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Abstract In this chapter, we will discuss Bayesian networks, a currently widely
accepted modeling class for reasoning with uncertainty. We will take a practical
point of view, putting emphasis on modeling and practical applications rather than
on mathematical formalities and the advanced algorithms that are used for compu-
tation. In general, Bayesian network modeling can be data driven. In this chapter,
however, we restrict ourselves to modeling based on domain knowledge only. We
will start with a short theoretical introduction to Bayesian networks models and
inference. We will describe some of the typical usages of Bayesian network mod-
els, e.g. for reasoning and diagnostics; furthermore, we will describe some typical
network behaviors such as the explaining away phenomenon, and we will briefly
discuss the common approach to network model design by causal modeling. We
will illustrate these matters by a detailed modeling and application of a toy model
for medical diagnosis. Next, we will discuss two real-world applications. In par-
ticular we will discuss the modeling process in some details. With these examples
we also aim to illustrate that the modeling power of Bayesian networks goes fur-
ther than suggested by the common textbook toy applications. The first application
that we will discuss is for victim identification by kinship analysis based on DNA
profiles. The distinguishing feature in this application is that Bayesian networks are
generated and computed on-the-fly, based on case information. The second one is
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an application for petrophysical decision support to determine the mineral content
of a well based on borehole measurements. This model illustrates the possibility to
model with continuous variables and nonlinear relations.

1 Introduction

In modeling intelligent systems for real world applications, one inevitably has to
deal with uncertainty. This uncertainty is due to the impossibility to model all the
different conditions and exceptions that can underlie a finite set of observations.
Probability theory provides the mathematically consistent framework to quantify
and to compute with uncertainty. In principle, a probabilistic model assigns a proba-
bility to each of its possible states. In models for real world applications, the number
of states is so large that a sparse model representation is inevitable. A general class
with a representation that allows modeling with many variables are the Bayesian
networks [26, 18, 7].

Bayesian networks are nowadays well established as a modeling tool for expert
systems in domains with uncertainty [27]. Reasons are their powerful but concep-
tually transparent representation for probabilistic models in terms of a network.
Their graphical representation, showing the conditional independencies between
variables, is easy to understand for humans. On the other hand, since a Bayesian net-
work uniquely defines a joint probability model, inference — drawing conclusions
based on observations — is based on the solid rules of probability calculus. This
implies that the mathematical consistency and correctness of inference are guaran-
teed. In other words, all assumptions in the method are contained in model, i.e., the
definition of variables, the graphical structure, and the parameters. The method has
no hidden assumptions in the inference rules. This is unlike other types of reasoning
systems such as e.g., Certainty Factors (CFs) that were used in e.g., MYCIN — a
medical expert system developed in the early 1970s [29]. In the CF framework,
the model is specified in terms of a number of if-then-else rules with certainty fac-
tors. The CF framework provides prescriptions how to invert and/or combine these
if-then-else rules to do inference. These prescriptions contain implicit conditional
independence assumptions which are not immediately clear from the model specifi-
cation and have consequences in their application [15].

Probabilistic inference is the problem of computing the posterior probabilities
of unobserved model variables given the observations of other model variables. For
instance in a model for medical diagnoses, given that the patient has complaints x
and y, what is the probability that he/she has disease z? Inference in a probabilistic
model involves summations or integrals over possible states in the model. In a real-
istic application the number of states to sum over can be very large. In the medical
example, the sum is typically over all combinations of unobserved factors that could
influence the disease probability, such as different patient conditions, risk factors,
but also alternative explanations for the complaints, etc. In general these compu-
tations are intractable. Fortunately, in Bayesian networks with a sparse graphical
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structure and with variables that can assume a small number of states, efficient in-
ference algorithms exists such as the junction tree algorithm [18, 7].

The specification of a Bayesian network can be described in two parts, a quali-
tative and a quantitative part. The qualitative part is the graph structure of the net-
work. The quantitative part consists of specification of the conditional probabil-
ity tables or distributions. Ideally both specifications are inferred from data [19].
In practice, however, data is often insufficient even for the quantitative part of the
specification. The alternative is to do the specification of both parts by hand, in col-
laboration with domain experts. Many Bayesian networks are created in this way.
Furthermore, Bayesian networks are often developed with the use of software pack-
ages such as Hugin (www.hugin.com), Netica (www.norsys.com) or BayesBuilder
(www.snn.ru.nl). These packages typically contain a graphical user interface (GUI)
for modeling and an inference engine based on the junction tree algorithm for com-
putation.

We will discuss in some detail a toy application for respiratory medicine that is
modeled and inferred in this way. The main functionality of the application is to
list the most probable diseases given the patient-findings (symptoms, patient back-
ground revealing risk factors) that are entered. The system is modeled on the basis of
hypothetical domain knowledge. Then, it is applied to hypothetical cases illustrating
the typical reasoning behavior of Bayesian networks.

Although the networks created in this way can be quite complex, the scope of
these software packages obviously has its limitations. In this chapter we discuss
two real-world applications in which the standard approach to Bayesian modeling
as outlined above was infeasible for different reasons: the need to create models on-
the-fly for the data at hand in the first application and the need to model continuous-
valued variables in the second one.

The first application is a system to support victim identification by kinship anal-
ysis based on DNA profiles (Bonaparte, in collaboration with NFI). Victims should
be matched with missing persons in a pedigree of family members. In this appli-
cation, the model follows from Mendelian laws of genetic inheritance and from
principles in DNA profiling. Inference needs some preprocessing but is otherwise
reasonably straightforward. The graphical model structure, however, depends on the
family structure of the missing person. This structure will differ from case to case
and a standard approach with a static network is obviously insufficient. In this appli-
cation, modeling is implemented in the engine. The application generates Bayesian
networks on-the-fly based on case information. Next, it does the required inferences
for the matches.

The second model has been developed for an application for petrophysical deci-
sion support (in collaboration with SHELL E&P). The main function of this applica-
tion is to provide a probability distribution of the mineral composition of a potential
reservoir based on remote borehole measurements. In this model, variables are con-
tinuous valued. One of them represents the volume fractions of 13 minerals, and
is therefore a 13-D continuous variable. Any sensible discretization in a standard
Bayesian network approach would lead to a blow up of the state space. Due to non-
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linearities and constraints, a Bayesian network with linear-Gaussian distributions [3]
is also not a solution.

The chapter is organized as follows. First, we will provide a short introduction to
Bayesian networks in section 2. In the next section we will discuss in detail mod-
eling basics and the typical application of probabilistic reasoning in the medical
toy model. Next, in sections 4 and 5 we will discuss the two real-world applica-
tions. In these chapters, we focus on the underlying Bayesian network models and
the modeling approaches. We will only briefly discuss the inference methods that
were applied whenever they deviate from the standard junction tree approach. In
section 6, we will end with discussion and conclusion.

2 Bayesian Networks

In this section, we first give a short and rather informal review of the theory of
Bayesian networks (subsection 2.1). Furthermore in subsection 2.2, we briefly dis-
cuss Bayesian networks modeling techniques, and in particular the typical practical
approach that is taken in many Bayesian network applications.

2.1 Bayesian Network Theory

To introduce notation, we start by considering a joint probability distribution, or
probabilistic model, P(X1, . . . ,Xn) of n stochastic variables X1, . . . ,Xn. Variables X j
can be in state x j. A state, or value, is a realization of a variable. We use shorthand
notation

P(x1, . . . ,xn) = P(X1 = x1, . . . ,Xn = xn) (1)

to denote the probability (in continuous domains: the probability density) of vari-
ables X1 in state x1, variable X2 in state x2 etc.

