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Recently, supermodels consisting of an ensemble of interacting models, synchronizing on a common solution,
have been proposed as an alternative to the common non-interactive multi-model ensembles in order to
improve climate predictions. The connection terms in the interacting ensemble are to be optimized based on
data. The supermodel approach has been successfully demonstrated in a number of simulation experiments
with an assumed ground truth and a set of good, but imperfect models. The supermodels were optimized with
respect to their short-term prediction error. Nevertheless, they produced long-term climatological behavior
that was close to the long-term behavior of the assumed ground truth, even in cases where the long-term
behavior of the imperfect models was very different. In these supermodel experiments, however, a perfect
model class scenario was assumed, in which the ground truth and imperfect models belong to the same model
class and only differ in parameter setting. In this paper we consider the imperfect model class scenario,
in which the ground truth model class is more complex than the model class of imperfect models due to
unresolved scales. We perform two supermodel experiments in two toy problems. The first one consists of
a chaotically driven Lorenz 63 oscillator ground truth and two Lorenz 63 oscillators with constant forcings
as imperfect models. The second one is more realistic and consists of a global atmosphere model as ground
truth and imperfect models that have perturbed parameters and reduced spatial resolution. In both problems
we find that supermodel optimization with respect to short-term prediction error can lead to a long-term
climatological behavior that is worse than that of the imperfect models. However we also show that attractor
learning can remedy this problem, leading to supermodels with long-term behavior superior to the imperfect
models.
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Supermodels consisting of an ensemble of inter-
acting models could be an alternative to the com-
mon approach where simulation results of sepa-
rate models are collected and merged afterwards.
The interactions in the supermodel need to be
learned from data. The supermodel approach has
been demonstrated successfully in simulation ex-
periments with an assumed ground truth and a
set of good, but imperfect models from which a
supermodel is compiled with improved capability
to reproduce the ground truth. In these experi-
ments, the assumed ground truth and the imper-
fect models all belong to the same model class. In
real applications, like climate, ecological or eco-
nomical models, reality lies outside the imperfect
model class. In this paper, we consider situations
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where the truth is much more complex than the
imperfect models. We show that this can have
implications for the learning strategy. Success-
ful learning strategies are developed that should
be considered, if the supermodel approach is ap-
plied to the predict the behavior or real complex
systems.

I. INTRODUCTION

Synchronization is the phenomenon that coupled, os-
cillating systems fall into the same rhythm. Examples in-
clude clocks, singing crickets, firing neurons and applaud-
ing audiences1. Similar phenomena occur in multi-agent
systems where synchronization mechanisms can be used
to describe consensus and cooperation2,3. Synchroniza-
tion mechanisms, by connecting models to observations,
have been proposed for data assimilation4,5

Recently, synchronization mechanisms have been pro-
posed as modeling improvement tools in the context of
climate modeling6,7. The assumption is that there is a
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collection of good but imperfect models. The proposal is
to dynamically connect these models and so to construct
one “supermodel”. With sufficient connection strength,
the models in the supermodel will synchronize8,9. The
idea is that when connection strengths are learned from
data, the synchronized models form an ”intelligent” con-
sensus and thereby improve their long-term climate pre-
dictions. This approach could provide an alternative
to the current practice in which different climate mod-
els are run independently and their individual outcomes
are combined in some form of an a posteriori ensemble
average10. The supermodel approach is generally formu-
lated for complex dynamical systems and is in principle
widely applicable to any domain, like for example ecol-
ogy, economy and biology. A promising example of super-
modeling is the simulation of cancer growth where it has
been demonstrated that supermodel is able to simulate
qualitatively different scenarios of cancer growth which
were not observed when the individual models were run
separately15,16.

To date the supermodel approach has mostly been de-
veloped in the context of weather and climate predic-
tion. Van den Berge et al.11 has performed experiments
with low dimensional systems such as the Lorenz 63,
the Rössler, and the Lorenz 84 oscillators12–14. Imper-
fect models were created from the assumed ground truth
by parameter perturbations. The supermodels were ob-
tained by connecting the variables dynamically, in which
the connections were optimized by minimization of a
short-term prediction error. As a sort of proxy for clima-
tology, the attractors of the different models and model
combinations are assessed. It was found that the opti-
mized supermodels have attractors that are very simi-
lar to the attractors of the assumed ground truths, even
when the attractors of the different imperfect models
were very different.

In the original proposal, as well as in the study by Van
den Berge et al. and other simulation studies, the super-
model connection parameters are optimized based on a
short-term prediction error, resulting in a synchronised
system with good long-term attractor properties11,17.
The question is, if one can expect that this is always
the case. In a more general machine learning context of
chaotic attractors, Bakker et al.18,19 warned that mod-
els that are optimized for short-term prediction need not
automatically have good long-term (attractor) behavior
as a by-product and that in general, some kind of attrac-
tor learning is needed. Similar conclusions have arisen
in the context of improved representations of unresolved
scales in atmosphere models by means of empirical terms
in the model equations learned from data20. In a re-
cent demonstration of the supermodel concept for cli-
mate modeling with real data of the tropical Pacific, a
form of attractor learning has indeed been applied. The
supermodel parameters were determined on the basis of
the minimization of the root-mean-square difference be-
tween simulated and observed monthly mean sea surface
temperature climatology statistics21.

In this paper we want to further investigate this ques-
tion. One of the model assumptions in many of the sim-
ulation studies is what we call the perfect model class
scenario, in which the imperfect models and the assumed
ground truth all fall in the same model class. Imperfec-
tions are due to parameter perturbations. In reality, the
ground truth is often much more complex than the im-
perfect models, and in particular the dimensionality of
the ground truth is often much larger, many of the di-
mensions being unresolved in the imperfect models. We
call this situation, in which the ground truth model class
is much more complex than the model class of the im-
perfect models, the imperfect model class scenario.

In this paper, we study toy problems in the imperfect
model class scenario, in which we model the ground truth
with observable variables and hidden variables. The im-
perfect models only have variables that correspond with
the observable variables of the ground truth. We answer
the first question negatively by showing that in such a
setting, supermodels that are optimized for short-term
prediction of the observables indeed can show long-term
attractor properties that are much less favourable than
in the earlier reported perfect model class scenario exper-
iments, and in some sense even worse than the averaged
behavior of the imperfect models.

The next question is if this is due to the supermodel
concept failing in the imperfect model class scenario, or
can the supermodel be improved by optimizing the con-
nection parameters by other criteria? We will investigate
this further by defining some attractor error measures.
A direct form of attractor learning by optimizing these
measures will be evaluated. The attractor error mea-
sures, however, are computationally expensive to eval-
uate. To mitigate these computational costs we make
use of recently developed Bayesian optimization meth-
ods that are designed for efficient, global optimization of
cost functions that are expensive to evaluate22,23.

