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Abstract

At a dozen or so institutes around the world, comprehensive climate
models are being developed and improved. Each model provides reason-
able simulations of the observed climate, each with its own strengths and
weaknesses. In the current multi-model ensemble approach model sim-
ulations are combined a posteriori. Recently, it has been proposed to
dynamically combine the models and so construct one supermodel. The
supermodel parameters are learned from historical observations. Super-
modeling has been successfully developed and tested on small chaotic
dynamical systems, like the Lorenz 63 system. In this chapter we review
and discuss several supermodeling dynamics and learning mechanisms.
Methods are illustrated by applications to low dimensional chaotic sys-
tems: the three dimensional Lorenz 63 and Lorenz 84 models, as well as
a 30 dimensional two-layer atmospheric model.

1 Introduction

Machine learning has developed methods and algorithms for automatic
modeling by general approximators, such as neural networks. The ap-
proximators are optimized on the basis of observational data [3]. This
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procedure is called learning or training. Modeling by learning is an effi-
cient alternative for the conventional approach in which models are to be
explicitly designed and parameterized in detail by humans.

A standard learning paradigm in machine learning is to fit the param-
eters of a model by minimizing a cost function on a so-called training set.
The choice of the cost function depends on the model task. In conven-
tional time series modeling, the task of the model is to make a prediction
of the value at the next time step (the output) given the value at the
current time (the input). The training set consists of measurements at
subsequent times, which can be viewed as set of (input, target output) ex-
amples. For a given parameter setting, one can compute the model output
for each of the inputs in the training set. The standard choice for the cost
function to be minimized is the sum of squared differences between model
and target outputs. To optimize a model for predictions over longer time,
multi-step ahead learning has been proposed [13]. The cost functions for
these tasks are constructed by selecting a number of initial states from
the measured time series and then taking the sum of squared prediction
errors, i.e. the errors of the multi-step prediction sequences starting at
the selected initial states.

In the context of chaotic systems, often one is not so much interested
in the prediction accuracy but more in the long term dynamical behav-
ior of the system. One example is climate modeling. Assuming that the
weather system is deterministic chaotic, the climate can be defined as
the statistics of the attractor of the weather system [7]. Weather pre-
diction is a prediction of the systems state at a near future time given
the observed state at the current time. Climate prediction is to predict
statistical properties of the attractor, rather than day-to-day (weather)
predictions. Unfortunately, no dedicated algorithm exists to perform at-
tractor learning. Instead, models are trained to make good predictions,
and then the model attractor is obtained as a by-product by simulating
the model autonomously over a long time [22, 21, 1]. It has been observed
that multi-step ahead learning provides better solutions in attractor terms
than the more conventional one-step ahead approach. A one-step ahead
trained model may yield good short term predictions, starting exactly on
a given data point. However, if the model runs autonomously for longer
time, due to inevitable model error, the model state drifts away from the
observed data due to sensitive dependence on initial conditions and the
transition to its own attractor. A multi-step ahead trained model has
been tuned to stay close to the data trajectory for a certain amount of
time. Another way to improve robustness of learning is to reduce the drift
due to sensitive dependence on initial conditions by loosely connecting the
model to the data during learning. This will tend to keep the model state
close to the data, allowing the models to synchronize with the data and
allowing extension of the learning horizon [1, 6].

A problem of applying machine learning methods to climate modeling
is the huge dimensionality of the system. A pure data driven machine
learning approach starting from scratch is limited to low (order 1 to 10)
dimensional systems, since the amount of data needed to tune the model
parameters typically scales exponentially with the dimension of the sys-
tem. This is known as the curse of dimensionality [3]. Models to describe
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climate systems have at least several thousands dimensions or millions
degrees of freedom in case of the state-of-the-art climate models, which
makes a neural network (or similar machine learning method) approach
infeasible.

The existing approach to simulate and predict the behavior of real,
complex systems like the Earths climate system is to solve the governing
equations in a suitable approximate form numerically using discretization
techniques. In addition, empirical formulations are implemented for un-
resolved physical processes. These numerical models contain numerous
uncertain parameters that are given values by trial and error (“tuned”)
in order to produce model simulations that are as close as possible to
observations of the real system. A dozen or so very advanced climate
models have been developed that differ in discretization techniques, spa-
tial resolution, the range of processes that are explicitly modeled and the
empirical formulations of the unresolved processes. Progress over time is
achieved by improving the resolution and empirical formulations of the
individual models. However, despite the improvements in the quality of
the model simulations, the models are still far from perfect. For instance a
temperature bias of several degrees in annual mean temperatures in large
regions of the globe is not uncommon in the simulations of the present
climate [24]. Nevertheless these models are used to simulate the response
of the climate system to future emission scenarios of greenhouse gases. It
turns out that the models differ substantially in their simulation of the
response: the global mean temperature rise varies by as much as a factor
of 2 and on regional scales the response can be reversed, e.g. decreased
precipitation instead of an increase. It is not clear how to combine these
outcomes to obtain the most realistic response. The standard approach is
to take some form of a weighted average of the individual outcomes [26].
In [17] an on-line learning approach has been proposed to update weights
in the light of past performance of the models.

It has been observed by climate researchers that the imperfections
of these models are often complementary; for instance one atmospheric
model might produce more realistic heat fluxes for the ocean, while an-
other produces more realistic momentum fluxes. An improved simulation
was obtained in a recent study [10] in which two atmospheric models were
coupled to one oceanographic model. Importantly, it was not known a
priori that one model produced a more realistic heat flux at the ocean sur-
face and that the other model produced a more realistic momentum flux.
Rather, those relative advantages became apparent only in the context of
the behavior of the entire model with exchanged variables. Running mod-
els in parallel and allowing a dynamic exchange of information appears a
feasible avenue to increase the simulation performance by combining the
strength of the individual models.

In [5, 4], this approach was set in the context of dynamical systems and
synchronization theory. The idea is that there is a collection of reasonably
accurate models that all aim to simulate the dynamics of a ground truth
system. Due to their differences, different models will produce different
attractors. By introducing couplings, the states of the different models
may fall into a synchronized motion [19, 18]. This could be interpreted
as a consensus state. To make the consensus better than the average
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of a conventional ensemble without couplings, [5, 4] proposed to make
the couplings adaptive, i.e., learn them from data using methods from
dynamical systems parameter estimation theory [6] in order to minimize
the synchronization error with the observed ground truth system.

A more conventional machine learning approach was proposed in [2].
They interpreted the connections in the interactive ensemble as the param-
eters of a so-called supermodel. These parameters can be optimized using
a cost function. This is basically the same cost function as used in neu-
ral networks attractor learning discussed earlier [22, 21, 1]. In [27] it has
been noted that the connections of learned supermodels are typically very
large, implying that the supermodel will rapidly equilibrate to an (almost)
synchronized state. The dynamics of the synchronized state is then ap-
proximately described by an averaged dynamics [11, 25]. This suggested
an alternative, simplified supermodel approach that takes the averaged
dynamics as a starting point [27]. This has the advantage of making the
supermodel dynamics linear in its parameters, allowing faster and more
scalable learning schemes. This modeling and optimization approach has
strong links with ensemble methods in machine learning [20, 12].

Supermodeling with adaptive parameters has only been applied to
small scale toy problems. The hope of supermodeling is being able to
apply machine learning methods to nonlinear dynamical systems with
thousands of variables. This hope is based on the fact that supermodeling
starts from existing models that were developed by domain experts and
are heavily based on domain knowledge in physics, fluid dynamics and
atmospheric sciences, while conventional machine learning using general
approximators as basis functions starts from scratch. This should give
supermodels a lead in the learning task. Another way to put this is that
in supermodeling the internal degrees of freedom are constrained by the
underlying models, making the curse of dimensionality much less severe.

