimates its state using his sensor readings. In the new state,
the animal recomputes the optimal control sequence using the expected cost, etc.

There is recent work that attempts to link control theory, and in particular RL, to
computational strategies that underly decision making in animals [16, 17]. This novel
field is sometimes called neuro-economics: to understand the mechanisms of decision
making at the cellular and circuit level in the brain. Physiological studies locate these
functions across both frontal and parietal cortices. Typically, tasks are studied where the
behavior of the animal depends on reward that is delayed in time. For instance, dopamine
neurons respond to reward at the time that the reward is given. When on repeated trials
the upcoming reward is ’announced’ by a conditioning stimulus (CS), the dopamine
neurons learn to respond to the CS as well (see for instance [18] for a review). This type
of conditioning is adaptive and depends on the timing of the CS relative to the reward and
the amount of information the CS contains about the reward. The neural representation
of reward, preceding the actual occurrence of the reward confirms the notion that some
type of control computation is being performed by the brain.

In delayed reward tasks, one thus finds that learning is based on reward signals, also
called value signals, and one refers to this type of learning as value-based learning, to
be distinguished from the traditional Hebbian perception-based learning. In perception-
based learning, the learning is simply Hebbian and reinforces correlations between the
stimulus and the response, action or reward at the same time. In value-based learning, a
value representation is first built from past experiences that predicts the future reward of
current actions (see [16] for a review).

Path integral control

The general stochastic control problem is intractable to solve and requires an exponen-
tial amount of memory and computation time. The reason is that the state space needs
to be discretized and thus becomes exponentially large in the number of dimensions.
Computing the expectation values means that all states need to be visited and requires
the summation of exponentially large sums. The same intractabilities are encountered in
reinforcement learning. The most efficient RL algorithms (TD(λ ) [19] and Q learning
[11]) require millions of iterations to learn a task.

There are some stochastic control problems that can be solved efficiently. When the
system dynamics is linear and the cost is quadratic (LQ control), the solution is given
in terms of a number of coupled ordinary differential (Ricatti) equations that can be
solved efficiently [8]. LQ control is useful to maintain a system such as for instance a
chemical plant, operated around a desired point in state space and is therefore widely
applied in engineering. However, it is a linear theory and too restricted to model the
complexities of animal behavior. Another interesting case that can be solved efficiently
is continuous control in the absence of noise [8]. One can apply the so-called Pontryagin
Maximum Principle [20], which is a variational principle, that leads to a coupled system
of ordinary differential equations with boundary conditions at both initial and final time.



Although this deterministic control problem is not intractable in the above sense, solving
the differential equation can still be rather complex in practice.

Recently, we have discovered a class of continuous non-linear stochastic control
problems that can be solved more efficiently than the general case [21, 22]. These
are control problems with a finite time horizon, where the control acts linearly and
additive on the dynamics and the cost of the control is quadratic. Otherwise, the path
cost and end cost and the intrinsic dynamics of the system are arbitrary. These control
problems can have both time-dependent and time-independent solutions of the type that
we encountered in the examples above. The control problem essentially reduces to the
computation of a path integral, which can be interpreted as a free energy. Because of
its typical statistical mechanics form, one can consider various ways to approximate
this path integral, such as the Laplace approximation [22], Monte Carlo sampling [22],
mean field approximations or belief propagation [23]. Such approximate computations
are sufficiently fast to be possibly implemented in the brain.

Also, one can extend this control formalism to multiple agents that jointly solve a task.
In this case the agents need to coordinate their actions not only through time, but also
among each other. It was recently shown that the problem can be mapped on a graphical
model inference problem and can be solved using the junction tree algorithm. Exact
control solutions can be computed for instance with hundreds of agents, depending on
the complexity of the cost function [24, 23].

Non-linear stochastic control problems display features not shared by deterministic
control problems nor by linear stochastic control. In deterministic control, only one
globally optimal solution exists. In stochastic control, the optimal solution is a weighted
mixture of suboptimal solutions. The weighting depends in a non-trivial way on the
features of the problem, such as the noise and the horizon time and on the cost of each
solution. This multi-modality leads to surprising behavior is stochastic optimal control.
For instance, the phenomenon of obstacle avoidance for autonomous systems not only
needs to make the choice of whether to turn left or right, but also when such decision
should be made. When the obstacle is still far away, no action is required, but there
is a minimal distance to the obstacle when a decision should be made. This example
was treated in [21] and it was shown that the decision is implemented by spontaneous
symmetry breaking where one solution (go straight ahead) breaks in two solutions (turn
left or right).

Exploration

Computing optimal behavior for an animal consists of two difficult subproblems.
One is to compute the optimal behavior for a given environment, assuming that the
environment is known to the animal. The second problem is to learn the environment.
Here, we will mainly focus on the first problem, which is typically intractable and where
the path integral approach can give efficient approximate solutions. The second problem
is complicated by the fact that not all of the environment is of interest to the animal:
only those parts that have high reward need to be learned. It is intuitively clear that a
suboptimal control behavior that is computed by the animal, based on the limited part



of the environment that he has explored, may be helpful to select the more interesting
parts of the environment. But clearly, part of the animals behavior should also be purely
explorative with the hope to find even more rewarding parts of the environment. This is
known as the exploration-exploitation dilemma.

Here is an example. Suppose that you are reasonably happy with your job. Does it
make sense to look for a better job? It depends. There is a certain amount of agony
associated with looking for a job, getting hired, getting used to the new work and moving
to another city. On the other hand, if you are still young and have a life ahead of you,
it may well be worth the effort. The essential complication here is that the environment
is not known and that on the way from the your current solution to the possibly better
solution one may have to accept a transitionary period with relative high cost.

If the environment is known, there is no exploration issue and the optimal strategy can
be computed, although this will typically require exponential time and/or memory. As
we will see in the numerical examples at the end of this paper, the choice to make the
transition to move to a better position is optimal when you have a long life ahead, but it is
better to stay in your current position if you have not much time left. If the environment
is not known, one should explore ’in some way’ in order to learn the environment. The
optimal way to explore is in general not part of the control problem.

Outline

In this review, we aim to give a pedagogical introduction to control theory. For
simplicity, we will first consider the case of discrete time and discuss the dynamic
programming. Subsequently, we consider continuous time control problems. In the
absence of noise, the optimal control problem can be solved in two ways: using the
Pontryagin Minimum Principle (PMP) [20] which is a pair of ordinary differential
equations that are similar to the Hamilton equations of motion or the Hamilton-Jacobi-
Bellman (HJB) equation which is a partial differential equation [25].

In the presence of Wiener noise, the PMP formalism has no obvious generalization
(see however [26]). In contrast, the inclusion of noise in the HJB framework is mathe-
matically quite straight-forward. However, the numerical solution of either the determin-
istic or stochastic HJB equation is in general difficult due to the curse of dimensionality.

Subsequently, we discuss the special class of control problems introduced in [21,
22]. For this class of problems, the non-linear Hamilton-Jacobi-Bellman equation can
be transformed into a linear equation by a log transformation of the cost-to-go. The
transformation stems back to the early days of quantum mechanics and was first used by
Schrödinger to relate the Hamilton-Jacobi formalism to the Schrödinger equation. The
log transform was first used in the context of control theory by [27] (see also [9]).

Due to the linear description, the usual backward integration in time of the HJB
equation can be replaced by computing expectation values under a forward diffusion
process. The computation of the expectation value requires a stochastic integration
over trajectories that can be described by a path integral. This is an integral over all
trajectories starting at x, t, weighted by exp(−S/ν), where S is the cost of the path (also
know as the Action) and ν is the size of the noise.



The path integral formulation is well-known in statistical physics and quantum me-
chanics, and several methods exist to compute path integrals approximately. The Laplace
approximation approximates the integral by the path of minimal S. This approximation
is exact in the limit of ν → 0, and the deterministic control law is recovered.