We first investigate and demonstrate the above men-
tioned phenomena in a setting where the ground truth
is modeled as a 3-dimensional Lorenz 63 oscillator that
is driven by another, hidden Lorenz 63 system. The
imperfect models are two 3-dimensional Lorenz 63 os-
cillators with constant external forcing. In this con-
structed setting the differences between short-term pre-
diction optimized supermodel and an attractor error
optimized supermodel are quite dramatic. One could
question if this result can be expected in general, or
if these were atypical, due to the existence of extreme
phase transitions in the attractor of the Lorenz 63 os-
cillator. We investigate this further in a more realistic
setting with a model that is often studied in the at-
mospheric sciences literature. Marshall and Molteni’s24

spectral three-level, quasi-geostrophic (QG3) model sim-
ulates the winter-time atmospheric flow in the Northern
Hemisphere quite realistically and produces a climatol-
ogy with multiple weather regimes that are also found in
observations. Meteorological fields in this model are ex-
panded into a series of spherical harmonic functions and
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are triangularly truncated at a particular total wavenum-
ber. This truncation determines the spatial resolution of
the simulations. In a perfect model class scenario with
ground truth at T21 resolution and T21 imperfect mod-
els, supermodels optimized on short-term prediction have
very good climatological properties17. In this study we
will employ the QG3 model in order to see whether these
results carry over to the imperfect model class scenario.
In our simulation studies, the ground truth is modeled
at T42, whereas the imperfect models are truncated at
T21.

The paper is organized as follows. In section II we re-
view in more detail the supermodel approach based on
synchronization, and in particular in the limit of large
connections and perfect synchronization. We present
some earlier obtained results in the perfect model class
scenario. In section III we introduce the imperfect model
class scenario. We define some attractor measures that
we will use in later sections. We describe the need and
notion of attractor learning, and describe how we ap-
ply Bayesian optimization in the later sections. In sec-
tion IV we introduce the driven Lorenz 63 oscillator as
a toy problem in the imperfect model class scenario. We
train supermodels by minimizing the traditional short-
term prediction error as well as the attractor errors, and
we discuss the results. In section V we describe the quasi-
geostrophic atmosphere model that is used as a second,
more realistic problem in the imperfect model class sce-
nario. Again we train supermodels by minimizing the
traditional short-term prediction error as well as the at-
tractor errors, and we discuss the results. Finally, the
results and implications of this study are discussed in
section VI.

II. SYNCHRONIZED SUPERMODELS

In this section we review the supermodel approach and
the findings as reported in literature6,7,11,25. The as-
sumption is that there is a ground truth with an ob-
servable state xgt(t) that is driven by a nonlinear chaotic
dynamics that is not exactly known. It is further as-
sumed that there are M good, but imperfect models of
this ground truth dynamics. These models are labeled
by µ. Each of them describes the dynamics of the model
state vector xµ according to

ẋiµ = f iµ(xµ) (1)

in which i labels the vector components, and dot-notation
is used for time derivatives. Then, the proposal is to
combine the individual models µ into one supermodel
by inserting nonnegative connections between the model
equations,

ẋiµ = f iµ(xµ) +
∑
ν

Ciµν(xiν − xiµ) . (2)

With sufficient connectivity, the individual models will
synchronize and reach a kind of consensus among each

other8. The solution of the supermodel is defined to be
the average of the connected imperfect models,

xs(t;C) ≡ 1

M

∑
µ

xµ(t;C). (3)

where subscript “s” labels the supermodel state vector.
The connection coefficients C = {Ciµν} are to be in-
ferred from a training set of historical observations. This
should lead to a synchronized dynamics that converge to
an attractor that is similar to the attractor of the ground
truth.

One of the original proposals7 is a scheme in which,
during a training phase, additional connections with
strengths Ki > 0 are defined that connect the model
variables xiµ with the data from the ground truth. This
causes the system not only to synchronise among each
other, but also with the ground truth. The synchroni-
sation with the ground truth during training is a form
of data assimilation method called nudging4. Further-
more, an adaptation rule for the connections is imposed
in which they follow a dynamics that depends both on
the synchronisation error between the supermodel and
the ground truth as well as on the synchronisation error
of the imperfect models amongst each other. The result
is a coupled set of differential equations for both states
and parameters7:

ẋiµ = f iµ(xµ) +
∑
ν 6=µ

Ciµν(xiν − xiµ) +Ki(xigt − xiµ),(4)

Ċiµν = a(xiν − xiµ)(xigt −
1

M

∑
µ

xiµ)

−ε/(Ciµν − Cmax)2 + ε/(Ciµν − δ)2 (5)

In these equations, the adaptation rate a is a constant.
The terms with coefficient ε is to dynamically constrain
all connections Ciµν to remain in the range (δ, Cmax).
A Lyapunov function argument shows that the method
converges26.

Another approach, taken by van den Berge et al.11 is
to optimize the connections directly by numerical mini-
mization of a short-term prediction cost function,

E(C) =
1

K∆T

K∑
i=1

∫ ti+∆T

ti

|xs(t;C)− xgt(t)|2γtdt, (6)

which is the average of K prediction errors over a fixed
time interval with length ∆, starting at K initial condi-
tions ti. The factor γt discount the errors at later times.
This factor was introduced to decrease the contribution
of internal error growth. With this cost function mini-
mization approach, van den Berge et al. demonstrated
the supermodel concept successfully in the context of a
number of low dimensional systems such as the Lorenz
6312, Rössler13 and Lorenz 8414 system. The experimen-
tal setup taken by van den Berge et al. was to define
a ground truth from a model class, with a given set of
ground truth model parameters. The imperfect models
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were taken from the same model class, but now with con-
siderably perturbed (imperfect) model parameters. The
training yielded strong connections that indeed caused
a synchronised model dynamics that was very similar to
the assumed ground truth system, and notably with an
attractor that was very similar to the ground truth at-
tractor. Furthermore, in the context of the Lorenz 63
system (see equation (10) below) an experiment was per-
formed in order to investigate whether the supermodel
could predict the system response to a parameter pertur-
bation. The result was promising: when the parameter ρ
was doubled in each of the imperfect Lorenz 63 models,
the optimized supermodel (without additional learning)
showed a response that almost exactly mimicked the re-
sponse of the assumed ground truth to a similar doubling
of the corresponding ρ parameter in the assumed ground
truth Lorenz 63 system.

It was demonstrated27 that in the large connection
limit, the supermodel behaves like a linear combination
of the imperfect models, i.e., the states of the connected
system synchronize on a single state xs, of which the i
component follows a dynamics which is a weighted sum
of the imperfect model dynamics

ẋis =
∑
µ

wiµf
i
µ(xs) (7)

with non-negative and normalized weights,

wiµ ≥ 0, (8)∑
µ

wiµ = 1. (9)

The weights can be identified as unique eigenvectors of
Laplacian matrices Li that are constructed from the con-
nections Ciµν . Since the nonlinear differential equations
of the systems studied by van den Berge et al. are lin-
ear in the parameters, the weighted supermodel falls in
the same model class, with parameters that are weighted
sums of the imperfect model parameters. Using the rela-
tion between weights and connections, it was verified that
the connections that were found by van den Berge et al.
indeed correspond to models with parameters that are
close to the ground truth parameters. Also the param-
eter doubling experiment is straightforwardly explained
by the parameter linearity27.

Now there are two classes of supermodels, connected
supermodels and weighted supermodels. The weighted
supermodels can be regarded as a perfectly synchronised
large connection limit of the connected supermodels. On
the other hand, they can be regarded as a class of su-
permodels based on a simple linear combination con-
cept, which allows for very efficient learning schemes,
e.g. optimization by quadratic programming25 and cross-
pollination in time17. Connected supermodels are poten-
tially richer in behaviour, due finite connection size ef-
fects and related to this, the possibility of imperfect syn-
chronisation. Since these issues are not the subject of in-
terest in this paper, we will restrict ourselves to weighted

supermodels in the remainder of the paper and conjec-
ture that results generalize to connected supermodels as
long as their dynamics is sufficiently synchronized.