In the remainder of this chapter we will review in section 2 su-
permodel dynamics and learning mechanisms as recently been proposed
[4, 2, 27]. We provide in section 3 a set of numerical examples on low
dimensional systems that are related to atmospheric science, namely the
famous three dimensional Lorenz 63 model [14], the three dimensional
Lorenz 84 model[15] and a thirty dimensional truncated two-layer atmo-
spheric model, the T5 quasi-geostrophic baroclinic model [9]. In section 4
we address the issue of robustness of the learning methods against finite
information exchange between the imperfect models and against noise in
the observations. Then we end with a discussion in section 5.

2 Supermodeling dynamics and learning
mechanisms

The general concept of supermodeling could be described as follows. We
assume that there is a ground truth dynamical system that we want to
model. The dynamical equations of the ground truth cannot be accessed
directly, but we assume to have a dataset of observations: a time series
of finite length that is generated from the ground truth. In addition, we
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have access to a set of M models, labeled by µ. These imperfect models
are assumed to provide good but imperfect approximations the ground
truth dynamics. The models are defined in terms of their dynamics, given
as a system of nonlinear ordinary differential equations (ODEs),

~̇xµ = ~fµ(~xµ) (1)

in which the dot denotes the time derivative. ~xµ denotes the Dµ dimen-
sional state vector of model µ. A supermodel is a model that defines
a dynamics based on some parametrized combination of the imperfect
models

~̇xsumo = ~Fsumo

(
~xsumo; ~Wsumo,

{
~fµ
})

(2)

in which ~Wsumo are the supermodel parameters. ~xsumo denotes the state
of supermodel. The supermodel defines a dynamics in a super state space,
which may be larger than the model state space. Additional operations
might be required to map model states to supermodel states and back.
Typically, the supermodel state space is the direct product of the model
state spaces and the back-projection is done by averaging.

The supermodel parameters ~Wsumo can be set manually, or they can be
tuned to the data set. Many different approaches can be considered here.
Basically these depend on supermodel class, an optimization procedure
and a possibly a cost function and a validation criterion. Validation can
be done by studying the supermodel behavior, e.g. by comparing with a
held-out validation set of the data. In the context of climate modeling, the
supermodel would be primarily on the supermodels climatology, (rather
than on its short-term weather prediction performance). The optimized
and validated supermodel is then to be used as a simulation tool and
estimate quantities of interest of e.g. the real climate system.

Both good functional forms for 2 and methods to optimize the su-
permodel parameters are crucial if supermodels are to be applied to real
complex systems as they should improve upon the separate model results
as well as on their ensemble averages. A strategy of researching supermod-
eling methods is to do model simulations with an assumed ground truth
dynamics and a set of assumed imperfect models. Here it is to be noted
that the assumed ground truth dynamics is not to be used directly in the
supermodel optimization, only to generate data sets, both for optimiza-
tion as for assessment afterwards. In this researching strategy, one can
vary the complexity of the ground truth and imperfect models, and zoom
in or out on any modeling aspect that one is interested in, which involves
not only accuracy but also scalability of the supermodel methodology.

This strategy has been followed in the recently proposed supermodels,
which have demonstrated their performance on small scale artificial sys-
tems. The ground truth is assumed to be described by a D dimensional
ground truth state vector ~xgt = (x1gt, . . . , x

i
gt, . . . , x

D
gt) that is governed by

a ground truth system of ODEs,

~̇xgt = ~fgt(~xgt) . (3)

The dynamical equations of the ground truth cannot be accessed directly
by the supermodel, it is only used to generate data sets and for a poste-
riori assessment of e.g. supermodel parameters. In the models that are
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considered in this chapter, all model state vectors have the same dimen-
sion D, and the different state components xigt and x

i
µ represent the same

quantity. This should be seen as a first step in the supermodel devel-
opment. Of course, in reality, the dimensionalities of the ground truth
and the various imperfect models are different and it will be nontrivial to
relate variables in different models to each other.

2.1 Supermodel dynamics

We will consider two particular classes of supermodel dynamics that have
been proposed. The first one is obtained by connecting models [4, 2]. The
second one is by averaging models [27].

2.1.1 Connected supermodels

The first class of supermodels is defined as a system of linearly con-
nected imperfect models [4, 2]. We refer to this class as connected su-
permodels. The imperfect models are connected component wise with
each other through positive coefficients Ci

µν ≥ 0. The connection coef-

ficients ~C ≡ {Ci
µν} are the supermodel parameters. The state space of

the supermodel is the direct product of the model state spaces. With M
models, each of dimension D, the state space is MD dimensional. The
(i, µ) component of the supermodel obeys

ẋiµ = f i
µ(~xµ) +

∑
ν

Ci
µν(x

i
ν − xiµ) . (4)

The supermodel state is projected back to theD dimensional ground truth
space by taking the average over the models

~xsumo =
1

M

∑
µ

~xµ . (5)

The idea is that with positive connections, states of the different mod-
els are attracted to each other, so that the states will synchronize, which
can be interpreted as a consensus. Due to the asymmetry in the connec-
tions, there will be different emphasizes on the different model components
of the various models in reaching the ensemble consensus. In [16], learning
with unconstrained connections has been explored. It is found that allow-
ing negative connections could help the performance of learning. However,
negative connections may cause the states of the individual models to be
repelling with a force that is increasing linearly with the distance of the
states, possibly leading to divergent model states and thus unstable su-
permodels. So extra care has to be taken to prevent such instabilities.
Negative connections are not further explored in this chapter.

2.1.2 Weighted supermodels

The second class of supermodels is defined as the system in which the
dynamics is given by a weighted averaged dynamics of the imperfect mod-
els [27]. We refer to this class as weighted supermodels. The model com-
ponents are averaged with weights wi

µ, which are the parameters of the
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supermodel. They satisfy wi
µ ≥ 0 and

∑
µ w

i
µ = 1. For the i component,

the supermodel obeys

ẋi =
∑
µ

wi
µf

i
µ(~x) . (6)

The dimensionality of the supermodel is equal to the dimensionality of
the individual models and the assumed ground truth, so no additional
projection is needed. Weighted supermodels can be considered as con-
nected supermodels with infinitely strong connections, i.e. connections of
the form κ~C with Ci

µν > 0 and κ→ ∞. In this limit it can be shown that
all model states are completely synchronized ~xµ = ~xν , and that synchro-
nized state follows the weighted averaged dynamics (6). For the relation
between ~w and ~C see [27] and a chapter elsewhere in this book.

The weighted supermodel can also be motivated directly, since they
can (approximately) be viewed as an concatenation of an ensemble of
models from machine learning [20, 12, 3]. The idea behind ensemble of
models is that the in expectation, the error of the average is smaller than
the average of the errors. This means that if the individual vector fields
~fµ are random disturbances from the optimal vector field, the averaged
vector field 1

M

∑
µ
~fµ is in expectation closer to the optimal vector field

than the individual vector fields. If there is no other means to determine
which of the individual vector fields is prefered, this makes the unweighted
supermodel (i.e., weighted with equal weights wi

µ = 1/M ) already favor-
able.

