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In	
   this	
   lecture	
  we	
  will	
  be	
   looking	
  at	
  neural	
  models	
  at	
  various	
   levels	
  of	
   complexity	
  
and	
  arrive	
  at	
  a	
  simple,	
  computationally	
  effective	
  model	
  for	
  representing	
  the	
  variety	
  
of	
  spike	
  patterns	
  of	
  neurons.	
  We	
  follow	
  the	
  discussion	
  in	
  the	
  Izhikevich	
  book	
  [1].	
  
	
  
	
  
The	
   simplest	
   spiking	
   model	
   is	
   the	
   leaky	
   integrate	
   and	
   fire	
   (LIF)	
   neuron.	
   The	
  
membrane	
  potential	
  is	
  given	
  by	
  the	
  following	
  equation	
  

€ 

C ˙ V = −gL (V − EL ) + I 	
  
together	
  with	
  the	
  prescription	
  that	
  when	
  V	
  crosses	
  the	
  threshold	
  value	
  Vthr	
  (typical	
  
value	
   -­‐50	
  mV),	
  a	
  spike	
   is	
  called	
  and	
   it	
   is	
   reset	
   to	
  Vreset	
   (typical	
  value	
   -­‐65	
  mV).	
  The	
  
parameters	
   in	
   these	
   equations	
   are	
   the	
   capacitance	
   C	
   (typical	
   value	
   300	
   pF),	
   leak	
  
conductance	
  gL	
   	
   (typical	
  value	
  10	
  nS),	
   reversal	
  potential	
  EL	
   (typical	
  value	
   -­‐60	
  mV),	
  
depolarizing	
  current	
  I	
  (in	
  the	
  nA	
  range).	
  	
  This	
  leads	
  a	
  time	
  scale	
  RC=C/gL	
  of	
  about	
  30	
  
ms,	
  which	
  is	
  representative	
  for	
  pyramidal	
  cells.	
  
	
  
We	
   can	
   perform	
   a	
   dynamical	
   analysis	
   on	
   this	
  
equation	
   as	
   before	
   by	
   setting	
   the	
   time	
   derivative	
   to	
  
zero:	
  

€ 

C ˙ V = 0⇒ I − gL (V − EL ) = 0 	
  which	
  gives	
  a	
  fixed	
  
point	
   value	
   of	
   VFP=(I/gL	
   +EL).	
   The	
   stability	
   of	
   this	
  
point	
   is	
   given	
   by	
   the	
   derivative	
   f(V)=-­‐gL,	
   which	
   is	
  
always	
  negative,	
  hence	
  this	
  FP	
  is	
  stable.	
  When	
  VFP	
  is	
  
lower	
  than	
  Vthr,	
  the	
  neuron	
  will	
  not	
  spike	
  because	
  the	
  
membrane	
  potential	
  will	
  be	
  stuck	
  at	
  the	
  fixed	
  point.	
  If	
  
it	
   is	
   higher	
   the	
   neuron	
   will	
   go	
   through	
   threshold	
  
before	
  reaching	
  the	
  fixed	
  point,	
  and	
  at	
  that	
  point	
  it	
  will	
  be	
  reset	
  to	
  Vreset	
  after	
  which	
  
the	
  cycle	
  starts	
  again	
  (the	
  membrane	
  potential	
  will	
  again	
  increase	
  towards	
  VFP	
  and	
  
hit	
  threshold).	
  A	
  periodic	
  sequence	
  of	
  spikes	
  will	
  result	
  (Figure	
  0).	
  One	
  can	
  interpret	
  
this	
  behavior	
  as	
  a	
  limit	
  cycle.	
  	
  
	
  
Self-­test	
  1:	
  What	
  is	
  the	
  mean	
  firing	
  rate	
  of	
  such	
  a	
  neuron	
  as	
  a	
  function	
  of	
  I?	
  
	
  
In	
   the	
   Hodgkin-­‐Huxley	
   model,	
   the	
   leak	
   current	
   is	
   augmented	
   with	
   terms	
  
representing	
   voltage-­‐activated	
   channels.	
   To	
   see	
   what	
   this	
   does,	
   we	
   start	
   by	
  
including	
  one	
  current:	
  

€ 

C ˙ V = −gL (V − EL ) − gp(V − E) + I 	
  
with	
  

€ 

˙ p = (p∞(V ) − p) /τ(V ).	
  