As an illustration of the result, we repeat the weighted
supermodel learning experiment for the Lorenz 63 oscil-
lator, with the same experimental set up as in van den
Berge et al.. Both the assumed ground truth and the
three imperfect models obey the Lorenz 63 equations,

ẋ = σ(y − x)

ẏ = x(ρ− z)− y (10)

ż = xy − βz .

with parameters σ, ρ and β (see Table I). The super-
model is defined by non-negative weights for each of
the variables, wxµ, wyµ, wzµ, which all normalize to one
when summed over the models,

∑
µ w

x
µ = 1,

∑
µ w

y
µ =

1,
∑
µ w

z
µ = 1. Numerical simulations are performed us-

ing a fourth order Runge Kutta scheme with a time step
of ∆t = 0.01. The model parameters of the assumed
ground truth and the imperfect models are listed in ta-
ble I. The supermodel is obtained by numerical min-
imization of the ∆T -time-unit-ahead prediction error,
with prediction horizon ∆T = 0.1

E(w) =
1

K

K∑
i=1

ti+∆T∑
t=ti

|x(t;w)− xgt(t)|2∆t, (11)

where for each short run ti → ti + ∆ the weighted super-
model x(t;w) is reinitialized at xgt(ti). The supermodel
itself is again a Lorenz oscillator; its parameters can be
obtained by taking the inner product of imperfect model
parameters and supermodel weights, σs =

∑
µ w

x
µσµ,

ρs =
∑
µ w

y
µρµ, βs =

∑
µ w

z
µβµ. The resulting super-

model parameters are listed in Table I, from which it
is seen that the parameter error is drastically reduced.
The same automatically holds for the vector field error
ẋs−ẋgt, since this is linear in the parameter error. Long-
term trajectories of ground truth, imperfect models and
supermodel are displayed in figure 1, from which it can be
observed that the supermodel solution is almost perfect.
For this model setting, the supermodel approach with
standard parameter optimization by short-term predic-
tion error minimization works very good and results in a
supermodel with good attractor properties.

III. IMPERFECT MODEL CLASS SCENARIO

It is clear that the atmosphere has larger complex-
ity and finer scales of motion than its representations
by models. In mathematical terms, the real atmosphere
has many more degrees of freedom, or variables, and the
equations governing its evolution (if they exist) also have
a much more complex structure than those of the atmo-
spheric models. Furthermore, the state of the atmosphere
is never precisely known. In the earlier work described in
the previous section, the imperfect models and assumed
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σ ρ β

Truth 10 28 8/3
Model 1 13.25 19 3.5
Model 2 7 18 3.7
Model 3 6.5 38 1.7
SUMO 9.9 29.7 3.1

TABLE I. Lorenz 63: parameters of the assumed ground truth
and the three assumed imperfect models. The supermodel
(SUMO) values are obtained by taking the inner product of
the imperfect model parameters with the supermodel weights
wiµ.
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FIG. 1. Trajectories of Lorenz 63 ground truth (grey), im-
perfect models and supermodel (black). Upper row: Model
1, Model 2. Lower row: Model 3, Optimized weighted super-
model. Model 1 and Model 2 converge to a fixed point (in
either of the wings, depending on the initial conditions)

ground truth were all from the same model class, i.e.,
ground truth and imperfect models have the same math-
ematical structure and differ only in their parameters.
We call this the perfect model class scenario. In the re-
mainder of this paper we will study the supermodel ap-
proach in the imperfect model class scenario, in which
the assumed ground truth model class is more complex
than the model class of the imperfect models. In partic-
ular we will assume that only a subset of variables of the
ground truth is observable. The unobservable or hidden
variables play the role of unresolved scales.

1. Attractor error measures

In low dimensional systems the long-term behavior of
the imperfect models and supermodels can be assessed by
visual inspection of the attractor. However, the visual
method does not provide an objective measure and it
is inadequate for systems of higher dimension. Ideally
one would like to have a measure that directly measures
the distance between the probability densitity functions
describing the attractors of the model and the ground

truth.
A candidate for such a measure between probability

densities is the Wasserstein metric, also known as the
earth mover’s distance. Intuitively, if both distributions
are viewed as a unit amount of ”earth”, the metric is the
least amount of work needed to turn one distribution into
the other assuming that the cost to transporting a unit of
earth from location x to y is proportional to the ground
distance from x to y28. For systems of high dimension-
ality, however, this metric is impractical. Suppose a bin-
ning strategy will be taken to model the distribution of
the ground truth attractor, the number of cells will be
exponentially large in the number of dimensions, and an
exponential large data set of observations is needed to
make sure that the cells are sufficiently filled.

A more practical approach is to be less ambitious and
to restrict oneself to measures based on only the state
means and (co)variances of the attractors. A way to de-
fine such a measure is to approximate the distributions
by multivariate Gaussians with the same means and co-
variances as the original distributions. The Wasserstein
distance between two Gaussian distributions N0 and N1

with mean and covariances (µ0,Σ0) and (µ1,Σ1) respec-
tively is given by29,30

W 2 = |µ1 − µ0|2 + Tr
(

Σ0 + Σ1 − 2(Σ
1/2
0 Σ1Σ

1/2
0 )1/2

)
.

(12)
which we now use as an proxy error measure between two
distributions with corresponding mean and covariances.
Note that this measure can be zero for non identical dis-
tributions, as long as the mean and covariance are equal.
We refer to W as the Wasserstein error. To compute the
Wasserstein error of a model, we collect long trajectories
(not necessary of the same length) from both the ground
truth and the model. From these trajectories, the mean
and covariances are estimated and substituted in W .

Sometimes one is more interested in the variability of
the system than in its average state31. In other words,
it can be that one is mostly interested in the shape of
the attractor and not so much in its center of gravity. In
such a case, the Wasserstein error restricted to the terms
containing the covariances may be more appropriate,

V 2 = Tr
(

Σ0 + Σ1 − 2(Σ
1/2
0 Σ1Σ

1/2
0 )1/2

)
. (13)

In high dimensional models it may be more convenient
to restrict the error further to the variances σ2 (i.e. the
diagonal terms of covariance matrix Σ), yielding the error

U2 = |σ1 − σ0|2. (14)

We refer to the error measures W , V and U as attractor
errors.

2. Attractor learning and Bayesian optimization

In the perfect model class scenario, minimizing short-
term prediction error leads to supermodels that show
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favourable attractor behavior, in particular improving
upon the individual imperfect models. The question is if
this is still the case in the imperfect model class scenario.
Is it still sufficient for supermodels to be trained based
on the basis of a traditional short-term prediction error
and will such models always show favourable attractor
behavior? We will show with counter examples that this
is not the case and that the resulting supermodels can
actually deteriorate the climatology compared to, e.g.,
the average climatology of each of the imperfect models.

The second question is if this is due to the supermodel
concept failing in the imperfect model class scenario, or
to the traditional learning paradigm. In a more general
machine learning setting, Bakker et al.18,19 has already
observed that models optimized for short-term predic-
tion do not necessarily have favourable long-term attrac-
tor behavior as by-product. When a match is desired
between the observed attractor and the model attractor,
some kind of ”attractor learning” would be needed. Sev-
eral forms of attractor learning have been proposed and
investigated18,32.

In a recent demonstration of the supermodel concept
for climate modeling with real data of the tropical Pa-
cific, a form of attractor learning has been applied. The
supermodel parameters were determined on the basis of
the minimization of the root-mean-square difference be-
tween simulated and observed monthly mean sea surface
temperature climatology statistics21.