2.2 Supermodel learning

The supermodel parameters can be set manually, or they can be learned,
i.e., optimized on the basis of a data set of observations. The most obvious
manual setting is the classical a posteriori ensemble, in which the models
are run independently and averaged afterwards. The classical a posteriori
ensemble could be considered as a trivially connected supermodel with
all Ci

µν = 0. A second supermodel with manually set weights is the un-
weighted supermodel, motivated in the previous paragraph. We refer to
both of these supermodels with manually set parameters as baseline su-
permodels. Supermodeling combined with learning has only added value
if it outperforms these baseline supermodels.

In all learning strategies, it is assumed that there is a training set of
observations of the ground truth during a time interval of length Ttrain

forming a time series {~xgt(t0), ~xgt(t0 + τ), . . . , ~xgt(t0 + Ttrain)}. In this
section and the following section, we assume that the time steps τ are the
same as the integration step sizes in that are used in the model integra-
tions.

2.2.1 Nudging and parameter dynamics

A learning strategy that is explicitly based on synchronization is outlined
in [4]. We refer to this method as the nudging method.

There are two ingredients in this method. The first one is about how
the data is entered into the system. This is done by a data assimilation
method called nudging [28]. During training, additional connections with
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strength Cgt > 0 are defined that couple the model variables with the
data from the ground truth,

ẋiµ = f i
µ(~xµ) +

∑
ν 6=µ

Ci
µν(x

i
ν − xiµ) + Cgt(x

i
gt(t)− xiµ) . (7)

These additional coupling terms are called nudging terms. Nudging forces
the supermodel to remain close to the data. Then the second ingredient
is to define, during training, a dynamics to adapt the connections

Ċi
µν = a(xiν−xiµ)

(
xigt(t)−

1

M

∑
µ

xiµ

)
−ε/(Ci

µν−Cmax)
2+ε/(Ci

µν+δ)
2 ,

(8)
where the adaptation rate a is a constant. The terms with coefficient ε dy-
namically constrain all connections Ci

µν to remain in the range (−δ, Cmax).
A Lyapunov function argument can be formulated that shows that the
method converges [6].

To produce the simulation results presented later in this chapter, the
system with equations (7) and (8) is swept repeatedly through the training
set, each time starting with all the ~xµ = ~xgt(t0), but with the Ci

µν ’s equal
to the Ci

µν ’s of the previous run. After training, Cgt is set to zero and the
Ci

µν ’s are kept fixed. Following [4], both ε and δ are taken to be 0.01 in
our simulations, whereas Cmax = 100 and Cgt = 10 and a = 1.

2.2.2 Cost function optimization

The optimization method described in this paragraph is applicable to both
the connected and the weighted supermodels. It relies on the definition of
a cost function which is to be minimized with respect to the supermodel
parameters. We refer to this method as cost function optimization. The
cost function that we consider here is described in [2] and is similar to the
one introduced in neural network training [22, 21, 1]. The cost function
is constructed by taking initial conditions ~xgt(tk) at K times tk from the
training time series, k = 1, . . . ,K, separated by fixed distances d. Then,
starting from these K initializations, short integrations of length ∆ are
performed with the supermodel (see figure 1). As a measure of the ability
of the supermodel to follow the truth for longer periods, the cost function
is defined as the mean squared error between the K short trajectories
of the supermodel and the ground truth according to the training time
series,

E( ~Wsumo) =
1

K∆

K∑
k=1

∫ tk+∆

tk

||~xsumo( ~Wsumo, t)− ~xgt(t)||2γtdt . (9)

With the normalization factor 1
K∆

, the cost function represents the time
averaged mean squared error. Trajectories diverge not only due to model
imperfections, but also due to internal error growth: even a perfect model
deviates from the truth if started from slightly different initial conditions
and leads to a non-zero cost function due to chaos. This implies that
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Figure 1: The cost function is based on short integrations of the supermodel
starting from observed initial conditions of the truth at times tk and measures
the mean-squared difference between the short evolutions of the supermodel and
the truth as indicated by the shaded areas. The short integrations span a time
interval ∆ and d denotes the fixed time interval between the initial conditions
tk.

the cost function measures a mixture of model errors and internal er-
ror growth. Model errors dominate the initial divergence between model
and truth, but at later times in the short term integrations internal error
growth dominates. These two effects cause a trade off in the choice of
the length of the short integrations ∆ as well as the decay term γ. Fur-
thermore, there is a trade off in d. The shorter the intervals between the
starting points, the more data. But this requires also longer integration
times during optimization.

The cost function is a function of the supermodel parameters, as these
parameters determine the trajectories followed by the supermodel. In
principle any optimization method can be used to minimize the cost func-
tion. In this chapter, we use a least mean squares method, but other
methods, e.g. evolutionary algorithms could be applied as well [16]. It
has been observed that in particular the cost function optimization with
connected supermodels is susceptible to slow convergence [2]. To over-
come this, an annealing approach has been proposed. The cost function
is iteratively minimized for an increasing number of initializations. Af-
ter each of these minimizations, the solution is taken as a starting point
for the next iteration step, in which the cost function is defined with an
additional initialization point.

2.2.3 Quadratic programming

The optimization method described in this subsection is applicable to the
weighted supermodels only, because it depends on the linearity in the su-
permodel parameters. This approach views the weighted supermodel as
an concatenation of an ensemble of models, so ensemble optimization tech-
niques can be straightforwardly applied. A well-known approach makes
use of quadratic programming [20, 12]. To apply this approach to super-
modeling, the training time series is considered as a set of (input, output)
pairs of a discrete time mapping ~x(t) → ~x(t + τ). Furthermore, We as-
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sume small step size τ = ∆t and assume that for model integrations of
this time length, ~x(t+∆t) = ~x(t) + ~̇x(t)∆t holds and terms of order ∆t2

can be ignored.
So the training set is the set of pairs {(~xgt(t), ~xgt(t+∆t))}t. The i-th

component of the error (= mismatch between output and desired output)
of model µ on training pair at time t is

εiµ(t) = f i
µ(~xgt(t))∆t− (xigt(t+∆t)− xigt(t)) . (10)

The error of the supermodel for this training pair then follows directly
from the errors of the imperfect models,

εi(t) =
∑
µ

wi
µf

i
µ(~xgt(t))∆t− (xigt(t+∆t)− xigt(t)) =

∑
µ

wi
µε

i
µ(t) . (11)

Each of the error components εi(t) is a function of ~wi ≡ (wi
1, . . . , w

i
µ, . . . , w

i
M )

only. The sum-squared-error of the supermodel is the sum of sum-squared-
errors per component, which can be expressed as

Ei(~wi) =
∑
t

(εi(t))2

=
∑
t

(∑
µ

wi
µε

i
µ(t)

)2
(12)

=
∑
µν

wi
µw

i
ν

(∑
t

εiµ(t)ε
i
ν(t)

)
.

Upon definition of the error correlation

χi
µν ≡

∑
t

εiµ(t)ε
i
ν(t) , (13)

the sum-squared-error of the supermodel can be written as

Ei(~wi) =
∑
µν

wi
µw

i
νχ

i
µν . (14)

To minimize the sum-squared-error, we minimize each of the Ei(~wi) sep-
arately under the constraints wi

µ ≥ 0 and
∑

µ w
i
µ = 1. This can be done

by quadratic programming. Note that for this optimization, the error per
model has to be computed only once to construct the matrices χi. This
is an important advantage if supermodeling has to be applied to complex
systems. Furthermore, the matrices χi are postive semi-definite, which
makes the functions Ei convex, so there will be no local minima.