Here	
   g	
   is	
   the	
   maximum	
   conductance	
   when	
   all	
   the	
   channels	
   are	
   open,	
   and	
   p	
  
represents	
   the	
   fraction	
   of	
   them	
   that	
   are	
   open	
   at	
   a	
   particular	
   time.	
   For	
   a	
   constant	
  
membrane	
  potential	
  V,	
  this	
  fraction	
  converges	
  to	
  

€ 

p∞(V )	
  with	
  a	
  time	
  constant	
  

€ 

τ(V ).	
  
To	
  make	
   the	
  analysis	
   simpler,	
  we	
  assume	
   that	
   the	
  voltage	
  varies	
   at	
   a	
   slower	
   time	
  
scale	
   compared	
   to	
   the	
   time	
   scale	
   of	
   the	
   p	
   dynamics,	
   so	
   that	
   we	
   can	
   use	
   the	
  
asymptotic	
  value	
  for	
  the	
  latter:	
  

€ 

C ˙ V = −gL (V − EL ) − gp∞(V )(V − E) + I = I − I∞(V ) 	
  

Figure	
  0.	
  Leaky	
  integrate-­‐
and-­‐fire	
  neuron	
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For	
  persistent	
  sodium	
  we	
  have	
  E=60	
  mV	
  and	
  

€ 

p∞(V ) =
1

1+ e−(V −V1/2 ) / k
	
  

(note	
  that	
  the	
  convention	
  is	
  to	
  use	
  m	
  as	
  the	
  symbol	
  for	
  persistent	
  sodium	
  instead	
  of	
  
p,	
  in	
  our	
  example	
  we	
  set	
  the	
  midpoint	
  V1/2	
  to	
  -­‐54mV	
  and	
  k	
  is	
  9mV).	
  
	
  
	
  
Figure	
  1	
  shows	
  the	
  activation	
  function	
  

€ 

m∞ 	
  as	
  a	
  
function	
  of	
  V.	
  The	
  channel	
  opens	
  when	
  the	
  voltage	
  
exceeds	
  -­‐54	
  mV,	
  and	
  because	
  it	
  does	
  not	
  inactivate	
  it	
  
stays	
  open.	
  
	
  

Figure	
  2	
  shows	
  

€ 

I∞(V ) 	
  as	
  
a	
  sum	
  of	
  the	
  linear	
  leak	
  
current	
  (leak)	
  and	
  the	
  nonlinear	
  persistent	
  sodium	
  
(Na-­‐P)	
  current.	
  
	
  
Figure	
  3	
  shows	
  

€ 

F(V ) = I − I∞(V ) 	
  for	
  three	
  different	
  
values	
  of	
  I.	
  The	
  fixed	
  points	
  are	
  defined	
  by	
  the	
  solution	
  
to	
  F(V)=0,	
  because	
  then	
  the	
  voltage	
  does	
  not	
  change	
  
anymore	
  in	
  time.	
  Depending	
  on	
  the	
  value	
  of	
  I	
  there	
  are	
  
either	
  1	
  or	
  3	
  V	
  
values	
  for	
  which	
  this	
  

holds.	
  The	
  stability	
  of	
  the	
  fixed	
  points	
  is	
  
determined	
  by	
  the	
  derivative	
  of	
  F(V)	
  at	
  the	
  fixed	
  
point.	
  Negative	
  means	
  stable,	
  this	
  is	
  indicated	
  by	
  
the	
  direction	
  of	
  tangent.	
  For	
  the	
  highest	
  current	
  
value,	
  there	
  is	
  only	
  a	
  stable	
  high	
  voltage	
  FP,	
  
whereas	
  for	
  the	
  lowest	
  current	
  there	
  is	
  only	
  a	
  
stable	
  low	
  voltage	
  FP.	
  	
  
	
  

Figure	
  4:	
  For	
  an	
  
intermediate	
  current	
  
value	
  there	
  is	
  a	
  low	
  and	
  
high	
  voltage	
  stable	
  FP	
  and	
  
an	
  intermediate	
  voltage	
  
unstable	
  FP.	
  	
  
	
  
Figure	
  5.	
  The	
  unstable	
  FP	
  
acts	
  as	
  a	
  separatrix.	
  When	
  a	
  

voltage	
  starts	
  below	
  the	
  unstable	
  FP,	
  it	
  will	
  converge	
  to	
  
the	
  low-­‐V	
  stable	
  FP,	
  whereas	
  when	
  it	
  starts	
  above	
  the	
  
unstable	
  FP	
  will	
  converge	
  to	
  the	
  high-­‐V	
  stable	
  FP.	
  