A Bayesian network is a probabilistic model P on a finite directed acyclic graph
(DAG). For each node i in the graph, there is a random variable Xi together with a
conditional probability distribution P(xi|xπ(i)), where π(i) are the parents of i in the
DAG, see figure 1. The joint probability distribution of the Bayesian network is the
product of the conditional probability distributions

P(x1, . . . ,xn) =
n

∏
i=1

P(xi|xπ(i)) . (2)

Since any DAG can be ordered such that π(i)⊆ 1, . . . i−1 and any joint distribu-
tion can be written as

P(x1, . . . ,xn) =
n

∏
i=1

P(xi|xi−1, . . . ,x1) , (3)
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Fig. 1 DAG representing a Bayesian network P(x1)P(x2|x1)P(x3)P(x4|x1)P(x5|x2,x3,x4)P(x6|x3)

it can be concluded that a Bayesian network assumes

P(xi|xi−1, . . . ,x1) = P(xi|xπ(i)) . (4)

In other words, the model assumes: given the values of the direct parents of a vari-
able Xi, this variable Xi is independent of all its other predecessing variables in the
graph.

Since a Bayesian network is a probabilistic model, one can compute marginal dis-
tributions and conditional distributions by applying the standard rules of probability
calculus. For instance, in a model with discrete variables, the marginal distribution
of variable Xi is given by

P(xi) = ∑
x1

. . . ∑
xi−1

∑
xi+1

. . .∑
xN

P(x1, . . . ,xN) . (5)

Conditional distributions such as P(xi|x j) are obtained by the division of two
marginal distributions

P(xi|x j) =
P(xi,x j)

P(x j)
. (6)

The bottleneck in the computation is the sum over combinations of states in (5). The
number of combinations is exponential in the number of variables. A straightforward
computation of the sum is therefore only feasible in models with a small number of
variables. In sparse Bayesian networks with discrete variables, efficient algorithms
that exploit the graphical structure, such as the junction tree algorithm [21, 18, 7]
can be applied to compute marginal and conditional distributions. In more general
models, exact inference is infeasible and approximate methods such as sampling
have to be applied [22, 3].

2.2 Bayesian Network Modeling

The construction of a Bayesian network consists of deciding about the domain, what
are the variables that are to be modeled, and what are the state spaces of each of the
variables. Then the relations between the variables have to be modeled. If these
are to be determined by hand (rather than by data), it is a good rule of thumb to
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construct a Bayesian network from cause to effect. Start with nodes that represent
independent root causes, then model the nodes which they influence, and so on until
we end at the leaves, i.e., the nodes that have no direct influence on other nodes.
Such a procedure often results in sparse network structures that are understandable
for humans [27].

Sometimes this procedure fails, because it is unclear what is cause and what is
effect. Is someone’s behavior an effect of his environment, or is the environment a
reaction on his behavior? In such a case, just avoid the philosophical dispute, and
return to the basics of Bayesian networks: a Bayesian network is not a model for
causal relations, but a joint probability model. The structure of the network repre-
sents the conditional independence assumptions in the model and nothing else.

A related issue is the decision whether two nodes are really (conditionally) in-
dependent. Usually, this is a matter of simplifying model assumptions. In the true
world, all nodes should be connected. In practice, reasonable (approximate) assump-
tions are needed to make the model simple enough to handle, but still powerful
enough for practical usage.

When the variables, states, and graphical structure is defined, the next step is
to determine the conditional probabilities. This means that for each variable xi, the
conditional probabilities P(xi|xπ(i)) in eqn. (4) have to be determined. In case of
a finite number of states per variable, this can be considered as a table of (|xi| −
1)× |xπ(i)| entries between 0 and 1, where |xi| is the number of states of variable
xi and |xπ(i)| = ∏ j∈π(i) |x j| the number of joint states of the parents. The −1 term
in the (|xi|− 1) factor is due to the normalization constraint ∑xi P(xi|xπ(i)) = 1 for
each parent state. Since the number of entries is linear in the number of states of the
variables and exponential in the number of parent variables, a too large state space
as well as a too large number of parents in the graph makes modeling practically
infeasible.

The entries are often just the result of educated guesses. They may be inferred
from data, e.g. by counting frequencies of joint occurences of variables in state xi
and parents in states xπ(i). For reliable estimates, however, one should have suf-
ficiently many data for each joint state (xi,xπ(i)). So in this approach one should
again be carefull not to take state space and/or number of parents too large. A com-
promise is to assume a parametrized tables. A popular choice for binary variables is
the noisy-OR table [26]. The table parametrization can be considered as an educated
guess. The parameters may then be estimated from data.

Often, models are constructed using Bayesian network software such as the ear-
lier mentioned software packages. With the use of a graphical user interface (GUI),
nodes can be created. Typically, nodes can assume only values from a finite set.
When a node is created, it can be linked to other nodes, under the constraint that
there are no directed loops in the network. Finally — or during this process — the
table of conditional probabilities are defined, manually or from data as mentioned
above. Many Bayesian networks that are found in literature fall into this class, see
e.g., www.norsys.com/netlibrary/. In figure 2, a part of the ALARM network as
represented in BayesBuilder (www.snn.ru.nl/) is plotted. The ALARM network was
originally designed as a network for monitoring patients in intensive care [2]. It con-
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Fig. 2 Screen shot of part of the ’Alarm network’ in the BayesBuilder GUI

sists of 37 variables, each with 2, 3, or 4 states. It can be considered as a relatively
large member of this class of models. An advantage of the GUI based approach
is that a small or medium sized Bayesian network, i.e., with up to a few dozen of
variables, where each variable can assume a few states, can be developed quickly,
without the need of expertise on Bayesian networks modeling or inference algo-
rithms.

3 An Example Application: Medical Diagnosis

In this section we will consider the a Bayesian network for medical diagnosis of
the respiratory system. This is model is inspired on the famous ’ASIA network’
described in [21].

3.1 Modeling

We start by considering the the following piece of qualitative ’knowledge’:

The symptom dyspnoea (shortness of breath) may be due to the diseases pneumonia, lung
cancer, and/or bronchitis. Patients with pneumonia, and/or bronchitis often have a very
nasty wet coughing. Pneumonia, and/or lung cancer are often accompanied by a heavy
chest pain. Pneumonia is often causing a severe fever, but this may also be caused by a
common cold. However, a common cold is often recognized by a runny nose. Sometimes,
wet coughing, chest pain, and/or dyspnoea occurs unexplained, or are due to another cause,
without any of these diseases being present. Sometimes diseases co-occur. A weakened
immune-system (for instance, homeless people, or HIV infected) increases the probability
of getting an pneumonia. Also, lung cancer increases this probability. Smoking is a serious
risk factor for bronchitis and for lung cancer.
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Fig. 3 DAG for the respiratory medicine toy model. See text for details

Now to build a model, we first have to find out which are the variables. In the text
above, these are the ones printed in italics. In a realistic medical application, one
may want to model multi-state variables. For simplicity, however, we take in this
example all variables binary (true/false). Note that by modeling diseases as separate
variables rather than by mutually exclusive states in a single disease variable, the
model allows diseases to co-occur.

The next step is to figure out a sensible graphical structure. In the graphical repre-
sentation of the model, i.e., in the DAG, all these variables are represented by nodes.
The question now is which arrows to draw between the nodes. For this, we will use
the principle of causal modeling. We derive these from the ’qualitative knowledge’
and some common sense. The general causal modeling assumption in this medical
domain is that risk factors ’cause’ the diseases, so risk factors will point to diseases,
and diseases ’cause’ symptoms, so diseases will point to symptoms.