2.3 Relation between the methods

The different optimization methods have some relations. For example,
the coupling to the ground truth in the nudging method could be seen
as a soft and smoothed version of the repeated initializations in the cost
function approach. In the nudging approach, instead of hard initializa-
tions, the parameterized system remains close to the ground truth during
learning due to the couplings with the data. A related difference is that
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in the cost function approach the supermodel and ground truth are com-
pletely decoupled after initialization, i.e., the supermodel runs free from
the ground truth. The training algorithm can thus monitor the error that
develops, and tune the parameters to reduce this error. On the other hand
in the nudging method there is no fully free model run, since the model
remains coupled to the data. This seems to create more a steady state
error, which is then monitored and minimized by the training algorithm.
Another difference is that the nudging method introduces a dynamics for
the super model coupling parameters. This can be seen as a continu-
ous time sequential gradient descent with a quadratic cost function. In
standard sequential gradient descent, a cost function E( ~W ) is written as a
sum of costs over the data points, E( ~W ) =

∑
nEn( ~W ). Data is presented

sequentially and at each presentation of a data point, the parameters are
updated. When data point n is presented, the parameter vector ~W (t) is
updated according to ~W (t+∆t) = ~W (t)−a~∇En∆t [3], where we increment
time with ∆t. With the cost function approach, the error criterion and
optimization procedure are separated. For example, sequential gradient
descent could be employed in the cost function approach as well, as well
as any other method from numerical optimization.

In the quadratic programming approach, the error criterion is a one-
step-ahead error unlike the cost function which is a multi-step-ahead er-
ror. This could make the quadratic programming approach less robust
to e.g. noise. It could be remarked that a one-step ahead error is more
appropriate for the weighted average supermodels than for the connected
super models. In connected supermodels, the models need a finite time to
synchronize, whereas weighted supermodels are “synchronized” from the
start. As an other way to see this, consider a dynamical model ~f with
parameters ~W . For small ∆t, the one step ahead error quadratic cost
contribution at time t has the form

Et( ~W ) = ||~f(~xgt(t); ~W )∆t− (~xgt(t+∆t)− ~xgt(t))||2 . (15)

Now if we compute this error for a connected supermodel with parameters
Ci

µν in which all models are initialized at the ground truth, ~xµ(t) = ~xgt(t),
we see that the error is independent of the parameters, since all terms
Ci

µν(x
i
ν(t)− xiµ(t)) vanish.

3 Numerical examples and results

To illustrate the different approaches of supermodeling numerically, we
apply supermodeling in the context of three different models. Two of
them, the Lorenz 63 and the Lorenz 84 model, are three dimensional sys-
tems. The third one is the T5 quasi geostrophic model (T5) which has
30 dimensions. Each of these models has a set of parameters, that in-
fluence in particular the long term behavior of the system. The set up
of the experiments follows the one proposed in [2], i.e. one ground truth
with standard parameter values and a small number of assumed imper-
fect models with perturbed parameters. From the ground truth a training
time series of relatively short time duration Ttrain is generated. This train-
ing set is the only information that the supermodel and its optimization
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method may use for optimization. Then there is a test trajectory, which is
generated by running the ground truth for longer time duration Ttest. The
methods are assessed by comparing the test trajectory with a supermodel
trajectory of comparable duration. The supermodel trajectory is gener-
ated by initializing the supermodel from a random state on the ground
truth test trajectory. Subsequently, the supermodel is integrated over a
longer period. An initial part of the supermodel trajectory is discarded
since such initial part might be transient from the ground truth attractor
to the supermodel attractor. In other words, the initial part is discarded
to remove spurious correlations of the supermodel trajectory with the ini-
tial ground truth state. Assessment is done visually by comparing plots
of the ground truth and supermodel trajectories. In the Lorenz 63 simu-
lations, we also provide some statistical measures such as the mean and
covariance of these obtained data. However, in our opinion, these are in
these low dimensional system less informative than the plots.

All integrations are performed using a standard fourth order Runge-
Kutta integration method with constant step size. We took the same
step size for both ground truth as for the imperfect models and the su-
permodels. The step size ∆t differs, however, per experiment. In the
three dimensional models, we took ∆t = 0.01. In the T5 model, we took
∆t = 0.1. Simulations have been performed in Matlab. The cost func-
tion minimization is performed using lsqnonlin nonlinear least-squares
method, and quadratic programming is performed using quadprog, both
from Matlab’s optimization toolbox.

3.1 Lorenz 63

The first model in which the supermodel concept is illustrated is the fa-
mous Lorenz 63 equations [14]. The equations for the Lorenz 63 model
are

ẋ = σ(y − x)

ẏ = x(ρ− z)− y (16)

ż = xy − βz .

This model is used as a metaphor for the atmosphere, because of its
regime changes and unstable nature. We follow the set-up from [2], i.e.
one ground truth with standard parameter values that lead to the famous
butterfly shaped attractor, and three imperfect models in the same model
class but with perturbed parameters, see table 1.

With these perturbations the imperfect models behave quite differently
from the truth as can be seen in figure 2. Both model 1 and 2 are attracted
to a point, whereas model 3 has a chaotic attractor that has a similar
shape a the attractor of the ground truth, but its position is displaced.
All models were initiated from the same state taken from the attractor
of the ground truth. The transient evolutions towards the attractor are
plotted as well. Note that model 1 and model 2 have actually (at least)
two fixed points. Which of the fixed point is reached depends on the initial
condition. A discussion on how the existence of fixed points and chaotic
attractor depends on the parameters is found in e.g., [8].
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σ ρ β
Truth 10 28 8

3
Model 1 13.25 19 3.5
Model 2 7 18 3.7
Model 3 6.5 38 1.7

Table 1: Lorenz 63: parameters of the assumed ground truth and the three
assumed imperfect models.

Following [16], who observed that the required training set sizes in
supermodeling was significantly shorter than the ones assumed in [2], we
generated a training set simulating the ground truth system for Ttrain = 2
time units. The resulting training set is plotted figure 3. We applied the
four different supermodeling approaches that were discussed in the earlier
sections. For nudging we took learning parameters as in section 2.2.1.
The nudging method swept 10 times through the training set. In the cost
function approach, we took cost function parameters K = 5, ∆ = 1 and
d = 0.1, so effectively only a training set of duration T = 1.5 has been
used. The quadratic programming method used all the data.

From looking at the graphs in figure 4, and comparing the metrics
in table 2 we see that all learning supermodel approaches are successful
in learning a supermodel with an attractor that is close to the ground
truth. The results after learning are better than the individual model
results, as well as the base-line supermodels. Regarding the base-line su-
permodels, note that in the uncoupled (a posteriori ensemble) system,
the small butterfly in figure 4 is due to the averaging of two fixed points
and one normal-size butterfly. This explains the shrinkage of about one
third. The attractor of the unweighted supermodel seems to have already
a better shape than the individual models. This suggests that straight-
forward unweighted averaging may already be a helpful method for model
enhancement. The attractor of the unweighted supermodel is generated
by simulations starting from the attractor of the ground truth. We remark
that starting from other initial states, far from the ground truth attrac-
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Figure 2: Lorenz 63. Results of imperfect model integration projected on (x, z)
plane over a time period of T = 50 time units, starting on the starting on the
ground truth attractor. From left to right: model 1 to model 3. Gray: assumed
ground truth. Black: assumed imperfect models.
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Figure 3: Lorenz 63. Training set of Ttrain = 2 time units generated by the
assumed ground truth.