Hence,	
  one	
  could	
  view	
  the	
  voltage	
  value	
  for	
  the	
  
unstable	
  FP	
  as	
  the	
  action	
  potential	
  threshold.	
  	
  	
  

Figure	
  1.	
  Activation	
  function	
  

Figure	
  2.	
  Currents	
  charging	
  
the	
  membrane	
  are	
  
comprised	
  of	
  a	
  leak	
  and	
  
persistent	
  sodium	
  current.	
  

Figure	
  3.	
  The	
  number	
  of	
  zeros	
  of	
  
F(V)	
  depends	
  on	
  current	
  offset.	
  

Figure	
  4.	
  Stability	
  of	
  FP	
  
for	
  I=-­‐200.	
  

Figure	
  5.	
  Convergence	
  to	
  
stable	
  FPs	
  (filled	
  circles)	
  
away	
  from	
  the	
  unstable	
  
FP	
  (open	
  circle).	
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Figure	
   6.	
   The	
   behavior	
   as	
   a	
   function	
   of	
   I	
   can	
   be	
  
summarized	
   in	
   a	
   bifurcation	
   diagram	
   where	
   the	
  
voltage	
  value	
  of	
   the	
  FPs	
   is	
  plotted	
   for	
  each	
  value	
  of	
  V,	
  
with	
  their	
  stability	
  indicated	
  by	
  the	
  line	
  style	
  (unstable:	
  
dashed,	
   stable:	
   solid	
   line).	
   	
   From	
   this	
   we	
   recover	
   the	
  
features	
   shown	
   in	
  Figure	
  3:	
   low	
   I	
   and	
  high	
   I	
   only	
  one	
  
stable	
   FP	
   and	
   for	
   intermediate	
   I	
   values,	
   2	
   stable	
   FPs	
  
and	
  1	
  unstable	
  FP.	
  
	
  
	
  
Although	
   the	
   one-­‐dimensional	
   model	
   has	
   something	
  

like	
   an	
   action	
   potential	
   threshold,	
   is	
   does	
   not	
   have	
   an	
   action	
   potential.	
   Once	
   the	
  
neuron	
   is	
   in	
   the	
   high	
   voltage	
   FP	
   it	
  will	
   stay	
   there.	
   For	
   action	
   potentials,	
  we	
   need	
  
limit	
   cycles,	
   hence	
   a	
   two-­‐dimensional	
   model	
   such	
   as	
   the	
   Morris-­‐Lecar	
   model	
  
introduced	
  earlier.	
  We	
  need	
  to	
  take	
  a	
  gating	
  variable	
  as	
  the	
  second	
  variable	
  and	
  we	
  
need	
  another	
  current	
  to	
  counterbalance	
  the	
  sodium	
  current	
  that	
  generates	
  the	
  high-­‐
voltage	
  stable	
  FP.	
  The	
  potassium	
  current	
  will	
  return	
  the	
  neuron	
  to	
  near	
  the	
  resting	
  
potential,	
   in	
  a	
  way	
  similarly	
   to	
   the	
   resetting	
   in	
   the	
   leaky	
   integrate-­‐and-­‐fire	
  model.	
  
The	
   assumption	
   is	
   that	
   the	
   sodium	
   current	
   is	
   fast,	
   hence	
   that	
   the	
   slower	
   gating	
  
variable	
  n	
  of	
  the	
  potassium	
  current	
  is	
  the	
  second	
  variable.	
  This	
  variable	
  activates	
  for	
  
high	
  voltage	
  values.	
  
	
  

€ 

C ˙ V = I − gL (V − EL ) − gNam∞(V )(V − ENa ) − gK n(V − EK ) 	
  
	
  

€ 

˙ n = (n∞(V ) − n) /τ(V ) 	
  
	
  
Note:	
  for	
  numerical	
  exploration	
  you	
  can	
  use,	
  in	
  standard	
  units,	
  C=1,	
  EL=-­‐80,	
  gL=8,	
  
gK=10;	
  V1/2=-­‐20,	
  k=15	
  for	
  m∝(V);	
  V1/2=-­‐25,	
  k=5	
  for	
  n(V)	
  and	
  τ=1,	
  ENa=60,EK=-­‐90.	
  	
  
	
  
To	
  understand	
  the	
  resulting	
  limit	
  cycle,	
  we	
  need	
  to	
  construct	
  the	
  null	
  clines.	
  The	
  
first	
  one,	
  

€ 

˙ V = 0 	
  yields	
  

€ 

n = f (V )	
  whereas	
  the	
  second	
  one	
  yields	
  

€ 

n = n∞(V ) .	
  	