We start by modeling risk factors and diseases. Risk factors are weakened
immune-system (for pneumonia), smoking (for bronchitis and for lung cancer), and
lung cancer (also for pneumonia). The nodes for weakened immune-system and
smoking have no incoming arrows, since there are no explicit causes for these vari-
ables in the model. We draw arrows from these node to the diseases for which they
are risk factors. Furthermore, we have a node for the disease common cold. This
node has no incoming arrow, since no risk factor for this variable is modeled.

Next we model the symptoms. The symptom dyspnoea may be due to the dis-
eases pneumonia, lung cancer, and/or bronchitis, so we draw an arrow from all these
diseases to dyspnoea. In a similar way, we can draw arrows from pneumonia, and
bronchitis to wet coughing; arrows from pneumonia, and lung cancer to chest pain;
arrows from pneumonia and common cold to fever; and an arrow from common cold
to runny nose. This completes the DAG, which can be found in figure 3. (In the
figures and in some of the text in the remainder of the section we abbreviated some
of the variable names, e.g. we used immun sys instrad of weakened immune-system,
etc.)
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P(immun syst)
0.05

P(smoking)
0.3

P(common cold)
0.35

P(lung cancer smoking)
0.1 true

0.01 false

P(bronchitis smoking)
0.3 true

0.01 false

P(runny nose common cold)
0.9 true
0.01 false

P(pneumonia immun syst, lung cancer)
0.3 true true
0.3 true false
0.05 false true
0.001 false false

P(fever pneumonia, common cold)
0.9 true true
0.9 true false
0.2 false true
0.01 false false

P(cough pneumonia, bronchitis)
0.9 true true
0.9 true false
0.9 false true
0.1 false false

P(chest pain pneumonia, bronchitis)
0.9 true true
0.9 true false
0.9 false true
0.1 false false

P(dyspnoea bronchitis, lung cancer, pneumonia)
0.8 true true true
0.8 true true false
0.8 true false true
0.8 true false false
0.5 false true true
0.5 false true false
0.5 false false true
0.1 false false false

Fig. 4 Conditional probability tables parametrizing the respiratory medicine toy model. The num-
bers in the nodes represent the marginal probabilities of the variables in state ’true’. See text for
details

The next step is the quantitative part, i.e., the determination of the conditional
probability tables. The numbers that we enter are rather arbitrary guesses and we do
not pretend them to be anyhow realistic. In determining the conditional probabili-
ties, we used some modeling assumptions such as that the probability of a symptom
in the presence of an additional causing diseases is at least as high as the proba-
bility of that symptom in the absence of that disease. The tables as presented in
figure 4. In these tables, the left column represents the probability values in the true
state, P(variablename) ≡ P(variablename = true), so P(variablename = false) =
1−P(variablename). The other columns indicate the joint states of the parent vari-
ables.

3.2 Reasoning

Now that the model is defined, we can use it for reasoning, e.g. by entering obser-
vational evidence into the system and doing inference, i.e. computing conditional
probabilities given this evidence. To do the computation, we have modeled the sys-
tem in BayesBuilder. In figure 5 we show a screen shot of the Bayesian network as
modeled in BayesBuilder. The program uses the junction tree inference algorithm to
compute the marginal node probabilities and displays them on screen. The marginal
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Fig. 5 Screen shot of the respiratory medicine toy model in the BayesBuilder GUI. Red bars
present marginal node probabilities

node probabilities are the probability distributions of each of the variables in the
absence of any additional evidence. In the program, evidence can be entered by
clicking on a state of the variable. This procedure is sometimes called ‘clamping’.
The node probabilities will then be conditioned on the clamped evidence. With this,
we can easily explore how the models reasons.

3.2.1 Knowledge representation

Bayesian networks may serve as a rich knowledge base. This is illustrated by con-
sidering a number of hypothetical medical guidelines and comparing these with
Bayesian network inference results. These results will also serve to comment on
some of the typical behavior in Bayesian networks.

1. In case of high fever in absence of a runny nose, one should consider pneumonia.

Inference We clamp fever = true and runny nose = false and look at the con-
ditional probabilities of the four diseases. We see that in particular the proba-
bility of pneumonia is increased from about 2% to 45%. See figure 6.

Comment There are two causes in the model for fever, namely has parents
pneumonia and common cold. However, the absence of acommon cold makes
common cold less likely. This makes the other explaining cause pneumonia
more likely.

2. Lung cancer is often found in patients with chest pain, dyspnoea, no fever, and
usually no wet coughing.
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Fig. 6 Model in the state representing medical guideline 1, see main text. Red bars present condi-
tional node probabilities, conditioned on the evidence (bleu bars)

Inference We clamp chest pain = true, dyspnoea = true, fever = false, and
coughing = false We see that probability of lung cancer is raised 0.57. Even
if we set coughing = true, the probability is still as high as 0.47.

Comment Chest pain and dyspnoea can both be caused by lung cancer. How-
ever, chest pain for example, can also be caused by pneumonia. The absence
of in particular fever makes pneumonia less likely and therefore lung cancer
more likely. To a lesser extend this holds for absence of coughing and bron-
chitis.

3. Bronchitis and lung cancer are often accompanied, e.g patients with bronchi-
tis often develop a lung cancer or vice versa. However, these diseases have no
known causal relation, i.e., bronchitis is not a cause of lung cancer, and lung
cancer is not a cause of bronchitis.

Inference According to the model, P(lung cancer|bronchitis = true) = 0.09
and P(bronchitis|lung cancer = true) = 0.25. Both probabilities are more than
twice the marginal probabilities (see figure 3).

Comment Both diseases have the same common cause: smoking. If the state of
smoking is observed, the correlation is broken.

3.2.2 Diagnostic reasoning

We can apply the system for diagnosis. the idea is to enter the patient observa-
tions, i.e. symptoms and risk factors into the system. Then diagnosis (i.e. finding
the cause(s) of the symptoms) is done by Bayesian inference. In the following, we
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present some hypothetical cases, present the inference results and comment on the
reasoning by the network.

1. Mr. Appelflap calls. He lives with his wife and two children in a nice little house
in the suburb. You know him well and you have good reasons to assume that he
has no risk of a weakened immune system. Mr. Appelflap complains about high
fever and a nasty wet cough (although he is a non-smoker). In addition, he sounds
rather nasal. What is the diagnosis?

Inference We clamp the risk factors immun sys = false, smoking = false and
the symptoms fever = true, runny nose = true. We find all disease probabili-
ties very small, except common cold, which is almost certainly true.

Comment Due to the absence of risk factors, the prior probabilities of the
other diseases that could explain the symptoms is very small compared to
the prior probability of common cold. Since common cold also explains all
the symptoms, that disease takes all the probability of the other causes. This
phenomenon is called ’explaining away’: pattern of reasoning in which the
confirmation of one cause (common cold, with a high prior probability and
confirmed by runny nose ) of an observed event (fever) reduces the need to
invoke alternative causes (pneumonia as an explanation of fever).

2. The salvation army calls. An unknown person (looking not very well) has arrived
in their shelter for homeless people. This person has high fever, a nasty wet cough
(and a runny nose.) What is the diagnosis?

Inference We suspect a weakened immune system, so the system we clamp
the risk factor immun sys = true. As in the previous case, the symptoms are
fever = true,
mboxrunnynose = true. However, now we not only find common cold with a
high probability (P = 0.98), but also pneumonia (P = 0.91).