mean x mean y mean z SD x SD y SD z cov xy cov xz cov yz
Truth -0.3(1.2) -0.3(1.2) 23.6(0.2) 7.8(0.1) 8.9(0.1) 8.6(0.2) 61.3(1.6) -0.9(4.1) -0.8(3.3)
Model 1 -7.9(0.0) -7.9(0.0) 18.0(0.0) 0.0(0.1) 0.0(0.1) 0.0(0.1) 0.0(0.0) -0.0(0.0) -0.0(0.0)
Model 2 -7.9(0.0) -7.9(0.0) 17.0(0.0) 0.0(0.1) 0.0(0.1) 0.0(0.1) 0.0(0.0) -0.0(0.0) 0.0(0.0)
Model 3 0.2(0.8) 0.2(0.8) 34.3(0.1) 7.6(0.0) 9.4(0.1) 8.7(0.1) 57.7(0.7) 0.4(2.2) 0.5(3.3)

Uncoupled 5.3(0.3) 5.3(0.3) 23.1(0.1) 2.5(0.1) 3.1(0.1) 2.9(0.1) 6.5(0.4) 0.0(0.3) 0.0(0.4)
Uniform W 0.6(0.8) 0.6(0.8) 20.0(0.3) 7.6(0.1) 8.8(0.1) 8.6(0.2) 58.2(1.7) 2.5(3.6) 1.4(1.7)
Nudging C 0.1(1.1) 0.1(1.1) 23.3(0.1) 7.7(0.1) 8.9(0.1) 8.6(0.0) 58.2(1.3) 0.3(3.8) 0.2(3.5)
Costfn C -0.2(0.6) -0.2(0.6) 23.2(0.1) 7.8(0.0) 8.9(0.0) 8.8(0.0) 59.6(0.6) -0.5(2.0) -0.5(1.9)
Costfn W -0.9(1.1) -0.9(1.1) 23.6(0.1) 7.8(0.2) 8.9(0.2) 8.6(0.1) 60.9(2.4) -2.9(3.7) -2.1(3.1)
Quadprog W -0.5(1.0) -0.5(1.0) 23.6(0.1) 7.9(0.1) 9.0(0.1) 8.6(0.1) 61.8(1.6) -1.5(3.1) -1.2(2.6)

Table 2: Lorenz 63. Means, standard deviations, and covariances (cov) for the
ground truth, the imperfect models and the supermodels. Results are based on
10 consecutive runs of T = 50 time units, the first run starting from the ground
truth attractor. Between brackets: standard deviation.

tor, the unweighted supermodel converges to a point attractor. in other
words, the unweighted supermodel contains multiple attractors. This can
be understood from the averaged parameters, which are σ = 8.92, ρ = 25,
β = 2.97. For these values, it is known that chaos and fixed points may
coexist [8].

Regarding the computational cost of the different optimization meth-
ods we found considerable differences in the required CPU time, see ta-
ble 3. However, it should be remarked that computational costs depends
strongly on how the method is exactly implemented. Among others, the
convergence criterion is an important parameter. In our simulations, the
converge criterion has been not optimized, but fixed in advance as de-
scribed based on loose criteria on pilot studies. So these CPU time results
are only indicative. However, it is save to conclude that in computational
costs, the weighted supermodel with quadratic programming outperforms
all other methods significantly with about a factor of 100.

3.2 Lorenz 84

The Lorenz 84 system was proposed by Lorenz as a toy model for the
general atmospheric circulation at mid latitudes [15]. The model equations
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Nudging C Costfn C Costfn W Quadprog W
136 2360 124 1

Table 3: Lorenz 63. relative CPU time costs of the different optimization meth-
ods

a b F G

Truth 0.25 4 8 1
Model 1 0.33 5.2 10.4 0.7
Model 2 0.18 5.2 5.6 1.3
Model 3 0.18 2.7 10.4 1.3

Table 4: Lorenz 84. parameters of the assumed ground truth and the three
assumed imperfect models.

are

ẋ = −y2 − z2 − ax+ aF

ẏ = xy − bxz − y +G (17)

ż = bxy + xz − z .

The x variable represents the intensity of the globe-encircling westerly
winds and y and z represent a traveling large-scale wave that interacts
with the westerly wind. Parameters F and G are forcing terms repre-
senting the average north-south temperature contrast and the east-west
asymmetries due to the land-sea distribution respectively. Following [2],
we take the parameters of the ground truth and the three imperfect mod-
els as in 4. With these parameters the attractor of the imperfect models
differ substantially from the truth (see figure 6). The ground truth is
chaotic, while all imperfect models have periodic attractors.

The training set was generated by simulating the ground truth for
Ttrain = 10, see figure 5. Again, supermodels were optimized with the
four different methods, i.e. connected with nudging and cost function, and
weighted with cost function and quadratic programming. The parameters
of the cost function were ∆ = 1, and d = 1, K = 5, so effectively only
the first T = 6 time units were used. Figure 7 shows the trajectories of
the two base-line and four optimized supermodels. The test trajectories
run over a period of Ttest = 100, of which we plotted the second half
period of 50 time units to avoid spurious correlations with the initial
state. From looking at the graphs in figure 4, and comparing the metrics
in table 2 we see that except nudging, all learning supermodel approaches
are successful in learning a supermodel with an attractor that is close to
the ground truth. The results after learning are better than the individual
model results, as well as the base-line supermodels. The nudging approach
seems to be stuck in a local minimum or plateau in its error landscape.
This may be due to suboptimal parameter setting. However, this has
not been explored further. For the other three optimized supermodels,
results after learning looks better than the individual model results, as
well as the base-line supermodels. Regarding the computational cost of
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Nudging C Costfn C Costfn W Quadprog W
170 501 38 1

Table 5: Lorenz 84. Relative CPU time costs of the different optimization
methods

the different optimization methods we found again considerable differences
in the required CPU time, see table 5. The same conclusions as in the
Lorenz 63 case could be drawn: CPU time results are only indicative,
however, it is save to conclude that in computational costs, the weighted
supermodel with quadratic programming outperforms all other methods
significantly.

3.3 T5 quasi-geostrophic baroclinic model

An important instability mechanism that leads to the growth and decay of
the mobile weather systems (also referred to as depressions, low-pressure
systems, storms, synoptic eddies, transient eddies) at mid-latitudes is lack-
ing. It is the baroclinic instability mechanism, a process in which the
available potential energy stored in the equator to pole temperature gra-
dient is converted into the kinetic energy of the storms. These storms in
turn transport heat polewards, thereby reducing the temperature gradient
and the cause for their existence. The temperature gradient is continu-
ously restored by the differential heating of the earth by the incoming
solar radiation and the outgoing thermal radiation. To model this insta-
bility mechanism [9] developed a two-level, hemispheric, quasi-geostrophic
spectral model on the sphere, triangularly truncated at wave number five.
We refer to this model as the T5 model. A complete description is given
in [9] and a summary is given below. The vorticity equation is applied to
the 250 hPa and the 750 hPa level, the heat equation is applied to the
500 hPa level. In the following, ψ1 denotes the 250 hPa streamfunction,
ψ3 the 750 hPa streamfunction, ψ = 1

2
(ψ1 +ψ3) the interpolated 500 hPa

streamfunction and τ = 1
2
(ψ1−ψ3) the 250-750 hPa thickness. The equa-

tions have been nondimensionalized using the earth’s radius a as unit of
length and the inverse of the angular velocity of the earth as unit of time.
A closed set of evolution equations for ψ and τ is obtained by eliminating
the vertical velocity:

∂

∂t
∆ψ = −J(ψ,∆ψ)− J(τ,∆τ)− J(ψ, f) +

f0
2
J(τ − ψ, h) +

C

2
∆(τ − ψ + ψ∗

3)

∂

∂t
(∆− 2Λ2)τ = −J(ψ,∆τ)− J(τ,∆ψ)− J(τ, f) +

f0
2
J(ψ − τ, h) +

C

2
∆(ψ − τ − ψ∗

3) +

2Λ2J(ψ, τ)− 2Λ2Q(τ∗ − τ) (18)
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where f0 the value of the Coriolis parameter at a latitude of 450, h the
surface topography, C the Ekman damping coefficient, ψ∗

3 the lower level
streamfunction forcing, τ∗ the thickness forcing and Q the cooling coeffi-
cient. The Rossby radius of deformation Λ−1 is defined by:

Λ2 =
f2
0

σ(∆p)2
(19)

where σ is the static stability parameter and ∆p the pressure difference
between the two levels. The value of Λ2 is 90 which corresponds to a
Rossby radius of deformation of 670 km. The streamfunctions are pro-
jected onto a basis of spherical harmonics. The streamfunction is now
approximated as follows:

ψ(λ, µ, t) =

5∑
n=1

+n∑
m=−n

m+n=odd

ψm,n(t)Ym,n(λ, µ) . (20)

The restriction to modes with m + n odd excludes currents across the
equator. This makes the model hemispheric. The expansion includes
three zonal modes and six wave modes. With this choice ψ and τ are
characterized by 15 coefficients each so the phase space of the model is
30-dimensional.

The forcings ψ∗
3 and τ∗ are in the Y0,1 mode only. These terms corre-

spond to forcing a westerly zonal wind in the lower level of about 8 m/s
and an equator to pole temperature difference of 110 K which produces
a zonal wind shear of about 24 m/s between upper and lower level. The
Ekman damping coefficient C and the cooling coefficient Q are given a
value of 0.01, which corresponds to an e-folding time of around 16 days.
The topography h is described with the Y2,3 mode and is introduced to
destabilize the enforced zonal flow and to locate preferential circulation
patterns at fixed geographical positions. The amplitude of h is 0.04 which
corresponds to a height of 1.6 km.

By projecting the model equations (18) onto the selected spherical har-
monics a system of 30 coupled non-linear ordinary differential equations
is obtained describing the evolution of the expansion coefficients. The
general form of these equations is given by:

d

dt
ψi = αi +

30∑
j=1

βijψj +

30∑
j=1

30∑
k=1

γijkψjψk i = 1, .., 30 . (21)

The constant terms αi correspond to the forcing terms C
2
∆ψ∗

3 and 2Λ2Qτ∗

thus αi is non-zero in the evolution equation of the (0,1)-mode only. The
linear terms correspond to the cooling and damping terms, the interaction
with topography and the Coriolis term. The quadratic terms are the result
of the advection of relative vorticity and thickness. Due to the special
properties of the spherical harmonics, many of the interaction coefficients
γijk are equal to zero. Furthermore γijk is equal to γikj .

The resulting nonlinear ordinary differential equation displays chaotic,
regime like behavior with an estimated attractor dimension of around 11.5
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h τ∗

Truth 0.04 -0.03
Model 1 0.04 -0.04
Model 2 0.06 -0.028

Table 6: T5 model: Parameters of the assumed ground truth and the two
assumed imperfect models.

[23]. The most prominent component of the model circulation is an east-
wards moving wave. The wave is accelerated and decelerated by the vary-
ing intensity of the zonal wind. During short time intervals, it may move
westwards. All other waves continuously move westwards. The influence
of the zonal wind is insufficient to keep them at fixed geographical longi-
tude. The topography and the barotropic part of the mean state of a 15
year integration is plotted in figure 8. The influence of the topography on
the mean state is clearly visible.

To give an impression of the complexity of the T5 model, we plot-
ted a state represented as the stream function at the 750 and 250 hPa
level in figure 9. Wavy disturbances are visible in a westward flow. The
disturbances grow and decay and travel eastward.

3.3.1 Supermodeling

We took this model as the ground truth and assumed two imperfect models
by perturbing h and τ∗ with values as in tabel 6. We then combined these
in a weighted supermodeling,optimized by quadratic programming. Cost
function optimization of both weighted and connected supermodel has
been attempted, but failed due to local minima and/or memory problems,
depending on the supermodel, the cost function parameter settings and
the optimization options. Perhaps fine tuning of the optimization method
could remedy this, but at least it indicates that cost function optimization
is much more cumbersome than the quadratic programming approach, and
it is likely that it will require orders of magnitudes more computational
resources. Therefore this has not been pursued further.

Trajectories of both imperfect models as well both base-line super-
models and the optimized weighted supermodel are presented in Fig 10.
The chosen phase plane (ψ14, ψ15) displays the components of an unstable
wave traveling around the globe. The chaotic growth and decay of this
wave in the ground truth is much better simulated in the optimized super-
model as compared to the imperfect models. Unweighted averaging seems
to improve a bit on the amplitude as compared to the imperfect models,
but unweighted averaging does not seem to capture the dynamics.

4 Limited information exchange, coarse
grained training data and noise

The analyses in the previous sections assumed continuous information
exchange between individual models composing a supermodel and con-
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tinuously available truth data during learning. However, in reality these
assumptions may not hold due to computational inefficiency of informa-
tion exchange and finiteness and imperfections of measurements and the
impact of these limitations on performance of supermodels is in the focus
of this section.

In order to reduce the inefficiency of information exchange the indi-
vidual models can be run autonomously and communicate solely at large
discrete time steps τexchange. The supermodel dynamics would then con-
sist of series of successive integrations of the individual models with a step
size ∆t over a period τexchange defining mappings

xiµ(t+ τexchange)− xiµ(t) = F i
µ(~xµ(t); τexchange) (22)

followed by a certain form of exchange depending on the supermodel class.
In the case of weighted supermodels at the time of exchange all indi-

vidual models are reset to the weighted average of their states as shown
on fig. 4. The supermodel states are also defined as the weighted aver-
age of the individual states. Thus, the supermodel dynamics is defined
by the successive mappings obtained as a weighted combination of short
integrations of the individual models

xi(t+ τexchange)− xi(t) =
∑
µ

wi
µF

i
µ(~x(t); τexchange). (23)

In connected supermodels the information exchange can be expressed
in the form of impulsive coupling between the models, instead of contin-
uous coupling. This form can be seen as a connected supermodel having
connection coefficients with values different than zero only at the times of
exchange. The supermodel states are again the average of the individual
models’ states.

A second realistic issue is posed by the limitations of measuring pro-
cedures as they usually provide a time series of observations only at time
steps τdata larger than integration step sizes ∆t. Measurements are used
only for training, therefore, we just need to accordingly adapt the learning
methods. In the cost function optimization methods this only reduces the
number of available error samples and the number of possible states to
which individual models can be initialized.

In quadratic optimization when there are data missing so the train-
ing sample becomes (~x(t), ~x(t + τdata)) and the error components of the
imperfect models are

εiµ(t) = F i
µ(~x(t), τdata)− (xi(t+ τdata)− xi(t)) (24)

By including these components in (14) and minimizing Ei(~wi) we can
find the weights of the supermodel. We should note that to exchange
information between steps of τdata, i.e. when τdata>τexchange, we need to
calculate the weighted average at times τexchange, which makes the problem
non-quadratic. One way to circumvent this problem is to approximate the
missing data at steps τexchange, however, here we restrict the quadratic
optimization to τexchange ≥ τdata.