  Note	
  that	
  
	
  

	
  
The	
   details	
   of	
   these	
   functions	
   are	
   not	
   relevant	
   except	
  
for	
   their	
   typical	
   shape.	
   The	
   first	
   one	
   is	
   similar	
   to	
   the	
  
case	
   discussed	
   before,	
   and	
   can	
   be	
   approximated	
   by	
   a	
  
cubic	
  polynomial,	
  whereas	
  the	
  second	
  one	
  is	
  sigmoidal.	
  
These	
   null	
   clines	
   are	
   sketched	
   in	
   Figure	
   7.	
   There	
   is	
   a	
  
limit	
  cycle	
  when	
  the	
  FP	
  at	
  the	
  intersection	
  between	
  the	
  
null	
  clines	
  is	
  unstable.	
  The	
  limit	
  cycle	
  corresponding	
  to	
  
an	
   action	
   potential	
   then	
   has	
   four	
   stages.	
   I:	
   The	
  
upstroke,	
  where	
   the	
  voltage	
   increases,	
   but	
  n	
  does	
  not	
  
yet	
   increase.	
   II:	
   At	
   the	
   peak	
   the	
   n	
   gate	
   is	
   open	
   and	
  
balances	
   the	
   current	
   coming	
   in	
   through	
   the	
   sodium	
  

Figure	
  6.	
  Bifurcation	
  
diagram.	
  

Figure	
  7.	
  Phase	
  plane	
  of	
  
model	
  with	
  high	
  threshold	
  
potassium	
  current.	
  

€ 

f (V ) = (I − gL (V − EL ) − gNam∞(V )(V − ENa )) /gK (V − EK )
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channels.	
  III:	
  repolarisation,	
  the	
  potassium	
  current	
  dominates	
  and	
  brings	
  the	
  V	
  back	
  
to	
   near	
   resting	
   values;	
   IV:	
   relative	
   refractory	
   period,	
   the	
   n	
   variable	
   needs	
   to	
  
decrease	
  so	
  that	
  the	
  neuron	
  can	
  spike	
  again.	
  	
  
	
  
In	
  general	
  the	
  analysis	
  of	
  these	
  null	
  clines	
  is	
  difficult	
  and	
  it	
  is	
  helpful	
  to	
  approximate	
  
them	
  by	
   simple	
   functions	
   that	
   have	
   approximately	
   the	
   same	
   shape.	
  The	
  Fitzhugh-­‐
Nagumo	
  is	
  an	
  example	
  of	
  this	
  	
  
	
  

€ 

˙ V = V (a −V )(V −1) − w + I
˙ w = bV − cw

	
  

	
  
The	
   V	
   null	
   cline	
   is	
   replaced	
   by	
   a	
   cubic	
   polynomial	
   and	
   the	
   sigmoid	
   by	
   a	
   linear	
  
function.	
  Because	
  this	
  form	
  has	
  only	
  a	
  few	
  parameters	
  a	
  systematic	
  analysis	
  can	
  be	
  
attempted.	
  Figure	
  8	
  illustrates	
  what	
  happens	
  with	
  the	
  number	
  of	
  fixed	
  points	
  when	
  

the	
   slope	
   of	
   the	
   w	
   null	
   cline	
   is	
  
reduced	
  (by	
  reducing	
  c/b).	
  
	
  
	
  
	
  
The	
   next	
   step	
   is	
   to	
   recognize	
  
bifurcations	
   that	
   occur	
   in	
  
neuroscience	
  context.	
  	
  	
  
	
  

	
  
Case	
   1.	
   In	
   the	
   saddle-­‐node	
   bifurcation	
   a	
  
stable	
   equilibrium	
   disappears	
   in	
   the	
  
presence	
   of	
   a	
   stable	
   limit	
   cycle,	
   as	
  
illustrated	
   in	
   Figure	
   9-­‐top.	
   In	
   the	
   bottom	
  
panel,	
  the	
  voltage	
  trace	
  is	
  shown	
  when	
  the	
  
current	
   is	
   increased	
   over	
   time.	
  When	
   the	
  
voltage	
   is	
   near	
   rest,	
   and	
   the	
   current	
   is	
  
increased,	
  it	
  stays	
  near	
  rest	
  until	
  the	
  stable	
  
FP	
   defining	
   the	
   rest	
   potential	
   disappears	
  
when	
   it	
   merges	
   with	
   the	
   unstable	
   FP	
  
(saddle-­‐node).	
   At	
   this	
   point	
   the	
   neuron	
  
converges	
   to	
   the	
   stable	
   limit	
   cycle	
   and	
  

starts	
   spiking.	
   This	
   scenario	
   has	
   the	
  
following	
   properties:	
   (1)	
   no	
   subthreshold	
  
oscillations,	
   (2)	
   nonzero	
   amplitude	
   of	
   the	
  
action	
   potentials	
   after	
   the	
   bifurcation,	
   (3)	
  
firing	
   starts	
   at	
   nonzero	
   frequencies.	
   This	
  
bifurcation	
   occurs	
   at	
   I=4.51	
   in	
   the	
  
aforementioned	
  V-­‐n	
  system.	
  