In general, the Laplace approximation may not be sufficiently accurate. A very generic
and powerful alternative is Monte Carlo (MC) sampling. The theory naturally suggests
a naive sampling procedure, but is also possible to devise more efficient samplers, such
as importance sampling.

We illustrate the control method on two tasks: a temporal decision task, where the
agent must choose between two targets at some future time; and a receding horizon
control task. The decision task illustrates the issue of spontaneous symmetry breaking
and how optimal behavior is qualitatively different for high and low noise. The receding
horizon problem is to optimize the expected cost over a fixed future time horizon. This
problem is similar to the RL discounted reward cost. We have therefore also included a
section that introduces the main ideas of RL.

We start by discussing the most simple control case, which is the finite horizon
discrete time deterministic control problem. In this case the optimal control explicitly
depends on time. The derivations in this section are based on [28]. Subsequently, we
discuss deterministic, stochastic continuous time control and reinforcement learning.
Finally, we give a number of illustrative numerical examples.

DISCRETE TIME CONTROL

Consider the control of a discrete time dynamical system:

xt+1 = f (t,xt,ut), t = 0,1, . . . ,T (1)

xt is an n-dimensional vector describing the state of the system and ut is an m-
dimensional vector that specifies the control or action at time t. Note, that Eq. 1 de-
scribes a noiseless dynamics. If we specify x at t = 0 as x0 and we specify a sequence of
controls u0:T = u0,u1, . . . ,uT , we can compute future states of the system x1, . . . ,xT+1
recursively from Eq.1.

Define a cost function that assigns a cost to each sequence of controls:

C(x0,u0:T ) =
T

∑
t=0

R(t,xt,ut) (2)

R(t,x,u) can be interpreted as a deterministic cost that is associated with taking action u
at time t in state x or with the expected cost, given some probability model (as we will
see below). The problem of optimal control is to find the sequence u0:T that minimizes
C(x0,u0:T ).

The problem has a standard solution, which is known as dynamic programming.
Introduce the optimal cost to go:

J(t,xt) = min
ut:T

T

∑
s=t

R(s,xs,us) (3)



which solves the optimal control problem from an intermediate time t until the fixed end
time T , starting at an arbitrary location xt . The minimum of Eq. 2 is given by J(0,x0).

One can recursively compute J(t,x) from J(t + 1,x) for all x in the following way:

J(T + 1,x) = 0 (4)

J(t,xt) = min
ut:T

T

∑
s=t

R(s,xs,us)

= min
ut

(
R(t,xt,ut) + min

ut+1:T

T

∑
s=t+1

R(s,xs,us)

)

= min
ut

(R(t,xt,ut) + J(t + 1,xt+1))

= min
ut

(R(t,xt,ut) + J(t + 1, f (t,xt,ut))) (5)

The algorithm to compute the optimal control u∗0:T , the optimal trajectory x∗1:T and the
optimal cost is given by

1. Initialization: J(T + 1,x) = 0
2. For t = T, . . . ,0 and for all x compute

u∗t (x) = argmin
u
{R(t,x,u) + J(t + 1, f (t,x,u))} (6)

J(t,x) = R(t,x,u∗t ) + J(t + 1, f (t,x,u∗t )) (7)

3. For t = 0, . . . ,T −1 compute forwards (x∗0 = x0)

x∗t+1 = f (t,x∗t ,u
∗
t ) (8)

Note, that the dynamic programming equations must simultaneously compute J(t,x) for
all x. The reason is that J(t,x) is given in terms of J(t +1, f (t,x,u)), which is a different
value of x. Which x this is, is not known until after the algorithm has computed the
optimal control u. The execution of the dynamic programming algorithm is linear in the
horizon time T and linear in the size of the state and action spaces.

DETERMINISTIC CONTINUOUS TIME CONTROL

In the absence of noise, the optimal control problem can be solved in two ways: using
the Pontryagin Minimum Principle (PMP) [20] which is a pair of ordinary differential
equations that are similar to the Hamilton equations of motion or the Hamilton-Jacobi-
Bellman (HJB) equation which is a partial differential equation [25]. The latter is very
similar to the dynamic programming approach that we have treated before. The HJB
approach also allows for a straightforward extension to the noisy case. We will therefore
restrict our attention to the HJB description. For further reading see [8, 28].

Consider the control of a dynamical system

ẋ = f (x,u, t) (9)



The initial state is fixed: x(ti) = xi and the final state is free. The problem is to find a
control signal u(t), ti < t < t f , which we denote as u(ti→ t f ), such that

C(ti,xi,u(ti→ t f )) = φ(x(t f )) +

∫ t f

ti
dtR(x(t),u(t), t) (10)

is minimal. C consists of an end cost φ(x) that gives the cost of ending in a configuration
x, and a path cost that is an integral over the time trajectories x(ti→ t f ) and u(ti→ t f ).

We define the optimal cost-to-go function from any intermediate time t and state x:

J(t,x) = min
u(t→t f )

C(t,x,u(t→ t f )) (11)

For any intermediate time t ′, t < t ′ < t f we get

J(t,x) = min
u(t→t f )

(
φ(x(t f )) +

∫ t ′

t
dtR(x(t),u(t), t)+

∫ t f

t ′
dtR(x(t),u(t), t)

)

= min
u(t→t ′)

(∫ t ′

t
dtR(x(t),u(t), t) + min

u(t ′→t f )

(
φ(x(t f )) +

∫ t f

t ′
dtR(x(t),u(t), t)

))

= min
u(t→t ′)

(∫ t ′

t
dtR(x(t),u(t), t)+ J(t ′,x(t ′))

)

The first line is just the definition of J. In the second line, we split the minimization
over two intervals. These are not independent, because the second minimization is
conditioned on the starting value x(t ′), which depends on the outcome of the first
minimization. The last line uses again the definition of J.

Setting t ′= t +dt with dt infinitesimal small, we can expand J(t ′,x(t ′)) = J(t,x(t))+
∂tJ(t,x(t)) + ∂xJ(t,x(t))dx and we get

J(t,x) = min
u(t→t+dt)

(R(x,u(t), t)dt + J(t,x) + Jt(t,x)dt + Jx(t,x) f (x,u(t), t)dt)

where we have used Eq. 9: dx = f (x,u, t)dt. ∂t and ∂x denote partial derivatives with
respect to t and x, respectively. Note, that the minimization has now reduced over a
path of infinitesimal length. In the limit, this minimization over a path reduces to a
minimization over a point-wise variable u at time t. Rearranging terms we obtain

−Jt(t,x) = min
u

(R(x,u, t) + Jx(t,x) f (x,u, t)) (12)

which is the Hamilton-Jacobi-Bellman Equation. The equation must be solved with
boundary condition for J at the end time: J(t f ,x) = φ(x), which follows from its defini-
tion Eq. 11.

Thus, computing the optimal control requires to solve the partial differential equa-
tion 12 for all x backwards in time from t f to the current time t. The optimal control at
the current x, t is given by

u(x, t) = argmin
u

(R(x,u, t) + Jx(t,x) f (x,u, t)) (13)



Note, that the HJB approach to optimal control necessarily must compute the optimal
control for all values of x at the current time, although in principle the optimal control at
the current x value would be sufficient.

Example: Mass on a spring

To illustrate the optimal control principle consider a mass on a spring. The spring is
at rest at z = 0 and exerts a force proportional to F =−z towards the rest position. Using
Newton’s Law F = ma with a = z̈ the acceleration and m = 1 the mass of the spring, the
equation of motion is given by.

z̈ =−z + u

with u a unspecified control signal with −1 < u < 1. We want to solve the control
problem: Given initial position and velocity zi and żi at time ti, find the control path
u(ti→ t f ) such that z(t f ) is maximal.