Comment Due to the fact that with a weakened immune system, the prior prob-
ability of pneumonia is almost as high as the prior probability of common
cold. Therefore the conclusion is very different from the previous cas. Note
that for this diagnosis, it is important that diseases can co-occur in the model.

3. A patient suffers from a recurrent pneumonia. This patient is a heavy smoker but
otherwise leads a ‘normal’, healthy live, so you may assume there is no risk of a
weakened immune system. What is your advice?

Inference We clamp immun sys = false, smoking = true, and pneumonia =
true. As a result, we see that there is a high probability of lung cancer.

Comment The reason is that due to smoking, the prior of disease is increased.
More importantly, however, is that weakened immune system is excluded as
cause of the pneumonia, so that lung cancer remains as the most likely expla-
nation of the cause of the recurrent pneumonia.
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Fig. 7 Diagnosing mr. Appelflap. Primary diagnosis: common cold. See main text

Fig. 8 Salvation army case. Primary diagnosis: pneumonia. See main text

3.3 Discussion

With the toy model, we aimed to illustrate the basic principles of Bayesian net-
work modeling. With the inference examples, we have aimed to demonstrate some
of typical reasoning capabilities of Bayesian networks. One features of Bayesian
networks that distinguish them from e.g. conventional feedforward neural networks
is that reasoning is in arbitrary direction, and with arbitrary evidence. Missing data
or observations are dealt with in a natural way by probabilistic inference. In many
applications, as well as in the examples in this section, the inference question is
to compute conditional node probabilities. These are not the only quantities that
one could compute in a Bayesian networks. Other examples are are correlations be-
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Fig. 9 Recurrent pneumonia case. Primary diagnosis: lung cancer. See main text

tween variables, the probability of the joint state of the the nodes, or the entropy of a
conditional distribution. Applications of the latter two will be discussed in the next
sections.

In the next sections we will discuss two Bayesian networks for real world appli-
cations The modeling principles are basically the same as in the toy model described
in this section. There are some differences, however. In the first model, the network
consists of a few types of nodes that have simple and well defined relations among
each other. However, for each different case in the application, a different network
has to be generated. It does not make sense for this application to try to build these
networks beforehand in a GUI. In the second one the complexity is more in the vari-
ables themselves than in the network structure. Dedicated software has been written
for both modeling and inference.

4 Bonaparte: a Bayesian Network for Disaster Victim
Identification

Society is increasingly aware of the possibility of a mass disaster. Recent examples
are the WTC attacks, the tsunami, and various airplane crashes. In such an event, the
recovery and identification of the remains of the victims is of great importance, both
for humanitarian as well as legal reasons. Disaster victim identification (DVI), i.e.,
the identification of victims of a mass disaster, is greatly facilitated by the advent
of modern DNA technology. In forensic laboratories, DNA profiles can be recorded
from small samples of body remains which may otherwise be unidentifiable. The
identification task is the match of the unidentified victim with a reported missing
person. This is often complicated by the fact that the match has to be made in an
indirect way. This is the case when there is no reliable reference material of the
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missing person. In such a case, DNA profiles can be taken from relatives. Since
their profiles are statistically related to the profile of the missing person (first degree
family members share about 50% of their DNA) an indirect match can be made.

In cases with one victim, identification is a reasonable straightforward task for
forensic researchers. In the case of a few victims, the puzzle to match the victims
and the missing persons is often still doable by hand, using a spread sheet, or with
software tools available on the internet [10]. However, large scale DVI is infeasible
in this way and an automated routine is almost indispensable for forensic institutes
that need to be prepared for DVI.

?

?

?

?

Fig. 10 The matching problem. Match the unidentified victims (blue, right) with reported missing
persons (red, left) based on DNA profiles of victims and relatives of missing persons. DNA profiles
are available from individuals represented by solid squares (males) and circles (females).

Bayesian networks are very well suited to model the statistical relations of ge-
netic material of relatives in a pedigree [12]. They can directly be applied in kinship
analysis with any type of pedigree of relatives of the missing persons. An additional
advantage of a Bayesian network approach is that it makes the analysis tool more
transparent and flexible, allowing to incorporate other factors that play a role —
such as measurement error probability, missing data, statistics of more advanced
genetic markers etc.

Recently, we have developed software for DVI, called Bonaparte. This devel-
opment is in collaboration with NFI (Netherlands Forensic Institute). The compu-
tational engine of Bonaparte uses automatically generated Bayesian networks and
Bayesian inference methods, enabling to correctly do kinship analysis on the basis
of DNA profiles combined with pedigree information. It is designed to handle large
scale events, with hundreds of victims and missing persons. In addition, it has graph-
ical user interface, including a pedigree editor, for forensic analysts. Data-interfaces
to other laboratory systems (e.g., for the DNA-data input) will also be implemented.
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In the remainder of this section we will describe the Bayesian model approach
that has been taken in the development of the application. We formulate the com-
putational task, which is the computation of the likelihood ratio of two hypotheses.
The main ingredient is a probabilistic model P of DNA profiles. Before discussing
the model, we will first provide a brief introduction to DNA profiles. In the last part
of the section we describe how P is modeled as a Bayesian network, and how the
likelihood ratio is computed.

4.1 Likelihood Ratio of Two Hypotheses

Assume we have a pedigree with an individual MP who is missing (the Missing
Person). In this pedigree, there are some family members that have provided DNA
material, yielding the profiles. Furthermore there is an Unidentified Individual UI,
whose DNA is also profiled. The question is, is UI = MP? To proceed, we assume
that we have a probabilistic model P for DNA evidence of family members in a
pedigree. To compute the probability of this event, we need hypotheses to compare.
The common choice is to formulate two hypotheses. The first is the hypothesis H1
that indeed UI = MP. The alternative hypothesis H0 is that UI is an unrelated person
U . In both hypotheses we have two pedigrees: the first pedigree has MP and family
members FAM as members. The second one has only U as member. To compare
the hypotheses, we compute the likelihoods of the evidence from the DNA profiles
under the two hypotheses,

• Under Hp, we assume that MP = UI. In this case, MP is observed and U is
unobserved. The evidence is E = {DNAMP +DNAFAM}.

• Under Hd , we assume that U = UI. In this case, U is observed and MP is ob-
served. The evidence is E = {DNAU +DNAFAM}.

Under the model P, the likelihood ratio of the two hypotheses is

LR =
P(E|Hp)
P(E|Hd)

. (7)

If in addition a prior odds P(Hp)/P(Hd) is given, the posterior odds P(Hp|E)/P(Hd |E)
follows directly from multiplication of the prior odds and likelihood ratio,

P(Hp|E)
P(Hd |E)

=
P(E|Hp)P(Hp)
P(E|Hd)P(Hd)

. (8)

4.2 DNA Profiles

In this subsection we provide a brief introduction on DNA profiles for kinship analy-
sis. A comprehensive treatise can be found in e.g. [6]. In humans, DNA found in the
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nucleus of the cell is packed on chromosomes. A normal human cell has 46 chro-
mosomes, which can be organized in 23 pairs. From each pair of chromosomes,
one copy is inherited from father and the other copy is inherited from mother. In
22 pairs, chromosomes are homologous, i.e., they have practically the same length
and contain in general the same genes ( functional functional elements of DNA).
These are called the autosomal chromosomes. The remaining chromosome is the
sex-chromosome. Males have an X and a Y chromosome. Females have two X chro-
mosomes.

More than 99% of the DNA of any two humans of the general population is
identical. Most DNA is therefore not useful for identification. However, there are
well specified locations on chromosomes where there is variation in DNA among
individuals. Such a variation is called a genetic marker. In genetics, the specified
locations are called loci. A single location is a locus.