	
  

	
  
Figure	
  8.	
  Number	
  of	
  fixed	
  points	
  in	
  Fitzhugh-­‐Nagumo	
  
model	
  depends	
  on	
  the	
  tangent	
  of	
  the	
  w	
  null	
  cline.	
  

Figure	
  9.	
  Saddle-­‐node	
  bifurcation,	
  outside	
  
the	
  limit	
  cycle	
  

Figure	
  10.	
  Supercritical	
  Hopf.	
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Case	
  2.	
  Supercritical	
  Hopf	
  bifurcation.	
  Below	
  the	
  bifurcation	
  point	
  there	
  is	
  a	
  stable	
  
FP	
  (an	
  inward	
  spiral),	
  which	
  bifurcates	
  into	
  an	
  unstable	
  FP	
  and	
  a	
  stable	
  limit	
  cycle,	
  
which	
   grows	
   in	
   amplitude.	
   	
   This	
   bifurcation	
   is	
   characterized	
   by	
   (1)	
   subthreshold	
  
oscillations	
   because	
   of	
   the	
   spiral,	
   (2)	
   amplitude	
   at	
   bifurcation	
   is	
   zero,	
   growing	
  
roughly	
  as	
  the	
  square	
  root	
  of	
  the	
  bifurcation	
  variable;	
  (3)	
  spiking	
  frequency	
  jumps	
  
directly	
  to	
  a	
  nonzero	
  value.	
  	
  
	
  
	
  
Case	
  3.	
  A	
  subcritical	
  Hopf	
  is	
  also	
  possible,	
  
but	
  does	
  not	
   change	
  much.	
   Initially,	
   there	
  
is	
  a	
  stable	
  FP,	
  inside	
  an	
  unstable	
  LC,	
  which	
  
itself	
  is	
  inside	
  a	
  stable	
  LC	
  (this	
  needs	
  to	
  be	
  
the	
   case	
   for	
   stability	
   reasons,	
   otherwise	
  
the	
   system	
   will	
   diverge	
   for	
   some	
   initial	
  
condition.	
   The	
   radius	
   of	
   the	
   unstable	
   LC	
  
will	
   shrink	
  until	
   it	
  merges	
  with	
   the	
  stable	
  
FP.	
   At	
   the	
   point	
   all	
   that	
   remains	
   is	
   an	
  
unstable	
   FP,	
   together	
   with	
   the	
   stable	
   LC.	
  
Hence,	
   the	
   neuron	
  will	
   jump	
   from	
   its	
   rest	
   potential	
   directly	
   to	
   a	
   finite	
   amplitude	
  
periodic	
   spike	
   train.	
   The	
   bifurcation	
   has	
   the	
   following	
   features:	
   (1)	
   subthreshold	
  
oscillations,	
   (2)	
   firing	
   starts	
   at	
   a	
  non-­‐zero	
  amplitude,	
   (3)	
   spiking	
   frequency	
   jumps	
  
directly	
  to	
  a	
  nonzero	
  value.	
  
	
  
Case	
   4.	
   A	
   saddle-­‐node	
   on	
   an	
   invariant	
   circle	
  
(SNIC).	
   Initially	
   there	
   is	
   a	
   heteroclinic	
   orbit	
  
from	
   the	
   unstable	
   FP	
   to	
   the	
   stable	
   FP,	
   going	
  
around	
   the	
   high-­‐V	
   unstable	
   FP.	
   The	
   unstable	
  
and	
   stable	
   FP	
  merge	
   (saddle-­‐node),	
   generating	
  
a	
  homoclinic	
  orbit	
  at	
  the	
  bifurcation.	
  Above	
  the	
  
bifurcation	
   the	
   saddle-­‐node	
   has	
   disappeared	
  
and	
   only	
   the	
   stable	
   limit	
   cycle	
   remains.	
   The	
  
bifurcation	
   has	
   the	
   following	
   features:	
   (1)	
   no	
  
subtreshold	
  oscillations,	
  (2)	
  amplitude	
  at	
  onset	
  
nonzero,	
   (3)	
   frequency	
   starts	
   at	
   zero	
   at	
   the	
  
bifurcation	
  as	
  it	
  is	
  proportional	
  to	
  the	
  square	
  root	
  of	
  the	
  distance	
  to	
  the	
  bifurcation	
  
point.	
  	