In this paper, we follow a similar cost function ap-
proach, where we take the attractor errors described
in the previous subsection as starting point. With the
Wasserstein error W as an example, we follow the fol-
lowing procedure. We assume to have a sufficiently long
training set of observations from the ground truth. With
these we estimate once a mean and covariance of the
ground truth. We further assume that we can do multi-
ple sufficiently long runs of the supermodel and that we
can estimate a mean and covariance of each of the su-
permodel runs. With the ground truth and supermodel
statistics, a training error WTrain is evaluated. The train-
ing error will be a function of the supermodel parameters.
In the context of this paper, these are the weights of the
supermodel. Attractor learning is then the optimization
of WTrain with respect to the supermodel weights. For
each evaluation of WTrain, the supermodel has to be re-
run.

To test the result of the supermodel training, we as-
sume that we have an independent test set of observa-
tions from the ground truth, e.g., data from a different
time window. Furthermore, we run the supermodel again
for a sufficiently long time, making sure that the results
are independent of the model data used to evaluate the
training error, for instance by a different initialization, or
by running the system for much longer time. We again
gather the ground truth and supermodel statistics and
evaluate W , which is now considered as test error.

Attractor learning as performed in this paper requires
the evaluation of a quantity (WTrain) that is computed

on long time supermodel simulations. Also the result
is much more sensitive to phase transitions in the at-
tractor, which may be hardly detectable in short time
predictions. Global optimization methods for cost func-
tions that are expensive to evaluate are required. For-
tunately, the machine learning community has studied
this problem intensively. For the optimization of com-
putationally expensive cost functions, in particular if the
parameter vector that is to be optimized is low dimen-
sional (in our case, these will be the synchronized su-
permodel weights), Bayesian optimization is often pro-
posed as the method of choice22,23. While probing the
cost function, Bayesian optimization builds up a model
of the cost function landscape, including uncertainties
herein. From the predicted cost function landscape and
its uncertainties, the next point to evaluate is strategi-
cally chosen. For the simulations in this paper, we used
Matlab’s bayesopt function33, which is based on recent
developments in this field23,34,35. We used maximally 100
cost function evaluations. We initialized the procedure
applied to the supermodel learning with the M imper-
fect models and the supermodel with uniform weights as
starting points. Furthermore we applied the bayesopt
routine in its standard settings. Although it is recom-
mended to follow the Bayesian optimization by a local
optimizer for fine tuning, we did not pursue this further.
The result that yielded the minimum of the cost function
is returned and used as the supermodel solution.

The same procedure with Bayesian optimization is ap-
plied to supermodel learning based on minimization of
the other attractor errors V and U , as well as on mini-
mization of the traditional short-term prediction error E.
Where applicable, the resulting supermodels are labeled
as SUMO(E), SUMO(W), SUMO(V) and SUMO(U). Al-
though more efficient or more smart procedures may exist
to optimize the supermodel parameters, in particular for
the traditional short-term prediction error, we applied
the same procedure in all these cases since we only aim
to get more insight in the two above mentioned ques-
tions, i.e., does the traditional ETrain minimization of
the supermodel always provide good attractor properties
as by-product in the imperfect model class scenario? If
the answer is no, is this inherently due to the supermodel
concept failing in the imperfect model class scenario or
can this effect be partly remedied by other optimization
procedures, in particular attractor learning? The ques-
tion of computational efficiency, although partly tackled
by the Bayesian optimization procedure, is deliberately
not further considered in this paper.

IV. DRIVEN LORENZ63 OSCILLATOR

Our first example of the imperfect model class scenario
is a low-dimensional dynamical system toy problem, the
chaotically driven Lorenz 63 oscillator36. This example
consists of a ground truth and two imperfect models.

The ground truth is represented by a chaotically forced
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FIG. 2. Driven Lorenz 63: Trajectory of the visible variables
of the assumed ground truth system.

TABLE II. Driven Lorenz 63 experiment: assumed parameter
settings of the two imperfect models, Model 1 and Model 2

σ ρ β α γ

Model 1 10 28 8/3 25 0
Model 2 6.5 38 1.6 0 10

Lorenz 63 model,

ẋv = σ(yv − xv) + εzh,

ẏv = xv(ρ− zv)− yv,
żv = xvyv − βzv + δ(xh + η),

ẋh = σ(yh − xh),

ẏh = xh(ρ− zh)− yh,
żh = xhyh − βzh. (15)

in which only the v variables are visible. The hidden
system h is assumed not to be directly observable. The
hidden system, which itself is a chaotic system, drives
the visible system v. The hidden system plays the role of
unresolved scales. The parameters to model the ground
truth are the following,

σ = 10, ρ = 28, β = 8/3, ε = 1, δ = 5, η = 2. (16)

With these parameters, the shape of the trajectories of
the the visible variables are somewhat similar to a per-
turbed Lorenz 63 ”butterfly”, see Fig. 2.

The two imperfect models µ = 1, 2, are both repre-
sented by a Lorenz 63 system with perturbed parameters
and a constant forcing,

ẋµ = σµ(yµ − xµ) + αµ

ẏµ = xµ(ρµ − zµ)− yµ
żµ = xµyµ − βµzµ + γµ (17)

with imperfect model parameter settings according to Ta-
ble II.

Similar to the Lorenz 63 example, a (perfectly synchro-
nized) supermodel is defined by non-negative weights for

each of the variables, wxµ, wyµ, wzµ, which all normalize
to one when summed over the two models,

∑
µ w

x
µ = 1,∑

µ w
y
µ = 1,

∑
µ w

z
µ = 1.

Simulations are performed with a fourth order Runge
Kutta scheme with step size of 0.01 time units. To gener-
ate the training set, we first run the ground truth system
over a transient period of 100 time units. Then a training
set of 100 time units is recorded. This period is followed
by a second transient time of 100 time units and sub-
sequently a test set is recorded of 1000 time units. For
training and test set, only the visible variables (xv, yv, zv)
are recorded.

In the experiments with this toy problem, we consider
the short-term prediction error E as defined in (11) and
for the attractor errors, the Wasserstein error W , and the
Wasserstein error restricted to covariances V as defined
in (12) and (13). SUMO(E), SUMO(W) and SUMO(V)
are optimized and results are evaluated as described in
the previous section. To evaluate the attractor errors
during the training phase, the supermodels are initial-
ized each time by a state randomly drawn from a multi-
variate Gaussian distribution with mean and covariance
estimated from the ground truth training set. Then the
supermodel is first run for a transient period of 100 time
units, and subsequently recorded during the next 100
time units. To obtain model data for testing, the same
procedure is applied.

Trajectories of the two imperfect models and the three
supermodels are displayed in Fig. 3. To generate the tra-
jectories for these graphs, the transient period is reduced
to 15 units. Data of the subsequent 100 time units is
recorded and drawn in the graphs. With longer tran-
sients, the trajectories of Model 1 and SUMO(E) would
collapse to a point attractor. The gray background cor-
responds to the first 100 time units of ground truth test
data.

Test errors E, W and V of the two models and the
three supermodels SUMO(E), SUMO(W) and SUMO(V)
are listed in Table III. Figures in the table are based on
the results of 10 repeated experiments, each with a new
draw of training/test set and new optimizations. The at-
tractor test errors of the ground truth (GT) are obtained
by rerunning ground truth with different initial condi-
tions and evaluating the attractor based on the statistics
of the first and second ground truth trajectory. The ini-
tial state of the second run is randomly drawn from a
6 dimensional multivariate Gaussian, now based on the
mean and covariance of all variables, including the hid-
den variables. Then the ground truth is run during a
transient period of 100 time units, after which the visi-
ble variables are recorded during a period of another 100
time units.