In forensic research, the short tandem repeat (STR) markers are currently most
used. The reason is that they can be reliable determined from small amounts of body
tissue. Another advantage is that they have a low mutation rate, which is important
for kinship analysis. STR markers is a class of variations that occur when a pattern
of two or more nucleotides is repeated. For example,

(CAT G)3 = CAT GCAT GCAT G . (9)

The number of repeats x (which is 3 in the example) is the variation among the
population. Sometimes, there is a fractional repeat, e.g. CAT GCAT GCAT GCA, this
would be encoded with repeat number x = 3.2, since there are three repeats and
two additional nucleotides. The possible values of x and their frequencies are well
documented for the loci used in forensic research. These ranges and frequencies
vary between loci. To some extend they vary among subpopulations of humans. The
STR loci are standardized. The NFI uses CODIS (Combined DNA Index System)
standard with 13 specific core STR loci, each on different autosomal chromosomes.

The collection of markers yields the DNA profile. Since chromosomes exist in
pairs, a profile will consist of pairs of markers. For example in the CODIS standard,
a full DNA profile will consist of 13 pairs (the following notation is not common
standard)

x̄ = (1x1,1x2),(2x1,2x2), . . . ,(13x1,13x2) , (10)

in which each µxs is a number of repeats at a well defined locus µ . However, since
chromosomes exists in pairs, there will be two alleles µx1 and µx2 for each location,
one paternal — on the chromosome inherited from father — and one maternal. Un-
fortunately, current DNA analysis methods cannot identify the phase of the alleles,
i.e., whether an allele is paternal or maternal. This means that (µx1,µ x2) cannot be
distinguished from (µx2,µ x1). In order to make the notation unique, we order the
observed alleles of a locus such that µx1 ≤ µx2.

Chromosomes are inherited from parents. Each parent passes one copy of each
pair of chromosomes to the child. For autosomal chromosomes there is no (known)
preference which one is transmitted to the child. There is also no (known) correla-
tion between the transmission of chromosomes from different pairs. Since chromo-
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Fig. 11 A basic pedigree with father, mother, and child. Squares represent males, circles represent
females. Right: corresponding Bayesian network. Grey nodes are observables. xp

j and xm
j represents

paternal and maternal allele of individual j. See text.

somes are inherited from parents, alleles are inherited from parents as well. How-
ever, there is a small probability that an allele is changed or mutated. This mutation
probability is about 0.1%.

Finally in the DNA analysis, sometimes failures occur in the DNA analysis
method and an allele at a certain locus drops out. In such a case the observation
is (µx1,F), in which “F” is a wild card.

4.3 A Bayesian Network for Kinship Analysis

In this subsection we will describe the building blocks of a Bayesian network to
model probabilities of DNA profiles of individuals in a pedigree. First we observe
that inheritance and observation of alleles at different loci are independent. So for
each locus we can make an independent model Pµ . In the model description below,
we will consider a model for a single locus, and we will suppress the µ dependency
for notational convenience.

4.3.1 Allele Probabilities

We will consider pedigrees with individuals i. In a pedigree, each individual i has
two parents, a father f (i) and a mother m(i). An exception is when a individual is a
founder. In that case it has no parents in the pedigree.

Statistical relations between DNA profiles and alleles of family members can be
constructed from the pedigree, combined with models for allele transmission . On
the given locus, each individual i has a paternal allele x f

i and an maternal allele xm
i . f

and m stands for ‘father’ and ‘mother’. The pair of alleles is denoted as xi = (x f
i ,xm

i ).
Sometimes we use superscript s which can have values { f ,m}. So each allele in the
pedigree is indexed by (i,s), where i runs over individuals and s over phases ( f ,m).
The alleles can assume N values, where N as well as the allele values depend on the
locus.

An allele from a founder is called ‘founder allele’. So a founder in the pedigree
has two founder alleles. The simplest model for founder alleles is to assume that
they are independent, and each follow a distribution P(a) of population frequencies.
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This distribution is assumed to be given. In general P(a) will depend on the locus.
More advanced models have been proposed in which founder alleles are correlated.
For instance, one could assume that founders in a pedigree come from a single
but unknown subpopulation [1]. This model assumption yield corrections to the
outcomes in models without correlations between founders. A drawback is that these
models may lead to a severe increase in required memory and computation time. In
this chapter we will restrict ourself to models with independent founder alleles.

If an individual i has its parents in the pedigree the allele distribution of an indi-
vidual given the alleles of its parents are as follows,

P(xi|x f (i),xm(i)) = P(x f
i |x f (i))P(xm

i |xm(i)) , (11)

where

P(x f
i |x f (i)) =

1
2 ∑

s= f ,m
P(x f

i |xs
f (i)) , (12)

P(xm
i |xm(i)) =

1
2 ∑

s= f ,m
P(xm

i |xs
m(i)) . (13)

To explain (12) in words: individual i obtains its paternal allele x f
i from its father

f (i). However, there is a 50% chance that this allele is the paternal allele x f
f (i) of

father f (i) and a 50% chance that it is his maternal allele xm
f (i). A similar explanation

applies to (13).
The probabilities P(x f

i |xs
f (i)) and P(xm

i |xs
m(i)) are given by a mutation model

P(a|b), which encodes the probability that allele of the child is a while the allele
on the parental chromosome that is transmitted is b. The precise mutation mecha-
nisms for the different STR markers are not known. There is evidence that muta-
tions from father to child are in general about 10 times as probable as mutations
from mother to child. Gender of each individual is assumed to be known, but for
notational convenience we suppress dependency of parent gender. In general, muta-
tion tends to decrease with the difference in repeat numbers |a−b|. Mutation is also
locus dependent [4].

Several mutation models have been proposed, see e.g. [8]. As we will see later,
however, the inclusion of a detailed mutation model may lead to a severe increase
in required memory and computation time. Since mutations are very rare, one could
ask if there is any practical relevance in a detailed mutation model. The simplest
mutation model is of course to assume the absence of mutations, P(a|b) = δa,b.
Such model enhances efficient inference. However, any mutation in any single locus
would lead to a 100% rejection of the match, even if there is a 100% match in the
remaining markers. Mutation models are important to get some model tolerance
against such case. The simplest non-trivial mutation model is a uniform mutation
model with mutation rate µ (not to be confused with the locus index µ),
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P(a|a) = 1−µ , (14)
P(a|b) = µ/(N−1) if a 6= b . (15)

Mutation rate may depend on locus and gender.
An advantage of this model is that the required memory and computation time

increases only slightly compared to the mutation free model. Note that the popu-
lation frequency is in general not invariant under this model: the mutation makes
the frequency more flat. One could argue that this is a realistic property that intro-
duces diversity in the population. In practical applications in the model, however,
the same population frequency is assumed to apply to founders in different genera-
tions in a pedigree. This implies that if more unobserved references are included in
the pedigree to model ancestors of an individual, the likelihood ratio will (slightly)
change. In other words, formally equivalent pedigrees will give (slightly) different
likelihood ratios.

4.3.2 Observations

Observations are denoted as x̄i, or x̄ if we do not refer to an individual. The parental
origin of an allele can not be observed, so alleles x f = a,xm = b yields the same
observation as x f = b,xm = a. We adopt the convention to write the smallest allele
first in the observation: x̄ = (a,b) ⇔ a ≤ b. In the case of an allele loss, we write
x̄ = (x,F) where F stands for a wild card. We assume that the event of an allele loss
can be observed (e.g. via the peak hight [6]). This event is modeled by L. With L = 1
there is allele loss, and there will be a wild card ?. A full observation is coded as
L = 0. The case of loss of two alleles is not modeled, since in that case we simply
have no observation.