Introduce x1 = z,x2 = ż, then

ẋ = Ax + Bu, A =

(
0 1
-1 0

)
B =

(
0
1

)

and x = (x1,x2)T . The problem is of the above type, with φ(x) = CT x, CT = (−1,0),
R(x,u, t) = 0 and f (x,u, t) = Ax + Bu. Eq. 12 takes the form

−Jt = JT
x Ax−|JT

x B|

We try J(t,x) = ψ(t)T x+α(t). The HJBE reduces to two ordinary differential equations

ψ̇ = −AT ψ
α̇ = |ψT B|

These equations must be solved for all t, with final boundary conditions ψ(t f ) = C and
α(t f ) = 0. Note, that the optimal control in Eq. 13 only requires Jx(x, t), which in this
case is ψ(t) and thus we do not need to solve α . The solution for ψ is

ψ1(t) = −cos(t− t f )

ψ2(t) = sin(t− t f )

for ti < t < t f . The optimal control is

u(x, t) =−sign(ψ2(t)) =−sign(sin(t− t f ))

As an example consider ti = 0, x1(ti) = x2(ti) = 0, t f = 2π . Then, the optimal control is

u =−1, 0< t < π
u = 1, π < t < 2π
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FIGURE 1. Optimal control of mass on a spring such that at t = 2π the amplitude is maximal. x1 is
position of the spring, x2 is velocity of the spring.

The optimal trajectories are for 0< t < π

x1(t) = cos(t)−1, x2(t) =−sin(t)

and for π < t < 2π

x1(t) = 3cos(t) + 1, x2(t) =−3sin(t)

The solution is drawn in fig. 1. We see that in order to excite the spring to its maximal
height at t f , the optimal control is to first push the spring down for 0 < t < π and then
to push the spring up between π < t < 2π , taking maximally advantage of the intrinsic
dynamics of the spring.

Note, that since there is no cost associated with the control u and u is hard limited
between -1 and 1, the optimal control is always either -1 or 1. This is known as bang-
bang control.

STOCHASTIC OPTIMAL CONTROL

In this section, we consider the extension of the continuous control problem to the case
that the dynamics is subject to noise and is given by a stochastic differential equation.
We restrict ourselves to the one-dimensional example. Extension to n dimensions is
straightforward and is treated in [22]. Consider the stochastic differential equation which
is a generalization of Eq. 9:

dx = f (x(t),u(t), t)dt + dξ . (14)



dξ is a Wiener processes with
〈
dξ 2〉= νdt. 2

Because the dynamics is stochastic, it is no longer the case that when x at time t and
the full control path u(t→ t f ) are given, we know the future path x(t→ t f ). Therefore,
we cannot minimize Eq. 10, but can only hope to be able to minimize its expectation
value over all possible future realizations of the Wiener process:

C(xi, ti,u(ti→ t f )) =

〈
φ(x(t f )) +

∫ t f

ti
dtR(x(t),u(t), t)

〉

xi

(15)

The subscript xi on the expectation value is to remind us that the expectation is over all
stochastic trajectories that start in xi.

The solution of the control problem proceeds as in the deterministic case. One defines
the optimal cost-to-go Eq. 11 and obtains as before the recursive relation

J(x, t) = min
u(t→t ′)

〈∫ t ′

t
dtR(x(t),u(t), t) + J(x(t ′), t ′)

〉

x
(16)

Setting t ′ = t + dt we can Taylor expand J(x(t ′), t ′) around t, but now to first order
in dt and to second order in dx, since

〈
dx2〉 = O(dt). This is the standard Itô calculus

argument. Thus,

〈J(x(t + dt), t + dt)〉x = J(x, t) + ∂tJ(x, t)dt + ∂xJ(x, t) f (x,u, t)dt +
1
2

∂ 2
x J(x, t)νdt

Substituting this into Eq. 16 and rearranging terms yields

−∂tJ(x, t) = min
u

(
R(x,u, t) + f (x,u, t)T∂xJ(x, t) +

1
2

ν∂ 2
x J(x, t)

)
(17)

which is the Stochastic Hamilton-Jacobi-Bellman Equation with boundary condition
J(x, t f ) = φ(x). Eq. 17 reduces to the deterministic HJB equation in the limit ν → 0.

A linear HJB equation

Consider the special case of Eqs. 14 and 15 where the dynamic is linear in u and the
cost is quadratic in u:

f (x,u, t) = f (x, t) + u (18)

2 A Wiener process can be intuitively understood as the continuum limit of a random walk. Consider ξ on
a one-dimensional grid with locations ξ = 0,±dξ ,±2dξ , . . .. Discretize time as t = 0,

√
dt,2
√

dt, . . .. The
random walk starts at ξ = t = 0 and at each time step moves up or down with displacement dξi =±

√
νdt.

After a large number of N time steps, ξ = ∑i dξi. Since ξ is a sum of a large number of independent
contributions, its probability is distributed as a Gaussian. The mean of the distribution 〈ξ 〉= 0, since the
mean of each contribution 〈dξi〉= 0. The variance σ 2 of ξ after N time steps is the sum of the variances:
σ2 =

〈
ξ 2〉 = ∑i

〈
dξ 2

i
〉

= νNdt. The Wiener process is obtained by taking N → ∞ and dt → 0 while
keeping the total time t = Ndt constant. Instead of choosing dξi =±

√
νdt one can equivalently draw dξi

from a Gaussian distribution with mean zero and variance νdt.



R(x,u, t) = V (x, t) +
R
2

u2 (19)

with R a positive number. f (x, t) and V (x, t) are arbitrary functions of x and t. In other
words, the system to be controlled can be arbitrary complex and subject to arbitrary
complex costs. The control instead, is restricted to the simple linear-quadratic form.

The stochastic HJB equation 17 becomes

−∂tJ(x, t) = min
u

(
R
2

u2 +V (x, t) + ( f (x, t) + u)∂xJ(x, t) +
1
2

ν∂ 2
x J(x, t)

)

Due to the linear-quadratic appearance of u, we can minimize with respect to u explicitly
which yields:

u =− 1
R

∂xJ(x, t) (20)

which defines the optimal control u for each x, t. The HJB equation becomes

−∂tJ(x, t) = − 1
2R

(∂xJ(x, t))2 +V (x, t) + f (x, t)∂xJ(x, t) +
1
2

ν∂ 2
x J(x, t)

Note, that after performing the minimization with respect to u, the HJB equation
has become non-linear in J. We can, however, remove the non-linearity and this will
turn out to greatly help us to solve the HJB equation. Define ψ(x, t) through J(x, t) =
−λ logψ(x, t), with λ = νR a constant. Then the HJB becomes

−∂tψ(x, t) =

(
−V (x, t)

λ
+ f (x, t)∂x +

1
2

ν∂ 2
x

)
ψ(x, t) (21)

Eq. 21 must be solved backwards in time with ψ(x, t f ) = exp(−φ(x)/λ ).
The linearity allows us to reverse the direction of computation, replacing it by a

diffusion process, in the following way. Let ρ(y,τ|x, t) describe a diffusion process for
τ > t defined by the Fokker-Planck equation

∂τρ =−V
λ

ρ−∂y( f ρ) +
1
2

ν∂ 2
y ρ (22)

with ρ(y, t|x, t) = δ (y− x).
Define A(x, t) =

∫
dyρ(y,τ|x, t)ψ(y,τ). It is easy to see by using the equations of

motion Eq. 21 and 22 that A(x, t) is independent of τ . Evaluating A(x, t) for τ = t yields
A(x, t) = ψ(x, t). Evaluating A(x, t) for τ = t f yields A(x, t) =

∫
dyρ(y, t f |x, t)ψ(x, t f ).

Thus,

ψ(x, t) =
∫

dyρ(y, t f |x, t)exp(−φ(y)/λ ) (23)

We arrive at the important conclusion that the optimal cost-to-go J(x, t) =−λ logψ(x, t)
can be computed either by backward integration using Eq. 21 or by forward integration
of a diffusion process given by Eq. 22. The optimal control is given by Eq. 20.



Both Eq. 21 and 22 are partial differential equations and, although being linear, still
suffer from the curse of dimensionality. However, the great advantage of the forward
diffusion process is that it can be simulated using standard sampling methods which
can efficiently approximate these computations. In addition, as is discussed in [22], the
forward diffusion process ρ(y, t f |x, t) can be written as a path integral and in fact Eq. 23
becomes a path integral. This path integral can then be approximated using standard
methods, such as the Laplace approximation. Here however, we will focus on computing
Eq. 23 by sampling.