In order to examine the robustness of the supermodels to the limita-
tions described in this section we use the Lorenz 63 system. We assume
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µx µy µz σx σy σz covxy covxz covyz
Truth 0.10.1 0.10.1 23.60.0 7.90.0 9.00.0 8.60.0 62.70.0 0.20.3 0.10.3
Costfn C τx=0.01

τd=0.01 0.00.1 0.00.1 23.50.0 7.90.0 8.90.0 8.60.0 62.40.0 -0.10.3 -0.10.3

Costfn C τx=0.1
τd=0.01 0.00.1 0.00.1 22.80.0 7.60.0 8.80.0 8.80.0 56.90.0 0.00.2 0.00.3

Costfn C τx=0.01
τd=0.1 0.00.1 0.00.1 23.40.0 7.70.0 8.80.0 8.50.0 60.40.0 0.00.3 0.00.2

Costfn C τx=0.1
τd=0.1 0.00.1 0.00.1 22.50.0 7.30.0 8.60.0 8.50.0 53.40.0 -0.10.2 -0.10.2

Costfn W τx=0.01
τd=0.01 0.00.1 0.00.1 23.70.0 7.80.0 9.10.0 8.50.0 62.90.0 -0.10.3 -0.10.3

Costfn W τx=0.1
τd=0.01 0.00.1 0.00.1 23.30.0 8.20.0 9.30.0 8.90.0 67.80.0 0.10.2 0.10.2

Costfn W τx=0.01
τd=0.1 0.00.1 0.00.1 23.60.0 7.80.0 9.10.0 8.60.0 62.60.0 -0.10.3 -0.10.3

Costfn W τx=0.1
τd=0.1 0.00.1 0.00.1 23.20.0 7.90.0 9.30.0 8.90.0 65.30.0 0.20.3 0.10.2

QP W τx=0.01
τd=0.01 0.10.1 0.10.1 23.50.0 7.80.0 9.00.0 8.60.0 62.50.1 0.30.4 0.30.3

QP W τx=0.01
τd=0.1 -0.10.1 -0.10.1 22.90.0 7.90.0 9.10.0 8.70.0 62.50.0 -0.20.4 -0.20.3

QP W τx=0.1
τd=0.01 0.10.1 0.10.1 23.40.0 7.60.0 9.10.0 8.90.0 60.50.0 0.30.5 0.20.3

QP W τx=0.1
τd=0.1 -0.10.1 -0.10.1 23.20.0 7.70.0 9.10.0 9.00.0 60.50.0 -0.20.5 -0.10.3

Table 7: Means (µ), standard deviation (σ) and covariance (cov) of supermodels
with various steps of information exchange (τx) and data (τd) obtained by cost
function minimization of connected (Costfn C) and weighted (Costfn W) super-
models and quadratic optimization of weighted (QP W) supermodel. The test
results are obtained by multiple runs and the subscripts are the corresponding
95% confidence bounds.

we have Ttrain = 10 of training data and Ttest = 1000 of data used for eval-
uation of the supermodels. All integrations were done by a Runge-Kutta
method of fourth order with step size ∆t = 0.01. The optimizations were
performed with the cost function approach and with the quadratic pro-
gramming approach as described earlier. The obtained results are given in
table 7 and it can be seen that although all supermodels remain near the
true dynamics their performance only slightly degrades as either τexchange
or τdata rise. The degradation is larger with the increase of τexchange than
with the increase of τdata. Another observed aspect is that weights found
by quadratic optimization for one τexchange in general work fine also for
other τexchange as the optimization results in finding a global optimum.
For example, the results in table 7 for (τexchange = 0.01, τdata = 0.1) were
performed using a supermodel trained with (τexchange = τdata = 0.1). On
the other hand, this conclusion in general does not hold for supermodels
obtained by cost function optimization.

A final issue that we address is the robustness against noise in the
measurements. Therefore, we add a white noise N (0, 1) to each of the
observed variables with overall signal-to-noise ratio (SNR) of 18.4dB. We
performed simulations with the different supermodels in the same manner
as in the previous analyses and the results are given in table 8. The cost
function optimization of weighted supermodels proved to be among all
methods most robust to noise along with the other considered limitations.
On the other hand, the quadratic programming approach proved to be
sensitive to noise and except in the case when τdata = τexchange = 0.01,
failed to find proper weights for all other cases. This is in agreement with
earlier observations that a multi-step ahead approach is advantageous
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µx µy µz σx σy σz covxy covxz covyz
Truth 0.10.1 0.10.1 23.60.0 7.90.0 9.00.0 8.60.0 62.70.0 0.20.3 0.10.3
Costfn C τx=0.01

τd=0.01 0.10.2 0.10.2 22.80.0 7.50.0 8.50.0 8.30.1 57.00.2 0.30.7 0.30.5

Costfn C τx=0.1
τd=0.01 0.00.1 0.00.1 22.80.0 7.20.0 8.40.0 8.10.0 51.80.0 0.00.3 0.00.3

Costfn C τx=0.01
τd=0.1 0.10.2 0.10.2 24.80.0 7.70.0 8.20.0 6.00.1 59.20.2 0.30.4 0.20.3

Costfn C τx=0.1
τd=0.1 -2.12.8 -2.12.9 25.20.0 0.40.1 0.50.1 0.60.1 0.20.1 -0.10.1 0.00.1

Costfn W τx=0.01
τd=0.01 0.00.1 0.00.1 22.90.0 7.60.0 9.20.0 9.00.0 60.00.1 -0.20.4 -0.10.3

Costfn W τx=0.1
τd=0.01 0.00.1 0.00.1 22.30.0 7.50.0 8.60.0 9.30.0 54.20.0 0.10.3 0.00.2

Costfn W τx=0.01
τd=0.1 0.00.1 0.00.1 22.90.0 7.40.0 8.60.0 8.40.0 56.80.0 -0.10.3 0.00.3

Costfn W τx=0.1
τd=0.1 0.00.1 0.00.1 23.40.0 7.90.0 8.90.0 8.80.0 59.40.0 0.20.4 0.10.2

QP W τx=0.01
τd=0.01 0.30.7 0.30.7 23.30.3 7.50.6 8.60.7 8.30.6 61.74.9 -0.20.3 -0.10.2

Table 8: Means (µ), standard deviation (σ) and covariance (cov) of the different
supermodels with various steps of information exchange (τx) and data (τd) in
presence of noise N (0, 1). The test results are obtained by multiple runs and
the subscripts are the corresponding 95% confidence bounds.

in learning. The connected supermodels showed variable performance
in different optimizations and tests and their performance degrades as
τexchange increases.

5 Discussion

We discussed several variants of supermodeling as a potential tool for cli-
mate research as proposed in [5] and further developed in [4, 2, 27]. The
goal of supermodeling is to dynamically combine existing good, but im-
perfect models to a so-called supermodel. Optimization of the supermodel
parameters, which control how the dynamical combination is exactly per-
formed, is based on observational data. The hope of supermodeling is
being able to improve upon the existing imperfect models in domains
with thousands of variables such as needed for climate modeling. For a
conventional machine learning approach, we think this is unlikely to be
feasible, since such an approach starts in a way from scratch by using
general approximators and being purely data driven without hardly us-
ing any prior knowledge. Supermodeling, however starts from existing
models that were developed by domain experts and are heavily based on
domain knowledge in physics, fluid dynamics and atmospheric sciences.
This should give supermodels big advantage in the learning task.