The observation model is now straightforwardly written down. Without allele
loss (L = 0), alleles y results in an observation ȳ. This is modeled by the determin-
istic table

P(x̄|y,L = 0) =
{

1 if x̄ = ȳ ,
0 otherwise. (16)

Note that for a given y there is only one x̄ with x̄ = ȳ.
With allele loss (L = 1), we have

P(x̄ = (a,F)|(a,b),L = 1) = 1/2 if a 6= b (17)
P(x̄ = (b,F)|(a,b),L = 1) = 1/2 if a 6= b (18)
P(x̄ = (a,F)|(a,a),L = 1) = 1 . (19)

I.e., if one allele is lost, the alleles (a,b) leads to an observation a (then b is lost),
or to an observation b (then a is lost). Both events have 50% probability. If both
alleles are the same, so the pair is (a,a), then of course a is observed with 100%
probability.
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4.4 Inference

By multiplying all allele priors, transmission probabilities and observation models, a
Bayesian network of alleles x and DNA profiles of individuals x̄ in a given pedigree
is obtained. Assume that the pedigree consists of a set of individuals I = 1, . . . ,K
with a subset of founders F, and assume that allele losses L j are given, then this
probability reads

P({x̄,x}I) = ∏
j

P(x̄ j|x j,L j) ∏
i∈I\F

P(xi|x f (i),xm(i))∏
i∈F

P(xi) . (20)

Under this model the likelihood of a given set DNA profiles can now be com-
puted. If we have observations x̄ j from a subset of individuals j ∈ O, the likelihood
of the observations in this pedigree is the marginal distribution P({x̄}O), which is
the marginal probability

P({x̄}O) = ∑
x1

. . .∑
xK

∏
j∈O

P(x̄ j|x j,L j) ∏
i∈I\F

P(xi|x f (i),xm(i))∏
i∈F

P(xi) . (21)

This computation involves the sum over all states of allele pairs xi of all individuals.
In general, the allele-state space can be prohibitively large. This would make even

the junction tree algorithm infeasible if it would straightforwardly be applied. For-
tunately, a significant reduction in memory requirement can be achieved by “value
abstraction”: if the observed alleles in the pedigree are all in a subset A of M dif-
ferent allele values, we can abstract from all unobserved allele values and consider
them as a single state z. If an allele is z, it means that it has a value that is not in the
set of observed values A. We now have a system in which states can assume only
M +1 values which is generally a lot smaller than N, the number of a priori possible
allele values. This procedure is called value abstraction [14]. The procedure is ap-
plicable if for any a ∈ A, L ∈ {0,1}, and b1,b2,b3,b4 6∈ A, the following equalities
hold

P(a|b1) = P(a|b2) (22)
P(x̄|a,b1,L) = P(x̄|a,b2,L) (23)
P(x̄|b1,a,L) = P(x̄|b2,a,L) (24)

P(x̄|b1,b2,L) = P(x̄|b3,b4,L) (25)

If these equalities hold, then we can replace P(a|b) by P(a|z) and P(x̄|a,b) by
P(x̄|a,z) etc. in the abstracted state representation. The conditional probability of
z then follows from

P(z|x) = 1− ∑
a∈A

P(a|x) (26)

for all x in A∪ z. One can also easily check that the observation probabilities satisfy
the condition. The uniform mutation model satisfies condition (22) since P(a|b) =
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µ/(N−1) for any a∈A and any b 6∈A. Note that condition (22) does not necessarily
holds for a general mutation model, so value abstraction could then not be applied.

Using value abstraction as a preprocessing step, a junction tree-based algorithm
can straightforwardly applied to compute the desired likelihood. In this way, likeli-
hoods and likelihood ratios are computed for all loci, and reported to the user.

4.5 The application

Bonaparte has been designed to facilitate large scale matching. The application
has a multi-user client-server based architecture, see fig. 12. Its computational core
and the internal database runs on a server. All match results are stored in internal
database. Rewind to any point in back in time is possible. Via an XML and secure
https interfaces, the server connects to other systems. Users can login via a web-
browser so that no additional software is needed on the clients. The current version
Bonaparte is now under user-validation. A live demo version will be made avail-
able on www.dnadvi.nl. The application is currently being deployed by the Nether-
lands Forensic Institute NFI. On 12 May 2010, Afriqiyah Airways Flight 8U771
crashed on landing near Tripoli International Airport. There were 103 victims. One
child survived the crash. A large number of victims were blood-relatives. The Bona-
parte program has been successfully used for the matching analysis to identify the
victims. The program has two advantages compared to NFI’s previous approach.
Firstly, due to fully automated processing, the identification process has been sig-
nificantly accelerated. Secondly, unlike the previous approach, the program does not
need reference samples from first degree relatives since it processes whole pedigree
information. For this accident, this was important since in some cases parents with
children crashed together and for some individuals, no reference samples from liv-
ing first degree relatives were available. Bonaparte could do the identification well
with samples from relatives of higher degree.
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4.6 Summary

Bonaparte is an application of Bayesian networks for victim identification by kin-
ship analysis based on DNA profiles. The Bayesian networks are used to model
statistical relations between DNA profiles of different individuals in a pedigree. By
Bayesian inference, likelihood ratios and posterior odds of hypotheses are com-
puted, which are the quantities of interest for the forensic researcher. The probabilis-
tic relations between variables are based on first principles of genetics. A feature of
this application is the automatic, on-the-fly derivation of models from data, i.e., the
pedigree structure of a family of a missing person. The approach is related to the
idea of modeling with templates, which is discussed in e.g. [20].

5 A Petrophysical Decision Support System

Oil and gas reservoirs are located in the earth’s crust at depths of several kilometers,
and when located offshore, in water depths of a few meters to a few kilometers.
Consequently, the gathering of critical information such as the presence and type of
hydrocarbons, size of the reservoir and the physical properties of the reservoir such
as the porosity of the rock and the permeability is a key activity in the oil and gas
industry.

Pre-development methods to gather information on the nature of the reservoirs
range from gravimetric, 2D and 3D seismic to the drilling of exploration and ap-
praisal boreholes. Additional information is obtained while a field is developed
through data acquisition in new development wells drilled to produce hydrocarbons,
time-lapse seismic surveys and in-well monitoring of how the actual production of
hydrocarbons affects physical properties such as the pressure and temperature. The
purpose of information gathering is to decide which reservoirs can be developed
economically, and how to adapt the means of development best to the particular
nature of a reservoir.

The early measurements acquired in exploration, appraisal and development
boreholes are a crucial component of the information gathering process. These mea-
surements are typically obtained from tools on the end of a wireline that are lowered
into the borehole to measure the rock and fluid properties of the formation. Their is
a vast range of possible measurement tools [28]. Some options are very expensive
and may even risk other data acquisition options. In general acquiring all possible
data imposes too great an economic burden on the exploration, appraisal and devel-
opment. Hence data acquisition options must be exercised carefully bearing in mind
the learnings of already acquired data and general hydrocarbon field knowledge.
Also important is a clear understanding of what data can and cannot be acquired
later and the consequences of having an incorrect understanding of the nature of a
reservoir on the effectiveness of its development.