As an example, we consider the control problem Eqs. 18 and 19 for the simplest case
of controlled free diffusion:

V (x, t) = 0, f (x, t) = 0, φ(x) =
1
2

αx2

In this case, the forward diffusion described by Eqs. 22 can be solved in closed form and
is given by a Gaussian with variance σ 2 = ν(t f − t):

ρ(y, t f |x, t) =
1√

2πσ
exp
(
−(y− x)2

2σ 2

)
(24)

Since the end cost is quadratic, the optimal cost-to-go Eq. 23 can be computed exactly
as well. The result is

J(x, t) = νR log
(

σ
σ1

)
+

1
2

σ 2
1

σ 2 αx2 (25)

with 1/σ 2
1 = 1/σ 2 + α/νR. The optimal control is computed from Eq. 20:

u =−R−1∂xJ =−R−1 σ 2
1

σ 2 αx =− αx
R + α(t f − t)

We see that the control attracts x to the origin with a force that increases with t getting
closer to t f . Note, that the optimal control is independent of the noise ν . This is a general
property of LQ control.

The path integral formulation

For more complex problems, we cannot compute Eq. 23 analytically and we must
use either analytical approximations or sampling methods. For this reason, we write the
diffusion kernel ρ(y, t f |x, t) in Eq. 23 as a path integral. The reason that we wish to do
this is that this gives us a particular simple interpretation of how to estimate optimal
control in terms of sampling trajectories.

For an infinitesimal time step ε , the probability to go from x to y according to
the diffusion process Eq. 22 is given by the Gaussian distribution in y like Eq. 24
with σ 2 = νε and mean value x + f (x, t)ε . Together with the instantaneous decay rate



exp(−εV (x, t)/λ ), we obtain

ρ(y, t + ε|x, t) =
1√

2πνε
exp

(
− ε

λ

[
R
2

(
y− x

ε
− f (x, t)

)2

+V (x, t)

])

where we have used ν−1 = R/λ .
We can write the transition probability as a product of n infinitesimal transition

probabilities:

ρ(y, t f |x, t) =

∫ ∫
dx1 . . .dxn−1ρ(y, t f |xn−1, tn−1) . . .ρ(y2, t2|x1, t1)ρ(y1, t1|x, t)

=

(
1√

2πνε

)n ∫
dx1 . . .dxn−1 exp(−Spath(x0:n)/λ )

Spath(x0:n) = ε
n−1

∑
i=0

[
R
2

(
xi+1− xi

ε
− f (xi, ti)

)2

+V (xi, ti)

]
(26)

with ti = t + (i−1)ε , x0 = x and xn = y.
Substituting Eq. 26 in Eq. 23 we can absorb the integration over y in the path integral

and find

J(x, t) = −λ log
(

1√
2πνε

)n ∫
dx1 . . .dxn exp

(
− 1

λ
S(x0:n)

)
(27)

where

S(x0:n) = φ(xn) + Spath(x0:n) (28)

is the Action associated with a path.
In the limit of ε → 0, the sum in the exponent becomes an integral: ε ∑n−1

i=0 →
∫ t f

t dτ
and thus we can formally write

J(x, t) = −λ log
∫

[dx]x exp
(
− 1

λ
S(x(t→ t f ))

)
+C (29)

where the path integral
∫

[dx]x is over all trajectories starting at x and with C ∝ n logn a
diverging constant, which we can ignore because it does not depend on x and thus does
not affect the optimal control. 3

The path integral Eq. 27 is a log partition sum and therefore can be interpreted as a
free energy. The partition sum is not over configurations, but over trajectories. S(x(t→
t f )) plays the role of the energy of a trajectory and λ is the temperature. This link
between stochastic optimal control and a free energy has two immediate consequences.

3 The paths are continuous but non-differential and there are different forward are backward derivatives
[29, 30]. Therefore, the continuous time description of the path integral and in particular ẋ are best viewed
as a shorthand for its finite n description.



1) Phenomena that allow for a free energy description, typically display phase transitions
and spontaneous symmetry breaking. What is the meaning of these phenomena for
optimal control? 2) Since the path integral appears in other branches of physics, such as
statistical mechanics and quantum mechanics, we can borrow approximation methods
from those fields to compute the optimal control approximately. First we discuss the
small noise limit, where we can use the Laplace approximation to recover the PMP
formalism for deterministic control [22]. Also, the path integral shows us how we can
obtain a number of approximate methods: 1) one can combine multiple deterministic
trajectories to compute the optimal stochastic control 2) one can use a variational
method, replacing the intractable sum by a tractable sum over a variational distribution
and 3) one can design improvements to the naive MC sampling.

The Laplace approximation

The simplest algorithm to approximate Eq. 27 is the Laplace approximation, which
replaces the path integral by a Gaussian integral centered on the path that that minimizes
the action. For each x0 denote x∗1:n = argminx1:n

S(x0:n) the trajectory that minimizes the
Action Eq. 28 and x∗ = (x0,x∗1:n). We expand S(x) to second order around x∗ : S(x) =

S(x∗) + 1
2(x− x∗)T H(x∗)(x− x∗), with H(x∗) the n× n matrix of second derivatives of

S, evaluated at x∗. When we substitute this approximation for S(x) in Eq. 27, we are
left with a n-dimensional Gaussian integral, which we can solve exactly. The resulting
optimal value function is then given by

Jlaplace(x0) = S(x∗) +
λ
2

log
(νε

λ

)n
detH(x∗) (30)

The control is computed through the gradient of J with respect to x0. The second term,
although not difficult to compute, has typically only a very weak dependence on x0 and
can therefore be ignored. In general, there may be more than one trajectory that is a local
minimum of S. In this case, we use the trajectory with the lowest Action.

MC sampling

The stochastic evaluation of Eq. 23 consists of stochastic sampling of the diffusion
process ρ(y, t f |x, t) with drift f (x, t)dt and diffusion dξ , and with an extra term due to the
potential V . Whereas the other two terms conserve probability density, the potential term
takes out probability density at a rate V (x, t)dt/λ . Therefore, the stochastic simulation
of Eq. 22 is a diffusion that runs in parallel with the annihilation process:

dx = f (x, t)dt + dξ
x = x + dx, with probability 1−V (x, t)dt/λ
xi = †, with probability V (x, t)dt/λ (31)

We can estimate ρ(y, t f |x, t) by running N times the diffusion process Eq. 31 from t
to t f using some fine discretization of time and initializing each time at x(t) = x. Denote



these N trajectories by xi(t→ t f ), i = 1, . . . ,N. Then, ψ(x, t) is estimated by

ψ̂(x, t) =
1
N ∑

i∈alive
exp(−φ(xi(t f ))/λ ) (32)

where ’alive’ denotes the subset of trajectories that do not get killed along the way by
the † operation. Note that, although the sum is typically over less than N trajectories,
the normalization 1/N includes all trajectories in order to take the annihilation process
properly into account.

From the path integral Eq. 27 we infer that there is another way to sample, which is
sometimes preferable. The action contains a contribution from the drift and diffusion
R
2 (ẋ− f )2, one from the potential V and one from the end cost φ . To correctly compute
the path contributions, one can construct trajectories according to the drift, diffusion
and V terms and assigns to each trajectory a cost exp(−φ/λ ), as we did in Eq. 32.
Alternatively, one can construct trajectories according to the drift and diffusion terms
only and assign to each trajectory a cost according to both V and φ in the following way.

Define the stochastic process

x = x + f (x, t)dt + dξ (33)

Then, ψ(x, t) is also estimated by

ψ̂(x, t) =
1
N

N

∑
i=1

exp
(
−Scost(xi(t→ t f ))/λ

)

Scost(x(t→ t f )) = φ(x(t f )) +

∫ t f

t
dτV (x(τ),τ) (34)

The computation of u requires the gradient of ψ(x, t) which can be computed numer-
ically by computing ψ at nearby points x and x±δx for some suitable value of δx.