To further appreciate the short-term prediction errors
E of the imperfect models and supermodels, we per-
formed an experiment in which we evaluated the training
error of the ground truth with a delayed initialization of
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FIG. 3. Driven Lorenz 63 experiment. Top row: Model 1,
Model 2. Middle row: SUMO(E). Bottom row: SUMO(W),
SUMO(V). In grey: ground truth

TABLE III. Driven Lorenz 63 experiment: Errors E (×104),
W , V for the different models and supermodels. As a refer-
ence, ground truth (GT) values are reported as well for W
and V .

Model1 Model2 SUMO(E) SUMO(W) SUMO(V) GT

E 20.7(1.1) 49(4) 19.8(1.1) 21.7(1.6) 45(8) -
W 17.9(.3) 9.9(.3) 16(3) 2.8(1.0) 8.3(.9) 1.3(.7)
V 13.9(.2) 1.4(.2) 12(3) 1.2(.5) 0.8(.4) 0.7(.4)

the hidden variables,

E(τh) =
1

K

K∑
i=1

ti+∆T∑
t=ti

|xgt(t; τh)− xgt(t)|2∆t, (18)

in which xgt(t; τh) stands for the visible states
(xv(t), yv(t), zv(t)) of a ground truth system that is
initialized for the run ti → ti + ∆T in state
(xv(ti), yv(ti), zv(ti), xh(ti − τh), yh(ti − τh), zh(ti − τh)).
As a reference, we also did the comparison with a ground
truth system in which the hidden states (xh, yh, zh) are
initiated on their mean value estimated on the training
set in which the now the hidden variables are recorded
as well. Results are listed in Table IV.

Results show that SUMO(E) has the best short-term
prediction performance, significantly outperforming the
other models and supermodels in this measure. Model
1 is the second best model. Comparing their results
in Table III with the ground truth simulation results in
Table IV, one could conclude that both SUMO(E) and
model 1 are reasonable short-term prediction models.

TABLE IV. Driven Lorenz 63 experiment: Errors E of ground
truth with itself, when hidden state of one of the GT models
is initialized with a delay τh, or by the average hidden state
value mh(last column)

τh 0 0.01 0.05 0.1 0.2 1.0 mh

E 0(0) 1.1(.1) 5.4(.4) 10.5(.8) 18.4(1.4) 27(2) 19.8(1.4)

However, results also show that the attractor measures
of these models are poor. Fig. 3 suggests that the opti-
mized SUMO(E) converges even faster to a fixed point
than Model 1, although Table III indicates that this is not
always the case. The attractor performances of Model 2
are clearly better than SUMO(E). So indeed optimiza-
tion of the short-term prediction error can deteriorate
attractor results. Its attractor results are worse than the
average imperfect model performance and actually quite
close to the worst of the two imperfect model results.
This can be remedied by directly optimizing the attractor
errors. Fig. 3 shows that SUMO(W) has a much better
attractor, in the right location and with the right shape,
although still somewhat too small. SUMO(V) has an
even better attractor shape (a little bit wider), although
now the location is much too high. These observations
can also be inferred from Table III.

The price to pay for the better attractor performance is
clearly that short-term prediction errors are worse. How-
ever it is promising that for SUMO(W) these values are
much better than the average prediction error of the two
imperfect models, and relatively close to the best of the
two imperfect models. This is, however, not the case
for SUMO(V). In general one cannot expect such by-
products, unless by making use of clever insight in the
model structure and/or the optimization criterion, or by
sheer luck.

V. QUASI-GEOSTROPHIC ATMOSPHERE MODEL

A quite realistic simulation of winter-time atmospheric
flow is obtained with the three-level, quasi-geostrophic
spectral model on the sphere originally constructed by
Marshall and Molteni24. The model shows a climatol-
ogy with multiple weather regimes that are also found in
observations. Meteorological fields in this model are ex-
panded into a series of spherical harmonic functions and
are triangularly truncated at a particular total wavenum-
ber. This truncation determines the spatial resolution
of the simulations. Details about the partial differential
equation (PDE) and how it is solved approximately in a
finite state space can be found in the appendix.

In a perfect model class scenario with T21 truncated
ground truth and imperfect models of the same spatial
resolution but different in parameter setting, Scheven-
hoven et al.17 showed that supermodel learning based on
short-term prediction (via a newly developed efficient al-
gorithm based on cross-pollination in time) leads to a
supermodel with very good climatological properties as
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by-product.

Here we investigate whether this result carries over to
the imperfect model class scenario. The ground truth is
modeled at T42 truncation, whereas the imperfect mod-
els have a T21 truncation and different parameter setting.

In the following subsection we provide some model
background information needed to understand some of
the results later on.

A. Model background

The model solves the quasi-qeostrophic potential vor-
ticity equation on the sphere at three discrete pressure
levels (QG3) using a spectral method with spherical har-
monics as basis functions at each pressure level. See ap-
pendix for details. The dynamical variable in QG3 is the
potential vorticity (PV) in spectral coordinates at three
levels, z = 1 (200hPa), z = 2 (500 hPa) and level z = 3
(800 hPa). Numerical solutions for this paper are ob-
tained by applying a fourth-order Runge Kutta scheme
with time steps of 1/36 day. The models in this paper
are evaluated with respect to the PV in spatial coor-
dinates q(x, y, z, t) on a Gaussian grid on the Northern
hemisphere with longitudes x and lattitudes y recorded
at times t with intervals of 1 day.

The assumed ground truth is truncated at T42, leading
to 5544 degrees of freedom. The three imperfect models
are truncated at T21, with 1449 degrees of freedom. In
addition to the reduction in complexity, the imperfect
models differ from the ground truth in the values of a
number of model parameters. These parameters, their
ground truth value and perturbed values are listed in
Tables V and VI. A detailed description of how these
parameters enter the equations is given in the appendix.
As in Schevenhoven et al.17, these perturbations were
created such that each of the ground truth parameters
is somewhat in the middle of the perturbed imperfect
model parameters. Ground truth as well as imperfect
models contain PV source terms that are fitted to the
mean of an observational winter climatology data set.

B. Simulations and Results

In our experiments with QG3, supermodels are defined
by non-negative weights per level wµz , for the levels z =
1, 2, 3. Again weights normalize to one when summed
over the imperfect models,

∑
µ w

µ
z = 1. So with three

levels and three imperfect models, we have 9 weights.
Due to normalization constraints there are 6 degrees of
freedom in the weights.