Two recently proposed types of supermodels have been discussed. The
first one is the connected supermodel, in which imperfect models are con-
nected to each other and influence each other via these connection terms.
The other one is the weighted supermodel, in which the supermodel dy-
namics is a weighted average of the imperfect model dynamics. Simula-
tions suggest that both the connected and the weighted supermodels are
able to improve upon the individual imperfect models or the a posteriori
ensemble method. Simulations also indicate that supermodeling is ro-
bust against limited data availability, limited data exchange and to some
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extend to noise in the observations.
Optimization of the supermodels require choices in the parameter set-

tings of the optimization procedure. For instance in the nudging approach,
the learning parameter a and the nudging parameters Cgt need to be cho-
sen. In the cost function approach, K ∆, and d were set, as well as an
annealing scheme. Other important issue is the setting of convergence
criteria, which were set rather arbitrary in the simulations in this chap-
ter. All these choices will be of influence on the supermodel solutions
and convergence time of the optimization procedure. The optimal setting
will depend on the problem at hand, and suboptimal choices may influ-
ence the learning result considerable. In the simulations presented in this
chapter, we set the optimization parameters rather arbitrary on the basis
of a limited number of pilot runs. We did not further try to optimize
these settings, but for a realistic application of supermodeling, this is an
important issue that needs further investigation.

The connected supermodel proposed in [5, 4, 2] relies on a synchro-
nization between the models. Typically, optimization of connected super-
models leads to large connections. It can be shown that with large connec-
tions, dynamics of the synchronized state follows the dynamics according
to weighted averages of the imperfect model components. Weighted super-
models can therefore be interpreted as as a “hard coupling” ( ~C → ∞) limit
of connected supermodels. A disadvantage of a “hard coupled” weighted
supermodel could be that the resulting dynamicsl system has less flexi-
bility than with a “soft coupled” connected supermodel. Hard coupling
may prevent escapes from individual model states and thus hinder tran-
sitions between regimes in the attractor. In another chapter in this book
this effect is illustrated in Lorenz 63 system in which one variable is con-
nected. On the other hand, weighted supermodels seem to have many
practical advantages. The most important is the existence of a scalable
learning schemes such as the quadratic programming method. Its com-
putational advantage is already apparent in the supermodel applications
to the three dimensional Lorenz 63 and Lorenz 84 models. In the 30
dimensional quasi-geostrophic baroclinic T5 model, the weighted super-
model with quadratic programming was the only one in which learning
converged to an improved solution. Other advantages are interpretability
and transparency, the elimination of equivalent solutions, and possibly
performance guarantees (see e.g. ensemble methods in [3]).

In real applications, the availability of data as well as the amount of
data exchange between models may be limited due to limitations in re-
sources. Therefore an issue is the robustness of the different approaches
against these limitations. We tested the robustness of the various ap-
proaches in the context the Lorenz 63 model. In general all approaches
showed some robustness against the discreteness of information exchange
and data availability. Quadratic programming, however, turned out to
be less robust against noise than the computationally more intensive cost
function approach. This is in a way to be expected, because the quadratic
programming approach is basically an optimization method for one step
ahead prediction, while the cost function approach is a multi-step ahead
method, which is known to be helpful for learning. A hybrid optimization
form may be required that combines the advantages of both approaches.
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There are still many open problems to be solved before supermodel-
ing can be reliably applied for climate results. An important issue is if
supermodeling does not overfit in systems of high dimension. To investi-
gate this, [2] proposed to study supermodeling performances in systems
of increasing complexity. One way is to overcome overfitting is to further
constrain the connections or weights, or to use regularization methods
from machine learning. It would also be interesting to have an quantifica-
tion of the supermodel uncertainty, such as in the conventional uncoupled
ensemble approach where there is a clear prediction mean and variance.
A practical issue is how supermodeling is performed with the currently
available software in large climate models. Probably a fully connected
or fully weighted approach is infeasible, meaning that only subsets of the
model variables can be coupled. Another issue is that transformation of
variables may be needed prior to the coupling, e.g. due to differences in
spatial grid sizes in the models.

A major caveat of using supermodeling for climate prediction is that
the super-model is trained on historical data and in a climate prediction
problem is subsequently applied to simulate the response of the system
to an external forcing, e.g. due to increased greenhouse effect. It is not
guaranteed that the supermodel will also simulate this response more
realistically, since the response was not part of the training. For the ap-
plicability of supermodeling in climate science, it is therefore of crucial
importance to get better insight in the physical assumptions that are im-
plied in the supermodeling approach or to devise other methods of model
verification, e.g biased to particular atmospheric conditions which mimic
the external forcing situations, to obtain confidence in the supermodel
predictions. Without these, the super-model approach is more likely to
be successful in weather- and seasonal predictions since the cases to be
predicted remain closer to the cases present in the training set and data
based model verification can be performed easier.

To conclude, whether the supermodeling approach will be beneficial
in the context of complex climate models remains to be seen. However,
in our opinion, supermodeling is a promising approach that is worthwhile
to be explored further.
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Figure 4: Lorenz 63. Left top: Uncoupled supermodel(a posteriori ensemble
averaging). Left bottom: unweighted averaging supermodel. Middle top: con-
nected supermodel, nudging. Middle bottom. Connected supermodel, cost func-
tion. Right top: weighted supermodel, cost function. Right bottom: weighted
supermodel, quadratic programming. Supermodel (black) and ground truth
(gray). The supermodel trajectories are based on a single run of T = 100 time
units starting on the ground truth attractor, of which only the last T = 50 time
units are plotted.
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Figure 6: Lorenz 84 trajectories for the three connected imperfect models with
connections determined by the learning process (black) and the standard Lorenz
84 system (grey).
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Figure 7: Lorenz 84. Left top: Uncoupled supermodel(a posteriori ensemble
averaging). Left bottom: unweighted averaging supermodel. Middle top: con-
nected supermodel, nudging. Middle bottom. Connected supermodel, cost func-
tion. Right top: weighted supermodel, cost function. Right bottom: weighted
supermodel, quadratic programming. Supermodel (black) and ground truth
(gray). The supermodel trajectories are based on a single run of T = 100 time
units starting on the ground truth attractor, of which only the last T = 50 time
units are plotted.
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Figure 8: The topography (left) and the barotropic part of the climate (right)
of the T5 model in a stereographic projection (geopotential height at 500 hPa).
The contour interval in (a) is 250 m, in (b) 300 m.

Figure 9: T5 model: the stream function at two subsequent times t and t +
5 (days) at the 750 (gray, dashed) and 250 hPa (black, heavy) level. Wavy
disturbances are visible, they grow and decay and travel eastward.
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Figure 10: Results of T5 model integrations of the imperfect models projected
on (ψ14, ψ15) plane. Top plots, left: training set. Top plots, middle and right:
the imperfect models. Bottom plot, left: “unconnected ensemble”. Bottom plot,
middle“unweighted averaging”. Bottom plot, right: optimization via quadratic
programming. In all plots except the top left plot - Gray: assumed ground
truth. Black: imperfect models and supermodels respectively.
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Figure 11: Representation of dynamics of a supermodel with limited information
exchange. The dashed and dashed-dotted lines are trajectories of individual
models, while the solid line is their weighted average, i.e. supermodel trajectory.
The red arrows represent resets of individual models to supermodel states.
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