The receding horizon problem

Up to now, we have considered a control problem with a fixed end time. In this
case, the control explicitly depends on time as J(x, t) changes as a function of time.
Below, we will consider reinforcement learning, which is optimal control in a stationary
environment with a discounted future reward cost. We can obtain similar behavior within
the path integral control approach by considering a finite receding horizon. We consider
a dynamics that does not explicitly depend on time f (x, t) = f (x) and a stationary
environment: V (x, t) = V (x) and no end cost: φ(x) = 0. Thus,

dx = ( f (x) + u)dt + dξ (35)

C(x,u(t→ t + T )) =

〈∫ t+T

t
dt

R
2

u(t)2 +V (x(t))
〉

x
(36)



The optimal cost-to-go is given by

J(x) = −λ log
∫

dyρ(y, t + T |x, t)

= −λ log
∫

[dx]x exp
(
− 1

λ
Spath(x(t→ t + T ))

)
(37)

with ρ the solution of the Fokker-Planck equation Eq. 22 or Spath the Action given by
Eq. 26.

Note, that because both the dynamics f and the cost V are time-independent, C does
not explicitly depend on t. For the same reason, ρ(y, t + T |x, t) and J(x) do not depend
on t. Therefore, if we consider a receding horizon where the end time t f = t + T moves
with the actual time t, J gives the time-independent optimal cost-to-go to this receding
horizon. The resulting optimal control is a time-independent function u(x). The receding
horizon problem is quite similar to the discounted reward problem of reinforcement
learning.

REINFORCEMENT LEARNING

We now consider reinforcement learning, for which we consider a general stochastic dy-
namics given by a first order Markov process, that assigns a probability to the transition
of x to x′ under action u: p0(x′|x,u). We assume that x and u are discrete, as is usually
done.

Reinforcement learning considers an infinite time horizon and rewards are discounted.
This means that rewards in the far future contribute less than the same rewards in the near
future. In this case, the optimal control is time-independent and consists of a mapping
from each state to an optimal action. The treatment of this section is based in part on
[19, 31].

We introduce a reward that depends on our current state x , our current action u and
the next state x′: R(x,u,x′). The expected reward when we take action u in state x is given
as

R(x,u) = ∑
x′

p0(x′|x,u)R(x,u,x′)

Note, that the reward is time-independent as is standard assumed in reinforcement
learning.

We define a policy π(u|x) as the conditional probability to take action u given that
we are in state x. Given the policy π and given that we start in state xt at time t, the
probability to be in state xs at time s> t is given by

pπ(xs;s|xt ; t) = ∑
us−1,xs−1,...,ut+1,xt+1,ut

p0(xs|xs−1,us−1) . . .

. . .π(ut+1|xt+1)p0(xt+1|xt ,ut)π(ut|xt).

Note, that since the policy is independent of time, the Markov process is stationary,
i.e. pπ(x′; t + s|x; t) is independent of t for any positive integer s, and we can write



pπ(x′; t + s|x; t) = pπ(x′|x;s− t). For instance

pπ(y; t + 1|x, t) = ∑
u

p0(y|x,u)π(u|x) = pπ(y; t + 2|x, t + 1)

The expected future discounted reward in state x is defined as:

Jπ(x) =
∞

∑
s=0

∑
x′,u′

π(u′|x′)pπ(x′|x;s)R(x′,u′)γs (38)

with 0 < γ < 1 the discount factor. Jπ is also known as the value function for policy π .
Note, that Jπ only depends on the state and not on time. The objective of reinforcement
learning is to find the policy π that maximizes J for all states. Simplest way to compute
this is in the following way.

We can write a recursive relation for Jπ in the same way as we did in the previous
section.

Jπ(x) = ∑
u

π(u|x)R(x,u) +
∞

∑
s=1

∑
x′,u′

π(u′|x′)pπ(x′|x;s)R(x′,u′)γs

= ∑
u

π(u|x)R(x,u) + γ
∞

∑
s=1

∑
x′,u′

∑
x′′,u′′

π(u′|x′)pπ(x′|x′′;s−1)p0(x′′|x,u′′)π(u′′|x)R(x′,u′)γs−1

= ∑
u,x′

π(u|x)p0(x′|x,u)[R(x,u,x′) + γJπ(x′)] = ∑
u

π(u|x)Aπ(x,u) (39)

where we have defined Aπ(x,u) = ∑x′ p0(x′|x,u)[R(x,u,x′) + γJπ(x′)]. Given the time-
independent policy π , complete knowledge of the environment p0 and the reward func-
tion R, Eq. 39 gives a recursive equation for Jπ(x) in terms of itself. Solving for Jπ(x)
by fixed point iteration is called policy evaluation: it evaluates the value of the policy π .

The idea of policy improvement is to construct a better policy from the value of the
previous policy. Once we have computed Jπ , we construct a new deterministic policy

π ′(u|x) = δu,u(x), u(x) = argmax
u

Aπ(x,u) (40)

π ′ is the deterministic policy to act greedy with respect to Aπ(x,u). For the new policy
π ′ one can again determine the value Jπ ′ through policy evaluation. It can be shown (see
[10]) that the solution for Jπ ′ is as least as good as the solution Jπ in the sense that

Jπ ′(x)≥ Jπ(x),∀x

Thus, one can consider the following algorithm that starts with a random policy,
computes the value of the policy through Eq.39, constructs a new policy through Eq. 40,
constructs the value of that policy, etc, until convergence:

π0→ Jπ0 → π1→ Jπ1 → π2 . . .



One can show, that this procedure converges to a stationary value function J∗(x) that
is a fixed point of the above procedure. As we will show below, this fixed point is not
necessary the global optimum because the policy improvement procedure can suffer
from local minima.

The differences with the dynamic programming approach discussed before are that the
optimal policy and the value function are time-independent in the case of reinforcement
learning whereas the control and optimal cost-to-go are time dependent in the finite
horizon problem. The dynamic programming equations are initiated at a future time and
computed backwards in time. The policy evaluation equation is a fixed point equation
and can be initialized with with an arbitrary value of Jπ(x).

TD learning and actor-critic networks

The above procedures assume that the environment in which the automaton lives is
known. In particular Eq. 39 requires that both the environment p0(x′|x,u) and the reward
R(x,u,x′) are known. When the environment is not known one can either first learn a
model and then a controller or use a so-called model free approach, which yields the
well-known TD(λ ) and Q-learning algorithms.

When p0 and R are not known, one can replace Eq. 39 by a sampling variant

Jπ(x) = Jπ(x) + α(r + γJπ(x′)− Jπ(x)). (41)

with x the current state of the agent, x′ the new state after choosing action u from π(u|x)
and r the actual observed reward. To verify that this stochastic update equation gives a
solution of Eq. 39, look at its fixed point:

Jπ(x) = R(x,u,x′) + γJπ(x′).

This is a stochastic equation, because u is drawn from π(u|x) and x′ is drawn from
p0(x′|x,π(x)). Taking its expectation value with respect to u and x′, we recover Eq. 39.
Eq. 41 is the TD(0) algorithm [19]. The TD(λ ) extension of this idea is to not only
update state x but a larger set of recently visited states (eligibility trace) controlled by λ .