  	
  
	
  
	
  We	
  can	
  now	
  relate	
  this	
  transition	
  to	
  the	
  behavior	
  of	
  real	
  neurons.	
  
	
  
First,	
   some	
   terminology.	
   A	
   neuron	
   is	
   excitable,	
  
when	
  you	
  can	
  push	
  it	
  out	
  of	
  its	
  stable	
  FP,	
  to	
  which	
  
it	
   then	
   returns	
   via	
   an	
   action	
   potential.	
   Hence,	
   it	
  
will	
   not	
   fire	
   spontaneously,	
   because	
   for	
   each	
  
action	
   potential	
   you	
   need	
   to	
   stimulate	
   it.	
   It	
   is	
  
oscillatory	
   when	
   there	
   is	
   a	
   stable	
   LC	
   and	
   the	
  

Figure	
  11.	
  Subcritical	
  Hopf	
  (stabilized)	
  

Figure	
  12.	
  SNIC	
  bifurcation.	
  

	
  
Figure	
  13.	
  (Left)	
  Class	
  I	
  	
  and	
  (right)	
  
II	
  firing	
  rate	
  vs	
  current	
  curves.	
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neuron	
   then	
   fires	
   a	
   repetitive	
   train	
   of	
   action	
   potentials.	
   It	
   is	
   bistable	
  when	
   it	
   has	
  
both	
   a	
   stable	
   FP	
   and	
   a	
   stable	
   LC.	
   Hence	
   it	
   can	
   go	
   from	
   quiescent	
   to	
   periodically	
  
spiking	
  and	
  vice	
  versa,	
  using	
  a	
  current	
  pulse.	
  
	
  
Nobel	
   Laureates	
   Hodgkin	
   &	
   Huxley	
   distinguished	
   two	
   (actually	
   three)	
   classes	
   of	
  
firing	
   based	
   on	
   the	
   firing	
   rate	
   versus	
   current	
   curve.	
   For	
   the	
   class	
   1	
   neuron,	
   the	
  
neuron	
   can	
   fire	
   at	
   an	
   arbitrarily	
   low	
   firing	
   rate,	
   whereas	
   for	
   a	
   class	
   2	
   neuron,	
   it	
  
jumps	
  from	
  zero	
  to	
  a	
  finite	
  firing	
  rate,	
  and	
  it	
  can	
  not	
  fire	
  at	
  rates	
  between	
  0	
  and	
  the	
  
onset	
  firing	
  rate.	
  The	
  question	
  is	
  whether	
  this	
  implies	
  that	
  class	
  1	
  and	
  class	
  2	
  have	
  a	
  
different	
   bifurcation	
   from	
  
quiescent	
   (non-­‐spiking,	
   stable	
  
low	
   V	
   FP)	
   to	
   spiking.	
   From	
   our	
  
discussion	
   above	
   we	
   have	
   that	
  
class	
   1	
   is	
   consistent	
   with	
   SNIC	
  
(saddle-­‐node	
   on	
   invariant	
   circle)	
  
because	
   that	
   one	
   starts	
   at	
  
arbitrarily	
   low	
   frequencies,	
  
whereas	
  class	
  2	
  is	
  consistent	
  with	
  
the	
  other	
  three	
  (super/subcritical	
  
Hopf	
   and	
   saddle-­‐node	
  not	
   on	
   the	
  
circle)	
  	
  
	
  
There	
   are	
   two	
   other	
   defining	
  
characteristics.	
   These	
   are	
  
whether	
   a	
   neuron	
   is	
   a	
   resonator,	
  
displaying	
   subthreshold	
  
oscillations,	
   or	
   an	
   integrator	
   in	
   which	
   case	
   it	
   does	
   not	
   display	
   subthreshold	
  
oscillations.	
   And	
  whether	
   the	
   neuron	
   is	
   bistable	
   or	
   not.	
   These	
  map	
   onto	
   the	
   four	
  
bifurcations	
  we	
  encountered,	
  as	
  shown	
  in	
  the	
  table	
  and	
  illustrated	
  schematically	
  in	
  
Figure	
  14.	
  