Making the right data acquisition decisions, as well as the best interpretation of
information obtained in boreholes forms one of the principle tasks of petrophysi-
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cists. The efficiency of a petrophysicist executing her/his task is substantially in-
fluenced by the ability to gauge her/his experience to the issues at hand. Efficiency
is hampered when a petrophysicists experience level is not yet fully sufficient and
by the rather common circumstance that decisions to acquire particular types of in-
formation or not must be made in a rush, at high costs and shortly after receiving
other information that impact on that very same decision. Mistakes are not entirely
uncommon and almost always painful. In some cases, non essential data is obtained
at the expense of extremely high cost, or essential data is not obtained at all; causing
development mistakes that can jeopardize the amount of hydrocarbon recoverable
from a reservoir and induce significant cost increases.

The overall effectiveness of petrophysicists is expected to improve using a de-
cision support system (DSS). In practice a DSS can increase the petrophysicists’
awareness of low probability but high impact cases and alleviate some of the oper-
ational decision pressure.

In cooperation with Shell E&P, SNN has developed a DSS tool based on a
Bayesian network and an efficient sampler for inference. The main tasks of the ap-
plication is the estimation of compositional volume fractions in a reservoir on the
basis of measurement data. In addition it provides insight in the effect of additional
measurements. Besides an implementation of the model and the inference, the tool
contains graphical user interface in which the user can take different views on the
sampled probability distribution and on the effect of additional measurements.

In the remainder of this section, we will describe the Bayesian network approach
for the DSS tool. We focus on our modeling and inference approach. More details
are described in the full paper [5].

5.1 Probabilistic modeling

The primary aim of the model is to estimate the compositional volume fractions of
a reservoir on the basis of borehole measurements. Due to incomplete knowledge,
limited amount of measurements, and noise in the measurements, there will be un-
certainty in the volume fractions. We will use Bayesian inference to deal with this
uncertainty.

The starting point is a model for the probability distribution P(v,m) of the com-
positional volume fractions v and borehole measurements m. A causal argument
“The composition is given by the (unknown) volume fractions, and the volume frac-
tions determine the distribution measurement outcomes of each of the tools” leads
us to a Bayesian network formulation of the probabilistic model,

P(v,m) =
Z

∏
i=1

P(mi|v)P(v) . (27)

In this model, P(v) is the so-called prior, the prior probability distribution of volume
fractions before having seen any data. In principle, the prior encodes the generic ge-
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ological and petrophysical knowledge and beliefs [30]. The factor ∏Z
i=1 P(mi|v) is

the observation model. The observation model relates volume fractions v to mea-
surement outcomes mi of each of the Z tools i. The observation model assumes that
given the underlying volume fractions, measurement outcomes of the different tools
are independent. Each term in the observation model gives the probability density
of observing outcome mi for tool i given that the composition is v. Now given a set
of measurement outcomes mo of a subset Obs of tools, the probability distribution
of the volume fractions can be updated in a principled way by applying Bayes’ rule,

P(v|mo) =
∏i∈Obs P(mo

i |v)P(v)
P(mo)

. (28)

The updated distribution is called the posterior distribution. The constant in the
denominator P(mo) =

∫
v ∏i∈Obs P(mo

i |v)P(v)dv is called the evidence.
In our model, v is a 13 dimensional vector. Each component represents the vol-

ume fraction of one of 13 most common minerals and fluids (water, calcite, quartz,
oil, etc.). So each component is bounded between zero and one. The components
sum up to one. In other words, the volume fractions are confined to a simplex
SK = {v|0 ≤ v j ≤ 1,∑k vk = 1}. There are some additional physical constraints on
the distribution of v, for instance that the total amount of fluids should not exceed
40% of the total formation. The presence of more fluids would cause a collapse of
the formation.

Each tool measurement gives a one-dimensional continuous value. The relation
between composition and measurement outcome is well understood. Based on the
physics of the tools, petrophysicists have expressed these relations in terms of deter-
ministic functions f j(v) that provide the idealized noiseless measurement outcomes
of tool j given the composition v [30]. In general, the functions f j are nonlinear.
For most tools, the noise process is also reasonably well understood — and can be
described by either a Gaussian (additive noise) or a log-Gaussian (multiplicative
noise) distribution.

A straightforward approach to model a Bayesian network would be to discretize
the variables and create conditional probability tables for priors and conditional dis-
tributions. However, due to the dimensionality of the volume fraction vector, any
reasonable discretization would result in an infeasible large state space of this vari-
able. We therefore decided to remain in the continuous domain.

The remainder of this section describes the prior and observation model, as well
as the approximate inference method to obtain the posterior.

5.2 The prior and the observation model

The model has two ingredients: the prior of the volume fractions P(v) and the ob-
servation model P(m j|v).
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There is not much detailed domain knowledge available about the prior distri-
bution. Therefore we decided to model the prior using conveniently parametrized
family of distributions. In our case, v ∈ SK , this lead to the Dirichlet distribution
[22, 3]

Dir(v|α,µ) ∝
K

∏
j=1

v
αµ j−1
j δ

(
1−

K

∑
i=1

vi

)
. (29)

The two parameters α ∈R+ (precision) and µ ∈ SK (vector of means) can be used to
fine-tune the prior to our liking. The delta function — which ensures that the simplex
constraint holds — is put here for clarity, but is in fact redundant if the model is
constraint to v ∈ SK . Additional information, e.g. the fact that the amount of fluids
may not exceed 40% of the volume fraction can be incorporated by multiplying the
prior by a likelihood term Φ(v) expressing this fact. The resulting prior is of the
form

P(v) ∝ Φ(v)Dir(v|α,µ) . (30)

The other ingredient in the Bayesian network are the observation models. For
most tools, the noise process is reasonably well understood and can be reasonably
well described by either a Gaussian (additive noise) or a log-Gaussian (multiplica-
tive noise) distribution. In the model, measurements are modeled as a deterministic
tool function plus noise,

m j = f j(v)+ξ j , (31)

in which the functions f j are the deterministic tool functions provided by domain
experts. For tools where the noise is multiplicative, a log transform is applied to the
tool functions f j and the measurement outcomes m j. A detailed description of these
functions is beyond the scope of this paper. The noises ξ j are Gaussian and have a
tool specific variance σ2

j . These variances have been provided by domain experts.
So, the observational probability models can be written as

P(mi|v) ∝ exp

(
− (m j− f j(v))2

2σ2
j

)
. (32)

5.3 Bayesian Inference

The next step is given a set of observations {mo
i }, i ∈ Obs, to compute the posterior

distribution. If we were able to find an expression for the evidence term, i.e., for the
marginal distribution of the observations P(mo) =

∫
v ∏i∈Obs P(mo

i |v)P(v)dv then
the posterior distribution (28) could be written in closed form and readily evaluated.
Unfortunately P(mo) is intractable and a closed-form expression does not exist. In
order to obtain the desired compositional estimates we therefore have to resort to
approximate inference methods. Pilot studies indicated that sampling methods gave
the best performance.
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The goal of any sampling procedure is to obtain a set of N samples {xi} that
come from a given (but maybe intractable) distribution π . Using these samples we
can approximate expectation values 〈A〉 of a function A(x) according to

〈A〉=
∫

x
A(x)π(x)dx≈ 1

N

N

∑
i=1

A(xi) . (33)

For instance, if we take A(x) = x, the approximation of the mean 〈x〉 is the sample
mean 1

N ∑N
i=1 xi.

An important class of sampling methods are the so-called Markov Chain Monte
Carlo (MCMC) methods [22, 3]. In MCMC sampling a Markov chain is defined
that has an equilibrium distribution π , in such a way that (33) gives a good approx-
imation when applied to a sufficiently long chain x1,x2, . . . ,xN . To make the chain
independent of the initial state x0, a burn-in period is often taken into account. This
means that one ignores the first M ¿ N samples that come from intermediate distri-
butions and begins storing the samples once the system has reached the equilibrium
distribution π .