As in policy improvement, one can select a better policy from the values of the
previous policy that is defined greedy with respect to to Jπ . In principle, one should
require full convergence of the TD algorithm under the policy π before a new policy
is defined. However, full convergence takes a very long time, and one has the intuitive
idea that also from a halfway converged value function one may be able to construct a
new policy that may not be optimal, but at least better than the current policy. Thus, one
can consider an algorithm where the updating of the value of the states, Eq. 41, and the
definition of the policy, Eq. 40, are interleaved. The approach is known as actor-critic
networks, where Eq. 41 is the critic that attempts to compute Jπ to evaluate the quality
of the current policy π , and where Eq. 40 is the actor that defines new policies based on
the values Jπ . 4

4 In mammals, the action of dopamine on striatal circuits has been proposed to implement such an
actor-critic architecture [12], and recordings from monkey caudate neurons during simple associative



Q learning

A mathematically more elegant way to compute the optimal policy in a model free
way is given by the Q learning algorithm [11]. Denote Q(x,u) the optimal expected
value of state x when taking action u and then proceeding optimally. That is

Q(x,u) = R(x,u) + γ ∑
x′

p0(x′|x,u)max
u′

Q(x′,u′) (42)

and J∗(x) = maxu Q(x,u).
Its stochastic, on-line, version is

Q(x,u) = Q(x,u) + α(R(x,u,x′) + γ max
u′

Q(x′,u′)−Q(x,u)) (43)

As before, one can easily verify that by taking the expectation value of this equation
with respect to p0(x′|x,u) one recovers Eq. 42.

Note, that for this approach to work not only all states should be visited a sufficient
number of times (as in the TD approach) but all state-action pairs. On the other hand, Q-
learning does not require the policy improvement step and the repeated computation of
value functions. Also in the Q-learning approach it is tempting to limit actions to those
that are expected to be most successful, as in the TD approach, but this may again result
in a suboptimal solution.

Both TD learning and Q learning require very long times to converge, which makes
their application to artificial intelligence problems as well as to biological modeling
problematic. Q learning works better in practice than TD learning. In particular, the
choice of the relative update rates of the actor and critic in the TD approach can greatly
affect convergence. There have been an number of approaches to speed up RL learning,
in particular using hierarchical models where intermediate subgoals are formulated and
learned, and function approximations, where the value is presented as a parametrized
function and a limited number of parameters must be learned.

NUMERICAL EXAMPLES

Here we give some numerical examples of stochastic control. We first consider the
delayed choice problem that illustrates the issue of symmetry breaking and timing in
decision making. Subsequently we consider the receding horizon problem, both from
the perspective of RL and from the path integral control point of view.

conditioning tasks signal an error in the prediction of future reward. [32] proposes that the function of
these neurons is particularly well described by a specific class of reinforcement learning algorithms, and
shows how a model that uses a dopamine-like signal to implement such an algorithm can learn to predict
future rewards and guide action selection. More recent theoretical proposals have expanded the role of
the dopamine signal to include the shaping of more abstract models of valuation [33, 34, 35]. It portrays
the dopamine system as a critic whose influence extends beyond the generation of simple associative
predictions to the construction and modification of complex value transformations.
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FIGURE 2. (Left) Symmetry breaking in J as a function of T implies a ’delayed choice’ mechanism for
optimal stochastic control. When the target is far in the future, the optimal policy is to steer between the
targets. Only when T < 1/ν should one aim for one of the targets. ν = R = 1. (Right) Sample trajectories
(top row) and controls (bottom row) under stochastic control Eq. 44 (left column) and deterministic control
Eq. 44 with ν = 0 (right column), using identical initial conditions x(t = 0) = 0 and noise realization.

The delayed choice

As a first example, we consider a dynamical system in one dimension that must reach
one of two targets at locations x = ±1 at a future time t f . As we mentioned earlier,
the timing of the decision, that is when the automaton decides to go left or right, is the
consequence of spontaneous symmetry breaking. To simplify the mathematics to its bare
minimum, we take V = 0 and f = 0 in Eqs. 18 and 19 and φ(x) = ∞ for all x, except for
two narrow slits of infinitesimal size ε that represent the targets. At the targets we have
φ(x =±1) = 0. In this simple case, we can compute J exactly (see [22]) and is given by

J(x, t) =
R
T

(
1
2

x2−νT log2cosh
x

νT

)
+ const.

where the constant diverges as O(logε) independent of x and T = t f −t the time to reach
the targets. The expression between brackets is a typical free energy with temperature
νT . It displays a symmetry breaking at νT = 1 (fig. 2Left). For νT > 1 (far in the past
or high noise) it is best to steer towards x = 0 (between the targets) and delay the choice
which slit to aim for until later. The reason why this is optimal is that from that position
the expected diffusion alone of size νT is likely to reach any of the slits without control
(although it is not clear yet which slit). Only sufficiently late in time (νT < 1) should
one make a choice. The optimal control is given by the gradient of J:

u =
1
T

(
tanh

x
νT
− x
)

(44)

Figure 2Right depicts two trajectories and their controls under stochastic optimal
control Eq. 44 and deterministic optimal control (Eq. 44 with ν = 0), using the same
realization of the noise. Note, that the deterministic control drives x away from zero to
either one of the targets depending on the instantaneous value of sign(x), whereas for
large T the stochastic control drives x towards zero and is smaller in size. The stochastic
control maintains x around zero and delays the choice for which slit to aim until T ≈ 1/ν .
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FIGURE 3. The policy improvement algorithm, that computes iteratively the value of a policy and then
defines a new policy that is greedy with respect to this value function. In each figure, we show V (x), the
value (1− γ)J1(x) of the random initial policy, and (1− γ)J∞(x) the value of the converged policy, all as
a function of x.

The fact that symmetry breaking occurs in terms of the value of νT , is due to the
fact that the action Eq. 26 Spath ∝ 1/T , which in turn is due to the fact that we assumed
V = 0. When V 6= 0, Spath will also contain a contribution that is proportional to T and
the symmetry breaking pattern as a function of T can be very different.

Receding horizon problem

We now illustrate reinforcement learning and path integral control for a simple one
dimensional example where the expected future reward within a discounted or receding
horizon is optimized. The cost is given by V in figure 3 and the dynamics is simply
moving to the left or the right.

For large horizon times, the optimal policy is to move from the local minimum to the
global minimum of V (from right to left). The transient higher cost that is incurred by
passing the barrier with high V is small compared to the long term gain of being in the
global minimum instead of in the local minimum. For short horizon times the transient
cost is too large and it is better to stay in the local minimum. We refer to these two
qualitatively different policies as ’moving left’ and ’staying put’, respectively.

Reinforcement learning

In the case of reinforcement learning, the state space is discretized in 100 bins with
−2 < x < 3. The action space is to move one bin to the left or one bin to the right:
u = ±dx. The dynamics is deterministic: p0(x′|x,u) = δx′,x+u. The reward is given by
R(x,u,x′) = −V (x′), with V (x) as given in figure 3. Reinforcement learning optimizes
the expected discounted reward Eq. 38 with respect to π over all future contributions
with discount factor γ . The discounting factor γ controls the effective horizon of the



rewards through thor = −1/ logγ . Thus for γ ↑ 1, the effective horizon time goes to
infinity.

We use the policy improvement algorithm, that computes iteratively the value of a
policy and then defines a new policy that is greedy with respect to this value function.
The initial policy is the random policy that assigns equal probability to move left or
right.

For γ = 0.9, the results are shown in fig. 3Left. J1 is the value of the initial policy. J∞
is the value of the policy that is obtained after convergence of policy improvement. The
asymptotic policy found by the policy improvement algorithm is unique, as is checked by
starting from different initial policies, and thus corresponds to the optimal policy. From
the shape of J∞ one sees that the optimal policy for the short horizon time corresponding
to γ = 0.9 is to ’stay put’.

For γ = 0.99, the results are shown in fig. 3Right. In this case the asymptotic policy
found by policy improvement is no longer unique and depends on the initial policy.
J∞ is the asymptotic policy found when starting from the random initial policy and is
suboptimal. Jopt is the value of the optimal policy (always move to the left) , which is
clearly better since it has a lower value for all x. Thus, for γ = 0.99 the optimal policy is
to ’move left’.

This phenomenon that policy improvement may find multiple suboptimal solutions
persist for all larger values of γ (larger horizon times). We also ran Q-learning on the
reinforcement learning task of fig. 3 and found the optimal policy for γ = 0.9,0.99 and
0.999 (results not shown).