The supermodel approach is applied to the discretized
equations that form a set of coupled ODE’s, but in terms
of the PDE (Eq.A.6 of the appendix) the supermodel

TABLE V. Parameters that are perturbed and their interpre-
tation

τE Time scale in days of the Ekman damping (linear
damping on vorticity at lowest level)

α1 Parameter of the land-sea mask dependent Ekman
damping (more friction over land)

α2 Parameter of the orography dependent Ekman
damping (more friction over steep slopes)

τR Time scale of the radiative cooling of temperature
in days

τh Time scale in days of the scale selective horizon-
tal diffusion at the three levels for the smallest
wavenumber

ph Power of the laplacian for the scale selective diffu-
sion, the higher the more the damping is restricted
to the smallest waves

h0 Scale height of the topography in km
R1 Rossby radius of deformation of the 200-500 hPa

layer (in earth radius units)
R2 Rossby radius of deformation of the 500-800 hPa

layer (in earth radius units)

TABLE VI. Parameter settings of T42 assumed ground truth
GT and three T21 imperfect models M1, M2, M3

GT M1 M2 M3

τE 3.0 2.0 4.0 4.0
α1 0.5 0.2 0.8 1.0
α2 0.5 0.2 0.3 0.1
τR 25 40 20 30
τh 3.0 5.0 4.0 2.0
ph 4.0 4.0 2.0 3.0
h0 3.0 9.0 5.0 2.0
R1 0.110 0.115 0.120 0.100
R2 0.070 0.072 0.080 0.060

t=
1
0
0

t=
5
0
0

FIG. 4. Potential vorticity fields at different levels and dif-
ferent times in assumed ground truth T42 model. From left
to right: 800 hPa, 500 hPa and 200 hPa level. Top: t = 100.
Bottom: t = 500. Note: different grey scales at different
levels
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equations are given by

∂qs1
∂t

=
∑
µ

wµ1

[
−vµ

ψµ1
· ∇qs1 −D

µ
1 (ψµ1 , ψ

µ
2 ) + Sµ1

]
∂qs2
∂t

=
∑
µ

wµ2

[
−vµ

ψµ2
· ∇qs2 −D

µ
2 (ψµ1 , ψ

µ
2 , ψ

µ
3 ) + Sµ2

]
∂qs3
∂t

=
∑
µ

wµ3

[
−vµ

ψµ3
· ∇qs3 −D

µ
3 (ψµ2 , ψ

µ
3 ) + Sµ3

]
(19)

Please consult the appendix for a detailed explanation of
the symbols. Note that the velocity fields vµ

ψµi
and cor-

responding streamfunction fields ψµi are calculated from
the supermodel PV fields qsi by a linear transformation
that is different in each imperfect model due to perturbed
parameter values.

We assume that we are mostly interested in the vari-
ability of the PV fields. Therefore we consider only op-
timized supermodels SUMO(E) and SUMO(U), in which
E is the one-day-ahead prediction error and U the spa-
tially averaged difference in variance in the PV fields of
model and ground truth.

The training set to optimize the supermodels is ob-
tained from the T42 ground truth model that is run for
a period of 1000 days, of which the first 100 days serve
as a transient, after which a training set of 900 days is
recorded at intervals of 24 hours. To evaluate the re-
sults, three test sets are obtained by continuing the T42
model and recording PV fields from day 1101 to 2000,
2101 to 3000 and 3101 to 4000 respectively, again at in-
tervals of 24 hours. In Fig. 4, the variability of the PV
field q(x, y, z, t) is illustrated by snapshots of the field at
two different times. To generate these and other plots of
spatial fields, as well as to compute the statistics of these
fields that will be outlined below, the GrADS software
package37 has been used.

To evaluate the (super) model prediction error E, the
potential vorticity fields (in spectral form) are projected
to the wave numbers needed to obtain a T21 spectral
representation. From the first day to the 899th day of the
data set, these projected T42 states are used to initialize
the T21 supermodel. Then the T21 model is run 899
times for 24 hours to predict the next day. The resulting
predicted T21 states for the second towards the 900-th
day are compared with the actual T42 states of these
days, regridded to T21. The prediction error E is the
root mean squared difference in T21 predicted and T42
actual state, evaluated in spatial coordinates.

To evaluate the attractor error U , the variance of PV
in spatial coordinates over the period of T = 900 days is
computed,

m(x, y, z) =
1

T

∑
t

q(x, y, z, t) (20)

σ2(x, y, z) =
1

T

∑
t

(q(x, y, z, t)−m(x, y, z))2 (21)

These are computed from the T42 ground truth data set
and in a similar way for the models and supermodels, also

G
T

M
1

M
2

M
3

FIG. 5. Standard deviations of potential vorticity fields in
ground truth T42 model and imperfect T21 models. From
left to right: 800 hPa, 500 hPa and 200 hPa level. From top
to bottom T42 ground truth GT, imperfect T21 models M1,
M2, M3. Note: different grey scales at different levels

based a simulation of sets of 900 days recorded data. To
compare the statistics of T42 and T21, the T42 variances
are mapped onto a the T21 grid. The attractor error U is
the difference in the variances, averaged over the spatial
grid and the three levels.

For illustration, level-wise standard deviation fields
σ2(x, y, z) of the three imperfect models and ground
truth are plotted in Fig. 5. In particular the sharp pen-
tagonal region of high variability at mid-latitutes at z = 3
seems difficult to capture by the T21 models. Although
the variability of model 1 seems to be globally the closest
to the ground truth, each of the imperfect models seems
to have some local features of variability in which they
match the ground truth the best. The idea of the super-
model approach is to combine the models in such a way
that these strengths are combined.

To train the supermodels, we used data from the T42
training set. For the training of SUMO(E), the error
E of the supermodel is straightforwardly evaluated as
described above. For the training of SUMO(U), at each
iteration in the optimization procedure the supermodel
is randomly initialized and run for a period of 1000 days
of which the the last 900 days are recorded, which are
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TABLE VII. Normalized errors E and U (both ×107) for the
different models and supermodels. Quantities are based on
three separate (test) runs of the imperfect models M1, M2,
M3, and supermodels SUMO(E) and SUMO(U). In the last
two columns, the values of U (×107) according to the non
interactive posterior ensemble of the three imperfect models
PE and according to the T42 ground truth GT are included
for comparison. The value according to the T42 ground truth
GT is the based on three independent runs of T42 compared
to each other.

M1 M2 M3 SUMO(E) SUMO(U) PE GT

E 159(2) 159(2) 162(2) 151(2) 154(2) - -
U 63(2) 88(2) 122(2) 105(5) 53(1) 69(1) 21(1)

used to evaluate the error U .
To evaluate the test error E, we used the three test sets

from the ground truth. With these sets the error E of
the three models and two supermodels is evaluated three
times as described above. To evaluate the test error U ,
the three models and two supermodels are run up to day
4000, recording data from day 1101 to 2000, 2101 to 3000
and 3101 to 4000 respectively and compared with the T42
data recorded during the same time intervals. In this way
the error U is evaluated three times. In the remainder
of the paper, test errors are normalized, i.e., we report
root mean squared errors instead of root sum squared
errors. Mean and standard deviation of the normalized
test errors E and U are displayed in Table VII.

As a reference, we computed the error U for the ground
truth based on the difference in variance of PV in the
three ground truth test sets. The result, displayed in the
last column in Table VII, confirms that this error is rela-
tively small compared to the other U -errors, which is an
indication that the tuning of SUMO(U) makes sense and
is not overfitting to random fluctuations of the ground
truth.

Finally, we computed the error U for the non inter-
active posterior ensemble (PE) of the three imperfect
models. The variance of the PV in the non interactive
ensemble e that is needed to evaluate U is obtained by
computing at each level the variance over time and mod-
els,

me(x, y, z) =
1

MT

∑
µ,t

qµ(x, y, z, t) (22)

σ2
e(x, y, z) =

1

MT

∑
µ,t

(qµ(x, y, z, t)−me(x, y, z))
2 (23)

For illustration, level-wise spatial distributions of the
local attractor error u of (super) model m compared to
ground truth gt

u(x, y, z) = |σm(x, y, z)− σgt(x, y, z)| (24)

are plotted in Fig. 6. Note that the normalized error U
is the root mean squared value of u. Plotted results are
based on the first test set from day 1101 to 2000 of both
model and ground truth.