	
  

	
   Bistable	
  (coexisting	
  
quiescent	
  state)	
  

Monostable	
  

integrator	
   SN	
   SNIC	
  
Resonator	
  
(subthreshold	
  
oscillations)	
  

Subcritical	
  Hopf	
   Supercritical	
  Hopf	
  

	
  
	
  
Self-­test	
  2.	
  Describe	
  the	
  scenario	
  for	
  each	
  of	
  the	
  bifurcations	
  in	
  Figure	
  14	
  and	
  how	
  
they	
  account	
  for	
  being	
  an	
  integrator/resonator	
  or	
  being	
  monostable/bistable.	
  
	
  
The	
   distinction	
   resonator/integrator	
   is	
   an	
   important	
   one.	
   When	
   a	
   resonator	
   is	
  
perturbed	
  in	
  its	
  quiescent	
  state,	
  it	
  will	
  return	
  to	
  it	
  via	
  an	
  inward	
  spiral	
  in	
  the	
  phase	
  
plane,	
   which	
   means	
   that	
   an	
   oscillatory	
   membrane	
   potential	
   is	
   obtained.	
  
Furthermore,	
  noise,	
  which	
  will	
  perturb	
  the	
  neuron	
  away	
   from	
  the	
   fixed	
  point,	
  will	
  

Figure	
  14.	
  Schematic	
  of	
  the	
  four	
  bifurcation	
  
involving	
  loss	
  of	
  stability	
  of	
  the	
  quiescent	
  state.	
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therefore	
   lead	
   to	
   sustained	
   subthreshold	
   oscillations.	
   When	
   a	
   periodic	
   current	
   is	
  
injected,	
   the	
   amplitude	
   of	
   the	
   corresponding	
   oscillation	
   will	
   depend	
   on	
   the	
  
frequency.	
   This	
   can	
   be	
   plotted	
   in	
   an	
   amplitude	
   versus	
   frequency	
   graph.	
   For	
   a	
  
resonator	
  a	
  curve	
  with	
  a	
  peak	
  at	
  finite	
  frequencies	
  is	
  obtained,	
  this	
  frequency	
  value	
  
is	
  referred	
  to	
  as	
  the	
  resonance	
  frequency.	
  Likewise,	
  when	
  the	
  neuron	
  gets	
  inputs	
  in	
  
the	
   form	
   of	
   a	
   periodic	
   train	
   of	
   postsynaptic	
   conductances,	
   the	
   response	
   of	
   the	
  
neuron	
  will	
   depend	
   on	
   the	
   period.	
   Under	
   the	
   circumstances	
  where	
   the	
   neuron	
   is	
  
quiescent,	
   it	
   may	
   respond	
   with	
   a	
   spike	
   for	
   intermediate	
   frequencies	
   near	
   the	
  
resonant	
  frequency,	
  but	
  for	
  much	
  higher	
  frequencies	
  it	
  will	
  not	
  spike.	
  
	
  
The	
  integrator	
  behaves	
  in	
  the	
  opposite	
  way:	
  it	
  will	
  spike	
  most	
  for	
  input	
  spike	
  trains	
  
with	
  the	
  highest	
  frequency.	
  Furthermore,	
  its	
  amplitude	
  versus	
  frequency	
  curve	
  will	
  
have	
  its	
  maximum	
  value	
  for	
  zero	
  frequency,	
  hence	
  it	
  looks	
  like	
  a	
  low-­‐pass	
  filter.	
  	
  	
  
	
  
To	
  represent	
  these	
  properties,	
  a	
  model	
  more	
  complicated	
  than	
  the	
  leaky	
  integrate-­‐
and-­‐fire	
  neuron	
  is	
  needed.	
  One	
  example	
  would	
  be	
  the	
  Fitzhugh-­‐Nagumo	
  or	
  Morris-­‐
Lecar	
   model.	
   Unfortunately,	
   these	
   models	
   are	
   complicated	
   to	
   parameterize.	
   The	
  
Izhikevich	
  models	
   are	
   also	
   two-­‐dimensional,	
   but	
   are	
   characterized	
   by	
   only	
   a	
   few	
  
parameters.	
  