The number of value iterations of Eq. 39 depends strongly on the value of γ and
empirically seem to scale proportional to 1/(1− γ) and thus can become quite large.
The number of policy improvement steps in this simple example is only 1. The policy
that is defined greedy with respect to J1 is already within the discretization precision
of the optimal policy. It has been checked that smoothing the policy updates (π ←
απ + (1−α)πnew for some 0 < α < 1) increases the number of policy improvement
steps, but does not change fixed points of the algorithm.

Path integral control

We now compare reinforcement learning with the path integral control approach using
a receding horizon time. The path integral control uses the dynamics Eq. 35 and cost
Eq. 36 with f (x) = 0 and V (x) as given in fig. 3. The solution is given by Eq. 37. This
expression involves the computation of a high dimensional integral (one-dimensional
paths) and is in general intractable. We use the MC sampling method and the Laplace
approximation to find approximate solutions.

For the Laplace approximation of the cost-to-go, we use Eq. 30 and the result for short
horizon time T = 3 is given by the dashed lines in fig. 4Middle and 4Right (identical
curves). In fig. 4Left we show the minimizing Laplace trajectories for different initial
values of x. This solution corresponds to the policy to ’stay put’. For comparison, we
also show TV (x), which is the optimal cost-to-go if V would be independent of x.
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FIGURE 4. Left: Trajectories x∗1:n that minimize the Action Eq. 26 used in the Laplace approximation.
T = 3,R = 1. Time discretization dt = T/n,n = 10. Middle: Optimal cost-to-go J(x) for different x using
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FIGURE 5. Left: Trajectories x∗1:n that minimize the Action Eq. 26 used in the Laplace approximation.
T = 10,R = 1. Time discretization dt = T/n,n = 10. Middle: Optimal cost-to-go J(x) for different x using
the Laplace approximation (Jlp, dashed line) and the MC sampling (Jmc, dashed-dotted line) for ν = 0.01.
Right: idem for ν = 1.

For a relatively large horizon time T = 10, the Laplace solution of the cost-to-to and
the minimizing trajectories are shown in figure 5.

In figs. 4 and 5 we also show the results of the MC sampling (dashed dotted line). For
each x, we sample N = 1000 trajectories according to Eq. 33 and estimate the cost-to-go
using Eq. 34.

The Laplace approximation is accurate for low noise and becomes exact in the de-
terministic limit. It is a ’global’ solution in the sense that the minimizing trajectory is
minimal with respect to the complete (known) state space. Therefore, one can assume
that the Laplace results for low noise in figs. 4Middle and 5Middle are accurate. In par-
ticular in the case of a large horizon time and low noise (fig. 5Middle), the Laplace
approximation correctly proposes a policy to ’move left’ whereas the MC sampler pro-
poses (incorrectly) to ’stay put’.

The conditions for accuracy of the MC method are a bit more complex. The typical
size of the area that is explored by the sampling process Eq. 33 is xmc =

√
νT . In order

for the MC method to succeed, this area should contain some of the trajectories that make
the dominant contributions to the path integral. When T = 3,ν = 1, xmc = 1.7, which is
sufficiently large to sample the dominant trajectories, which are the ’stay put’ trajectories
(those that stay in the local minima around x = −2 or x = 3). When T = 10,ν = 1,



xmc = 3.2, which is sufficiently large to sample the dominant trajectories, which are the
’move left’ trajectories (those that move from anywhere to the global minimum around
x =−2). Therefore, for high noise we believe the MC estimates are accurate.

For low noise and a short horizon (T = 3,ν = 0.01), xmc = 0.17 which is still ok
to sample the dominant ’stay put’. However, for low noise and a long horizon (T =
10,ν = 0.01), xmc = 0.3 which is too small to likely sample the dominant ’move left’
trajectories. Thus, the MC sampler is accurate in three of these four cases (sufficiently
high noise or sufficiently small horizon). For large horizon times and low noise the MC
sampler fails.

Thus, the optimal control for short horizon time T = 3 is to ’stay put’ more or less
independent of the level of noise (fig. 4Middle Jlp, fig. 4Right Jmc). The optimal control
for large horizon time T = 10 is to ’move left ’ more or less independent of the level of
noise (fig. 5Middle Jlp, fig. 5Right Jmc).

Note, that the case of a large horizon time corresponds to the case of γ close to
1 for reinforcement learning. We see that the results of RL and path integral control
qualitatively agree.

Exploration

When the environment is not known, one needs to learn the environment. One can
proceed in one of two ways: model-based or model-free. The model-based approach is
simply to first learn the environment and then compute the optimal control. This optimal
control computation is typically intractable but can be computed efficiently within the
path integral framework. The model-free approach is to interleave exploration (learning
the environment) and exploitation (behave optimally in this environment).

The model-free approach leads to the exploration-exploitation dilemma. The interme-
diate controls are optimal for the limited environment that has been explored, but are of
course not the true optimal controls. These controls can be used to optimally exploit the
known environment, but in general give no insight how to explore. In order to compute
the truly optimal control for any point x one needs to know the whole environment. At
least, one needs to know the location and cost of all the low lying minima of V . If one
explores on the basis of an intermediate suboptimal control strategy there is no guaran-
tee that asymptotically one will indeed explore the full environment and thus learn the
optimal control strategy.

Therefore we conclude that control theory has in principle nothing to say about
how to explore. It can only compute the optimal controls for future rewards once the
environment is known. The issue of optimal exploration is not addressable within the
context of optimal control theory. This statement holds for any type of control theory
and thus also for reinforcement learning or path integral control.

There is one important exception to this, which is when one has some prior knowledge
about the environment. There are two classes of prior knowledge that are considered
in the literature. One is that the environment and the costs are smooth functions of
the state variables. It is then possible to learn the environment using data from the
known part of the environment only and extrapolate this model to the unknown parts



of the environment. One can then consider optimal exploration strategies relying on
generalization.

The other type of prior knowledge is to assume that the environment and cost are
drawn from some known probability distribution. An example is the k-armed bandit
problem, for which the optimal exploration-exploitation strategy can be computed.

In the case of the receding horizon problem and path integral control, we propose
naive sampling using the diffusion process Eq. 33 to explore states x and observe their
costs V (x). Note, that this exploration is not biased towards any control. We sample one
very long trace at times τ = idt, i = 0, . . . ,N, such that Ndt is long compared to the time
horizon T . If at iteration i we are at a location xi, we estimate ψ(xi,0) by a single path
contribution:

ψ(xi,0) = exp

(
−dt

λ

j=i+n

∑
j=i

V (x j)

)
(45)

with T = ndt and x j, j = i+1, . . . , i+n the n states visited after state xi. We can compute
this expression on-line by maintaining running estimates of ψ(x j) values of recently
visited locations x j. At iteration i we initialize ψ(xi) = 1 and update all recently visited
ψ(x j) values with the current cost:

ψ(xi) = 1

ψ(x j) ← ψ(x j)exp
(
−dt

λ
V (xi)

)
, j = i−n + 2, . . . , i−1

The results are shown in fig. 6 for the one-dimensional problem introduced in fig 3.
We use a run of N = 8000 iterations, starting at x = 0. The diffusion process explores in
expectation an area of size

√
νNdt = 12.3 around the starting value. From this one run,

one can estimate simultaneously J(x) for different horizon times (T = 3 and T = 10 in
this case). Note, that these results are similar to the MC results in fig. 5.

By exploring the space according to Eq. 33, we can learn the environment. Once
learned, we can use it to compute the optimal exploitation strategy as we discussed
before. As we discussed before, we have no principled way to explore. Instead of using
Eq. 33 we could choose any other random or deterministic method to decide at which
points in space we want to compute the immediate cost and the expected cost-to-go. Our
estimated model of the environment at time t can tell us how to best exploit it between t
and t + T , but does not provide any information about how to explore those parts of the
state space that have not yet been explored.