As a reference, we also plotted u of ground truth
against ground truth (Fig. 6, last row labeled by GT).
For these plots, the time periods 1101 to 2000 and 2101
to 3000 were used. The relatively small error field in the
GT plots indicate that the time periods were sufficiently
long for a consistent estimate of the level-wise spatial dis-
tribution of standard deviation in the potential vorticity.

Results in table Table VII show that model M1 has
indeed the smallest global attractor error U among the
imperfect models. Short-term prediction errors of the
three imperfect models are about the same.

With regard to question 1, we see that SUMO(E) in-
deed improves the short-term prediction error, as ex-
pected, but deteriorates the attractor error U . The at-
tractor error of SUMO(E) is worse than the average at-
tractor error of the imperfect models. With regard to
question 2, we see that this can be remedied by direct op-
timization of the attractor error. SUMO(U) has a signifi-
cantly lower attractor error U than the imperfect models,
and as a (lucky) by-product, also a smaller short-term
prediction error than each of the imperfect models.

If we look in more detail to the level wise spatial dis-
tributed error u, we see that SUMO(U) is not at every
location the best model. For example at the 200 hPa
level, the models M2 and M3 seem to perform a bit bet-
ter in the polar area. If one would be interested in im-
provements in particular local areas, a straightforward
method would be to put larger weights on the error in
these areas in the training procedure. This is not further
investigated in this paper.

VI. DISCUSSION

Supermodeling is a modeling approach for complex dy-
namical systems. Its main idea is that it uses existing
good, but imperfect models and combines them into one
supermodel. The advantage of this approach is that it
starts from existing models that were developed by do-
main experts, while conventional machine learning us-
ing e.g. general basis functions, starts from scratch. Al-
though the supermodel concept is originally formulated
in the context of climate science, the concept is in princi-
ple applicable to any domain involving modeling of com-
plex dynamical systems.

The supermodel concept is originally formulated as a
model consensus state by synchronization in an inter-
active ensemble of connected imperfect models. To get
meaningful predictions, the connections in the interactive
ensemble need to be optimized based on data. For the
models to synchronize, large connections are needed. In
the limit of large connections, perfect synchronization is
obtained. The dynamics of the synchronized supermodel
can be described in terms of a weighted sum of imperfect
model dynamics. If we stay in this limit, the synchro-
nized connected supermodel is described by the weighted
supermodel, in which the weights are the parameters to
be optimized. Since we were in primary interested in
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FIG. 6. Level-wise spatially distributed errors u, i.e., distri-
butions of error in standard deviations in potential vorticity
fields between various (super) model instances and assumed
ground truth. From left to right: 800 hPa, 500 hPa and 200
hPa level. From top to bottom: imperfect models M1, M2,
M3, supermodels SUMO(E), SUMO(U), non interactive pos-
terior ensemble of the three imperfect models PE, indepen-
dent T42 ground truth run GT. Same grayscale for all levels
and models

the completely synchronized regime, we have restricted
ourselves in this paper to weighted supermodels and con-
jecture that results generalize to connected supermodels
as long as their dynamics is sufficiently synchronized.

In simulations, supermodels have been studied in the
perfect model class scenario, where ground truth and
model differ only in their parameters, but not in model
class. If in this scenario, the supermodel can exacly
match the ground truth, the optimization of short-term
prediction error is sufficient to tune the supermodel suf-
ficiently well to get long-term behavior matched as a by-
product. An example of such a case is the Lorenz 63
problem described in section III.

The imperfect model class scenario where ground truth
and model differ not only in their parameters, but also in
model class is more realistic. In reality, it is reasonable
to assume that the ground truth is more complex than
the imperfect model class, in particular due to unresolved
scales in the imperfect models.

Our first question was if we still can trust that in the
imperfect model class scenario supermodels optimized for
short-term prediction have favourable long-term attrac-
tor behavior as a by-product. If not, then the second
question is if this is due to the supermodel concept that
fails in the imperfect model scenario, or if this can reme-
died by some other kind of optimization.

We introduced attractor errors to measure the quality
of long-term behavior. Our approach was to use these er-
ror measures for optimization as well, leading to a kind of
attractor learning. Attractor learning is used as a some-
what brute force method to train supermodels to repro-
duce desired long-term behavior.

An issue with our attractor learning approach is the
computational cost of training the supermodels. This is
partially resolved by using Bayesian optimization, which
is an efficient minimization procedure for cost functions
that are expensive to evaluate.

We have first investigated our questions in a driven
Lorenz 63 constructed toy problem, where the ground
truth has six degrees of freedom, of which there are three
observable. The imperfect models have only three de-
grees of freedom, corresponding with the observables.
The hidden variables, which drive the visible variables
in the ground truth system, serve as unresolved scales.

In the driven Lorenz 63 toy problem, we find that the
first question is answered negatively. No, optimization of
supermodels for short-term prediction does not guarantee
favourable long-term attractor behavior as a by-product.
The second question is answered positively. Yes, attrac-
tor learning can be applied, which sometimes can lead
to reasonable short-term prediction performance as by-
product. However the by-product for free is not guaran-
teed.

The differences in the long-term behavior of the super-
models in the driven Lorenz 63 toy problem were actually
quite extreme. The question is whether this observed be-
havior is atypical, due to e.g. the extreme sensitivity of
the attractor to parameter perturbations in the Lorenz 63
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system (small parameter perturbations can lead to very
different attractors), or that the sub-optimal long-term
behavior of supermodels trained on short-term predic-
tions is to be expected in more realistic settings?

We therefore investigated these questions also in a
more realistic setting with a model that is often studied
in the atmospheric sciences literature. This model solves
the quasi-geostrophic atmospheric flow equations on a
sphere at three vertical levels and simulates quite realis-
tically the winter-time atmospheric flow in the Northern
Hemisphere with multiple weather regimes that are also
found in observations. In a perfect model class scenario
with this QG3 model run at a spatial resolution corre-
sponding to a spectral truncation of the meteorological
fields at total wavenumber 21 as ground truth and im-
perfect models with different parameter setting at the
same T21 resolution, supermodels optimized for short-
term prediction showed some very good climatological
properties17.

In our imperfect model class scenario, with a T42 trun-
cated ground truth and T21 truncated imperfect mod-
els with different parameter setting, supermodel learning
optimized for short-term prediction showed rather poor
performance in the climatological behavior in terms of
our attractor error. Thus the first question is again an-
swered negatively in this more realistic setting. Also the
second question is again answered positively: Yes, at-
tractor learning can be applied and reduces the attractor
error. Moreover, the supermodel optimized by attractor
learning showed a reasonable prediction performance as
a lucky by-product.

The first conclusion is that when the supermodel ap-
proach is applied to real data, one cannot expect that
a supermodel optimized for short-term prediction au-
tomatically shows favourable long-term behavior as by-
product. On the other hand, our results also show
that other optimization criteria can produce supermodels
which do not only perform favourably in these optimized
criteria, but also may show favourable performance with
respect to other criteria as a by-product.

There are still many open issues. Supermodels that
perform well in other aspects than optimized for may
be more trustworthy than models that only perform well
in the criterium for which they are optimized. It cannot
be excluded that with some clever modifications, a short-
term prediction optimization strategy might mitigate the
attractor problems. For example, the synchronization-
based learning and the cross-pollination in time based
learning might be more successful in the imperfect model
scenario of QG3 of this study to produce supermodels
with small attractor errors. How to find criteria and/or
algorithms that lead to the best by-products, both in
quantity and relevance, remains an open question. An-
other question is what can be learned from the perfor-
mance of a set of supermodels, each of which is trained
according to a different error measure Ui. Does the ma-
trix of errors SUMOi(Uj) reveal useful information about
the system, the model class of imperfect models or pro-

vide guidance for the construction of more optimal su-
permodels?