In our application we use the hybrid Monte Carlo (HMC) sampling algorithm
[11, 22]. HMC is a powerful class of MCMC methods that are designed for prob-
lems with continuous state spaces, such as we consider in this section. HMC can
in principle be applied to any noise model with a continuous probability density, so
there is no restriction to Gaussian noise models. HMC uses Hamiltonian dynam-
ics in combination with a Metropolis [23] acceptance procedure to find regions of
higher probability. This leads to a more efficient sampler than a sampler that relies
on random walk for phase space exploration. HMC also tends to mix more rapidly
than the standard Metropolis Hastings algorithm. For details of the algorithm we
refer to the literature [11, 22].

In our case, π(v) is the posterior distribution p(v|mo
i ) in (28). The HMC sam-

pler generates samples v1,v2, . . . ,vN from this posterior distribution. Each of the N
samples is a full K-dimensional vector of volume fractions constraint on SK . The
number of samples is of the order of N = 105, which takes a few seconds on a
standard PC. Figure 13 shows an example of a chain of 10 000 states generated
by the sampler. For visual clarity, only two components of the vectors are plotted
(quartz and dolomite). The plot illustrates the multivariate character of the method:
for example, the traces shows that the volume fractions of the two minerals tend to
be mutually exclusive: either 20% quartz, or 20% dolomite but generally not both.
From the traces, all kind of statistics can be derived. As an example, the resulting
one dimensional marginal distributions of the mineral volume fractions are plotted.

The performance of the method relies heavily on the quality of the sampler.
Therefore we looked at the ability of the system to estimate the composition of a
(synthetic) reservoir and the ability to reproduce the results. For this purpose, we
set the composition to a certain value v∗. We apply the observation model to gen-
erate measurements mo. Then we run HMC to obtain samples from the posterior
P(v|mo). Consistency is assessed by comparing results of different runs to each
other and by comparing them with the “ground truth” v∗. Results of simulations
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Fig. 13 Diagrams for quartz and dolomite. Top: time traces (10 000 time steps) of the volume
fractions of quartz and dolomite. Bottom: Resulting marginal probability distributions of both frac-
tions.

confirm that the sampler generates reproducible results, consistent with the underly-
ing compositional vector [5]. In these simulations, we took the observation model to
generate measurement data (the generating model) equal to the observation model
that is used to compute the posterior (the inference model). We also performed sim-
ulations where they are different, in particular in their assumed variance. We found
that the sampler is robust to cases where the variance of the generating model is
smaller than the variance of the inference model. In the cases where the variance of
the generating model is bigger, we found that the method is robust up to differences
of a factor 10. After that we found that the sampler suffered severely from local
minima, leading to irreproducible results.

5.4 Decision Support

Suppose that we have obtained a subset of measurement outcomes mo, yielding a
distribution P(v|mo). One may subsequently ask the question which tool t should
be deployed next in order to gain as much information as possible?

When asking this question, one is often interested in a specific subset of minerals
and fluids. Here we assume this interest is actually in one specific component u. The
question then reduces to selecting the most informative tool(s) t for a given mineral
u.
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We define the informativeness of a tool as the expected decrease of uncertainty in
the distribution of vu after obtaining a measurement with that tool. Usually, entropy
is taken as a measure for uncertainty [22], so a measure of informativeness is the
expected entropy of the distribution of vu after measurement with tool t,

〈Hu,t |mo〉 ≡ −
∫

P(mt |mo)
∫

P(vu|mt ,mo)

× log(P(vu|mt ,mo))dvudmt .
(34)

Note that the information of a tool depends on the earlier measurement results since
the probabilities in (34) are conditioned on mo.

The most informative tool for mineral u is now identified as that tool t∗ which
yields in expectation the lowest entropy in the posterior distribution of vu:

t∗u|mo = argmin
t

〈Hu,t |mo〉

In order to compute the expected conditional entropy using HMC sampling meth-
ods, we first rewrite the expected conditional entropy (34) in terms of quantities that
are conditioned only on the measurement outcomes mo,

〈Hu,t |mo〉=−
∫ ∫

P(vu,mt |mo)

× log(P(vu,mt |mo))dvudmt

+
∫

P(mt |mo)
∫

log(P(mt |mo))dmt . (35)

Now the HMC run yields a set V = {v j
1,v

j
2, . . . ,v

j
K} of compositional samples

(conditioned on mo). We augment these by a set M = {m j
1 = f1(v j) + ξ j

1 , . . . ,

m j
Z = fZ(v j) + ξ j

Z} of synthetic tool values generated from these samples (which
are indexed by j) by applying equation (31). Subsequently, discretized joint proba-
bilities P(vu,mt |mo) are obtained via a two-dimensional binning procedure over vu
and mt for each of the potential tools t. The binned versions of P(vu,mt |mo) (and
P(mt |mo)) can be directly used to approximate the expected conditional entropy
using a discretized version of equation (35).

The outcome of our implementation of the decision support tool is a ranking
of tools according to the expected entropies of their posterior distributions. In this
way, the user can select a tool based on a trade-off between expected information
and other factors, such as deployment costs and feasibility.

5.5 The Application

The application is implemented in C++ as a stand alone version with a graphical
user interface running on a Windows PC. The application has been validated by
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petrophysical domain experts from Shell E&P. The further use by Shell of this ap-
plication is beyond the scope of this chapter.

5.6 Summary

This chapter described a Bayesian network application for petrophysical decision
support. The observation models are based on the physics of the measurement tools.
The physical variables in this application are continuous-valued. A naive Bayesian
network approach with discretized values would fail. We remained in the continuous
domain and used the hybrid Monte Carlo algorithm for inference.

6 Discussion

Human decision makers are often confronted with highly complex domains. They
have to deal with various sources of information and various sources of uncertainty.
The quality of the decision is strongly influenced by the decision makers experience
to correctly interpret the data at hand. Computerized decision support can help to
improve the effectiveness of the decision maker by enhancing awareness and alert-
ing the user to uncommon situations that may have high impact. Rationalizing the
decision process may alleviate some of the decision pressure.

Bayesian networks are widely accepted as a principled methodology for mod-
eling complex domains with uncertainty, in which different sources of information
are to be combined, as needed in intelligent decision support systems. We have dis-
cussed in detail three applications of Bayesian networks. With these applications, we
aimed to illustrate the modeling power of the Bayesian networks and to demonstrate
that Bayesian networks can be applied in a wide variety of domains with different
types of domain requirements. The medical model is a toy application illustrating
the basic modeling approach and the typical reasoning behavior. The forensic and
petrophysical models are real world applications, and show that Bayesian network
technology can be applied beyond the basic modeling approach.

The chapter should be read as an introduction to Bayesian network modeling.
There has been carried out much work in the field of Bayesian networks that is not
covered in this chapter, e.g. the work on Bayesian learning [16], dynamical Bayesian
networks [24], approximate inference in large, densely connected models [9, 25],
templates and structure learning [20], nonparametric approaches [17, 13], etc.

Finally, we would like to stress that the Bayesian network technology is only
one side of the model. The other side is the domain knowledge, which is maybe
even more important for the model. Therefore Bayesian network modeling always
requires a close collaboration with domain experts. And even then, the model is of
course only one of many ingredients of an application, such as user-interface, data-
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management, user-acceptance etc. which are all essential to make the application a
success.
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