There is however, one advantage to use Eq. 33 for exploration, and that is that it not
only explores the state space and teaches us about V (x) at each of these states, but at the
same time provides a large number of trajectories xi:i+n that we can use to compute the
expected cost to go. If instead, we would sample x randomly one would require a second
phase to estimate ψ(x).
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A neural implementation

In this section, we propose a simple way to implement the control computation in
a ’neural’ way. It is well-known, that the brain represents the environment in terms of
neural maps. These maps are topologically organized, in the sense that nearby neurons
represent nearby locations in the environment. Examples of such maps are found in
sensory areas as well as in motor areas. In the latter case, nearby neuron populations
encode nearby motor acts.

Suppose that the environment is encoded in a neural map and let us consider a one-
dimensional environment for simplicity. We also restrict to the receding horizon case
with no end cost and no intrinsic dynamics: f (x) = 0. We consider a one-dimensional
array of neurons, i = 1, . . . ,m and denote the firing rate of the neurons at time t by ρi(t).
The brain structure encodes a simplified neural map in the sense that if the animal is at
location x = x0 + idx in the external world, neuron i fires and all other neurons are quiet.

Normally, the activity in the neural map is largely determined by the sensory input,
possibly augmented with a lateral recurrent computation. Instead, we now propose a
dynamics that implements a type of thinking ahead or planning of the consequences of
possible future actions. We assume that the neural array implements a space-discretized



version of the forward diffusion process as given by the Fokker-Planck Eq. 22:

dρi

dt
=−Vi

λ
ρi(t) +

ν
2 ∑

j
Di jρ j(t) (46)

with D the diffusion matrix Dii = −2,Dii+1 = Dii−1 = 1 and all other entries of D are
zero. Vi is the cost, reward or risk of the environment at location i and must be know to
the animal. Note, that each neuron can update its firing rate on the basis of the activity
of itself and its nearest neighbors. Further, we assume that there is some additional
inhibitory lateral connectivity in the network such that the total firing rate in the map
is normalized: ∑i ρi(t) = 1.

Suppose that at t = 0 the animal is at location x in the environment and wants to
compute its optimal course of actions. Neuron i is active (ρi(t = 0) = 1) and all other
neurons are quiet. By running the network dynamics from t = 0 to T in the absence of
external stimuli, the animal can ’think’ what will happen in the future.

For the environment of fig. 3 we illustrate this in fig. 7. The activity of the network
is initialized as a sharply peaked Gaussian, centered on the actual location of the animal
(x = 1). The figure shows ρ(y,T |x = 1,0) as a function of y for various horizon times T .
For T = 5 the Gaussian has moved to the local minimum around x = 2. This means that
for this horizon time the optimal course of action of the animal is to move to the right. For
optimization of short-term reward, this is the nearest area of relative lower cost. When
the network is run until T = 10, the peak around x = 2 disappears and a peak around
x =−1 appears. For optimization of long-term reward, it is better to move to the global
minimum, despite the fact that it is further away and requires a larger transient cost.
Thus, by thinking ahead for a short or a long time, the animal can compute the actions
that are optimal in a short or a long horizon, respectively. This is quite different from
the reinforcement learning paradigm, where for each value of γ the Bellman equations
should be solved.

In this very simple example, the decision whether to move left or right can be inferred
simply from the mode of ρ(y,T |x,0). In general this does not need to be true and in
any case, for the correct estimation of the size of the optimal control, the gradient of
ψ(x) =

∫
dyρ(y,T |x,0) must be computed.

Comparing RL and PI control

Let us here briefly summarize the main differences and similarities between reinforce-
ment learning and path integral control. For a problem consisting of n states, RL requires
the solution of a system of n recursive equations involving n rewards and n unknowns,
which are the values at these n states (the Bellman equation). Through these equations,
the value of each state depends thus on the value of each other state. Path integral control
is different in the sense that the closed form solution Eq. 23 gives the value of each state
in terms of all n rewards, but this can be computed independent from the value of all
other states.

Computation time for PI control and RL both increase with the horizon time T . For
RL, one empirically observes tcpu ∝ 1/(1− γ) and if we define the horizon time as
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T = −1/ logγ then tcpu ≈ T . For PI control, complexity is mainly determined by the
time discretization dt of the diffusion computation and the trajectories. For instance, the
Laplace approximation requires the minimization of an n dimensional function, with
T = ndt, which due to the sparse structure of the Action can be done in O(n) time. The
MC sampling requires a constant (possibly large) number of sampling trajectories each
of length n and is therefore also proportional to n. The appropriate time discretization for
large horizon times is not necessary the same as for small horizon times and therefore n
may scale sub-linear with T .

In the case of RL, the computation of the value of the states depends on γ and
for different γ the Bellman equations need to be solved separately. In the case of
PI control, the solution for larger horizon time can be obtained by simply running
the diffusion process for more time. The optimal control computation for the larger
horizon time makes then effective use of the previously computed solution for shorter
horizon time. For example, suppose that we know the solution for horizon times T :
ψT (x) =

∫
dyρT (y|x). We can use this to compute a solution ψ2T (x) =

∫
dzρ2T (z|x) =∫

dzdyρT (z|y)ρT (y|x) =
∫

dyψT (y)ρT (y|x).
With respect to exploration, RL and PI control are not very different. Both require to

learn a model of the environment. In general, the control strategy that is optimal with
respect to the partial environment that has been observed does not need to be a good
strategy for exploration. If the objective is to learn a truly optimal control, the whole
environment needs to be explored. When additional assumptions about the environment
are made (for instance smoothness) this exploration can be made more efficient by
relying on interpolation and extrapolation between observed states. Using the diffusion
process Eq. 33 has the added advantage that it not only explores the full state space,
but also estimates the optimal control from the explored sample trajectory. Extra criteria
need to be considered (curiosity, surprise,...) to define the optimality of exploration.



DISCUSSION

In this paper, I have given an overview of the possible application of control theory to
the modeling of animal behavior and learning. In the most general, and most interesting,
case, stochastic optimal control is intractable and this has been a major obstacle for
applications both in artificial intelligence and in biological modeling. Subsequently, I
have introduced a class of non-linear stochastic control problems that can be efficiently
solved using a path integral or by MC sampling. In this control formalism the central
concept of cost-to-go becomes a free energy and methods and concepts from statistical
physics can be readily applied. For instance the mean field and belief propagation
methods can be used to approximate the free energy. An example of this is given in
[23] in the context of multi-agent coordination.

I have discussed two types of control problems. Time-dependent problems where an
intricate sequence of actions must be executed to reach a desired target. I have only
described a very simple example where an agent must decide between to future targets
and where due to the noise there is a non-trivial timing issue when to make this decision.
The decision is made dynamically as the result of a spontaneous symmetry breaking of
the cost-to-go.

The second problem is a time-independent problem where the expected future cost
in a receding horizon has to be minimized. This problem is traditionally solved using
reinforcement learning and I have compared that approach to the path integral approach.
Both methods give more or less the same qualitative behavior as a function of the horizon
time and there seems to be a rather mild dependence on the noise in the problem. I have
indicated some of the computational advantages of the path integral approach

In all of this paper, we have assumed that the reward or cost is defined externally
to the animal. At first sight, this seems quite acceptable. While the animal explores its
environment, its initially more or less random sequences of actions will sometimes be
rewarded positively (food, for instance) and sometimes negatively (starvation, danger).
However, from the psychological literature [36] it is known that intrinsically-motivated
behavior is essential for an organism to gain the competence necessary for autonomy.
Intrinsic reward is related to achieving generic skill (options) that are useful components
of externally rewarded tasks. For instance, a task that has external reward is to find food.
Instead of learning this task with external reward only, it is commonly thought [36] that
animals instead learn generic skills that then can later be used as components in tasks.
Berlyne [37] suggests that the factors underlying intrinsic motivational effects involve
novelty, surprise, incongruity, and complexity. He also hypothesized that moderate levels
of novelty have the highest reward value and situations that are completely familiar
(boredom) and completely unfamiliar (confusion) have lower reward. The combination
of internal and external reward into a computational framework called options has been
made by [38]. It is an open question how to incorporate such internal rewards in a more
general control framework.
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