Finally, as a by-product of this research, we were ac-
tually quite happy with the performance of the Bayesian
optimization procedure. We expect that developments
in efficient optimization methods like these can be very
useful if supermodels are to be applied to real complex
modeling.
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Appendix: Derivation of the quasi-geostrophic model

Conservation of momentum on a rotating sphere and
the first law of thermodynamics result in the standard
filtered partial differential equations describing the tem-
poral evolution of vorticity and temperature suitable to
study the dynamics of atmospheric flow at mid-latitudes

∂

∂t
ζ = −vψ · ∇(ζ + f) + f0

∂ω

∂p
(A.1)

∂

∂t

∂Φ

∂p
= −vψ · ∇

∂Φ

∂p
− σω (A.2)

Relative vorticity ζ is defined as the rotation of the
horizontal wind ∇ × v with v = (u, v), u the east-
west and v the north-south component of the wind,
∇ = 1

r ( 1
cosφ

∂
∂λ , cosφ ∂

∂µ ), λ the geographic longitude and

µ the sine of the geographic latitude φ, r the average ra-
dius of the Earth, vψ the rotational part of the wind field
that can be written in terms of the streamfunction ψ as
vψ = k ×∇ψ with k the vertical unit vector. The cori-
olis parameter f = 2Ω sinφ, with Ω the angular velocity
of the earth, describes the contribution of the Earth’s
rotation to the vorticity of an air parcel at latitude φ
and f0 is its value at a particular reference latitude. It
is also referred to as planetary vorticity. Pressure p is
used as a vertical coordinate, ω is the pressure veloc-
ity which is defined as the Lagrangian rate of change of
pressure with time. The vorticity equation states that
the local rate of change of vorticity is due the horizon-
tal advection of relative and planetary vorticity plus the
generation of vorticity due to vertical stretching. Forcing
and dissipation terms have been omitted for simplicity.
Temperature is written as the pressure derivative of the
geopotential Φ under the assumption of hydrostatic bal-
ance and application of the ideal gas law. Hydrostatic
balance states that the pressure is equal to the weight of
the atmospheric column above

dp = −ρgdz ≡ −ρdΦ (A.3)

where g denotes the gravitational acceleration, ρ the den-
sity of air and z the height. Application of the ideal gas
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law p = ρRT gives a relation between temperature and
geopotential

∂Φ

∂p
= −RT

p
(A.4)

with R the gas constant. Finally σ in the tempera-
ture equation denotes the vertical stability. The tem-
perature equation states that the local rate of change of
temperature is due to the horizontal advection of tem-
perature and adiabatic heating due to vertical displace-
ments. Combination of the vorticity and temperature
equation and using the approximate linear balance equa-
tion ∇Φ = f0∇ψ leads to a single equation for a quantity
called potential vorticity (PV) that is conserved following
the motion in the absence of forcing and dissipation(

∂

∂t
+ vψ · ∇

)(
ζ + f + f2

0

∂

∂p
σ−1 ∂Φ

∂p

)
= 0 (A.5)

The quasi-geostropic model solves this partial differential
equation in a finite state space with vorticity defined at
discrete pressure levels 200 (level 1), 500 (level 2) and the
800 hPa level (level 3) and temperature at 650 and 350
hPa

∂q1

∂t
= −vψ · ∇q1 −D1(ψ1, ψ2) + S1

∂q2

∂t
= −vψ · ∇q2 −D2(ψ1, ψ2, ψ3) + S2

∂q3

∂t
= −vψ · ∇q3 −D3(ψ2, ψ3) + S3, (A.6)

where the index i = 1, 2, 3 refers to the pressure level.
Here PV is defined as

q1 = ∇2ψ1 −R−2
1 (ψ1 − ψ2) + f

q2 = ∇2ψ2 +R−2
1 (ψ1 − ψ2)−R−2

2 (ψ2 − ψ3) + f

q3 = ∇2ψ3 +R−2
2 (ψ2 − ψ3) + f(1 +

h

h0
), (A.7)

where R1 (=700 km) and R2 (=450 km) are Rossby radii
of deformation appropriate to the 200-500 hPa layer and
the 500-800 hPa layer, respectively and h0 is a scale
height set to 3000 m and h the height of the topography.
The topography term has entered the equation through
the lower boundary condition where flow over mountains
lead to vertical displacement of air and the generation of
vorticity through stretching. In the horizontal the equa-
tions are solved by a Galerkin projection of Eqs. (A.6)
onto a basis of spherical harmonics

Ym,n(λ, µ) = Pm,n(µ)eimλ (A.8)

where Pm,n(µ) denote associated Legendre polynomials
of the first kind, m the zonal wavenumber and n the total
wavenumber. The spherical harmonics are eigenfunctions
of the Laplace operator:

∆Ym,n(λ, µ) = −n(n+ 1)Ym,n(λ, µ) (A.9)

A triangular truncation of this expansion at total
wavenumber 21 (0 < n < 21,−n < m < n) leads to
a system of 1449 coupled ordinary differential equations
for the 483 coefficients of the spherical harmonical func-
tions at the three levels. For T42 the system has 5544
equations. In Eqs. (A.6), D1, D2, D3 are linear opera-
tors representing the effects of Newtonian relaxation of
temperature (R), Ekman dissipation of vorticity due to
linear drag on the 800 hPa wind (with drag coefficient
depending on the nature of the underling surface) (E),
and horizontal diffusion of vorticity (D)

−D1 = R12 −D1 (A.10)

−D2 = −R12 +R23 −D2 (A.11)

−D3 = −R23 − E3 −D3 (A.12)

The term

R12 = τ−1
R R−2

1 (ψ1 − ψ2) (A.13)

describes the effect of temperature relaxation between
levels 1 and 2 due to radiative cooling, with a radiative
time scale τR = 25 days; the corresponding term for tem-
perature relaxation between levels 2 and 3 is

R23 = τ−1
R R−2

2 (ψ2 − ψ3) (A.14)

The Ekman dissipation is given by

E3 = k ×∇cd(λ, φ, h)v (A.15)

The drag coefficient cd is dependent on the land-sea mask
and the orographic height

cd(λ, φ, h) = τ−1
E [1 + α1M(λ, φ) + α2Hd(h)] (A.16)

with the time scale of the Ekman damping τE = 3 days,
α1 = α2 = 0.5; M(λ, φ) is the fraction of land within a
grid box; and

Hd(h) = 1− e− h
1000 (A.17)

Since M and Hd vary between 0 and 1, cd varies between
(3 days)−1 over the oceans, (2 days)−1 over zero alti-
tude land and about (1.5 days)−1 over mountains higher
than 2000 m. Finally, at each pressure level, the time-
dependent component of PV q′i (i.e. PV minus planetary
vorticity and orographic component) is subject to a scale-
selective horizontal diffusion

Di = ch∇phq′i (A.18)

where the coefficient

ch = τ−1
h rph(21 · 22)−

ph
2 (A.19)

With the power ph set to 4 ch is such that spherical
harmonics of total wavenumber 21 are damped with
time scale τh = 2 days. The PV source terms Si in Eqs.
(A.6) are calculated from observations as the opposite
of the time-mean PV tendencies obtained by inserting
observed daily winter time stream function fields into
Eqs. (A.6) with the PV source terms set to zero.
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