	
  
The	
  V	
  null	
  cline	
  has	
  a	
  cubic	
  character	
  with	
  two	
  
knees	
   (local	
   minimum	
   for	
   low	
   V,	
   local	
  
maximum	
   for	
   high	
   V).	
   The	
   key	
   realization	
   is	
  
that	
  the	
  behavior	
  is	
  mostly	
  determined	
  by	
  the	
  
left	
  knee,	
  which	
  can	
  then	
  be	
  parameterized	
  in	
  
terms	
  of	
  a	
  quadratic	
  function.	
  The	
  problem	
  is	
  
that	
   we	
   only	
   have	
   half	
   of	
   the	
   limit	
   cycle,	
  
because	
   neurons	
   will	
   have	
   membrane	
  
potentials	
   going	
   to	
   infinity.	
   To	
   solve	
   this	
   a	
  
voltage	
   threshold	
   is	
   set,	
   and	
   a	
   reset	
   introduced.	
   The	
   standard	
   notation	
   is	
   to	
   use	
  
lower	
  case	
  v	
  in	
  this	
  model.	
  Taken	
  together,	
  this	
  yields:	
  

€ 

˙ v = I + v 2 − u
˙ u = a(bv − u)

	
  together	
  with	
  if	
  v	
  larger	
  than	
  or	
  equal	
  1	
  it	
  is	
  reset	
  

€ 

v = c
u = u + d

	
  

	
  
The	
  parameters	
  are:	
  the	
  depolarizing	
  current	
  I	
  (bifurcation	
  parameter),	
  which	
  could	
  
also	
  be	
  time-­‐varying;	
  the	
  time	
  scale	
  1/a	
  of	
  u	
  relative	
  to	
  v;	
  the	
  tangent	
  b	
  of	
  u	
  null	
  
cline,	
  this	
  determines	
  how	
  many	
  intersections	
  there	
  are	
  (and	
  where);	
  the	
  reset	
  
value	
  c	
  of	
  the	
  voltage;	
  the	
  addition	
  d	
  to	
  u	
  after	
  reset,	
  this	
  can	
  incorporate	
  the	
  effect	
  
of	
  adaptation.	
  Here	
  adaptation	
  means	
  that	
  in	
  a	
  repetitive	
  spike	
  train	
  the	
  firing	
  rate	
  
decreases	
  over	
  time,	
  saturating	
  at	
  a	
  lower	
  value.	
  
	
  
The	
  above	
  form	
  is	
  unit	
  less,	
  and	
  has	
  therefore	
  the	
  fewest	
  parameters	
  and	
  is	
  best	
  
suited	
  for	
  analysis.	
  For	
  comparison	
  to	
  experiment	
  it	
  is	
  useful	
  to	
  have	
  the	
  correct	
  
voltage	
  (mV),	
  time	
  (ms)	
  and	
  current	
  scale	
  (pA):	
  

	
  
Figure	
  15.	
  Reduction	
  of	
  dynamics	
  to	
  
a	
  quadratic	
  function	
  by	
  focusing	
  on	
  
the	
  left	
  knee.	
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€ 

C ˙ v = I + k(v − vr)(v − vt ) − u
˙ u = a(b(v − vr) − u)

	
  together	
  with	
  if	
  

€ 

v > vpeak 	
  it	
  is	
  reset	
  to

€ 

v = c
u = u + d

	
  

	
  
For	
   a	
   L5	
   pyramidal	
   cells	
   the	
   following	
   parameters	
   are	
   representative	
   a=0.03,	
   b=-­‐
2,c=-­‐50	
   mV	
   (reset),	
   d=100,	
   vpeak=35	
   mV,	
   vr=-­‐60	
   mV	
   (rest	
   voltage),	
   vt=-­‐40	
   mV	
  
(threshold),	
   k=0.7,	
   C=100	
   pF.	
   This	
   model	
   is	
   characterized	
   by	
   the	
   following	
  
experimentally	
   measurable	
   quantities.	
   The	
   model	
   was	
   fitted	
   to	
   have	
   a	
   threshold	
  
current	
  I=50	
  pA	
  (current	
  at	
  which	
  the	
  neuron	
  starts	
  spiking),	
  the	
  input	
  resistance	
  80	
  
MΩ	
   (voltage	
   change	
   divided	
   by	
   the	
   current	
   change	
   producing	
   it)	
   and	
   an	
   RC	
   time	
  
(membrane	
  time	
  constant)	
  of	
  approximately	
  8	
  ms.	
  
	
  
Self-­test	
  3:	
  Show	
  how	
  you	
  can	
  extract	
  these	
  quantities	
  from	
  the	
  model	
  parameters.	
  
This	
  can	
  be	
  done	
  analytically,	
  but	
  if	
  you	
  wish,	
  you	
  could	
  also	
  simulate	
  the	
  model.	
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