Lecture notes computational neuroscience 2012: lecture 2

In this lecture we will be looking at neural models at various levels of complexity
and arrive at a simple, computationally effective model for representing the variety
of spike patterns of neurons. We follow the discussion in the Izhikevich book [1].

The simplest spiking model is the leaky integrate and fire (LIF) neuron. The
membrane potential is given by the following equation
CV=-g,(V-E)+I

together with the prescription that when V crosses the threshold value Vu: (typical
value -50 mV), a spike is called and it is reset to Vieset (typical value -65 mV). The
parameters in these equations are the capacitance C (typical value 300 pF), leak
conductance gi. (typical value 10 nS), reversal potential E;, (typical value -60 mV),
depolarizing current I (in the nA range). This leads a time scale RC=C/g.. of about 30
ms, which is representative for pyramidal cells.

We can perform a dynamical analysis on this
equation as before by setting the time derivative to

zero: CV =0= ] — g, (V-E)=0 which gives a fixed ;g ..................................... Vyy
point value of Vrp=(I/gL +EL). The stability of this v 1/ 1 .
point is given by the derivative f(V)=-g,, which is .../ ...l Vi

always negative, hence this FP is stable. When Vgp is o
lower than Vi, the neuron will not spike because the Figure 0. Leaky integrate-
membrane potential will be stuck at the fixed point. If  and-fire neuron

it is higher the neuron will go through threshold

before reaching the fixed point, and at that point it will be reset to Vrese: after which
the cycle starts again (the membrane potential will again increase towards Vrp and
hit threshold). A periodic sequence of spikes will result (Figure 0). One can interpret
this behavior as a limit cycle.

Self-test 1: What is the mean firing rate of such a neuron as a function of I?

In the Hodgkin-Huxley model, the leak current is augmented with terms
representing voltage-activated channels. To see what this does, we start by
including one current:
CV=-g,(V-E)-gp(V-E)+I

with p=(p.(V)-p)/T(V).
Here g is the maximum conductance when all the channels are open, and p
represents the fraction of them that are open at a particular time. For a constant
membrane potential V, this fraction converges to p_ (V) with a time constant 7(V).
To make the analysis simpler, we assume that the voltage varies at a slower time
scale compared to the time scale of the p dynamics, so that we can use the
asymptotic value for the latter:

CV =g, (V-E,)~gp.(V)V = E)+I=1-L,(V)



For persistent sodium we have E=60 mV and

1
p.(V) = T4 oV miE

(note that the convention is to use m as the symbol for persistent sodium instead of
p, in our example we set the midpoint V1,2 to -54mV and k is 9mV).
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Figure 1 shows the activation function m, as a

function of V. The channel opens when the voltage :
exceeds -54 mV, and because it does not inactivate it

stays open.
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Figure 1. Activation function

Figure 2 shows (V) as
a sum of the linear leak
current (leak) and the nonlinear persistent sodium
2 (Na-P) current.

—Leak
—Na-P
— Leak+Na-P

Figure 3 shows F(V)=1-1_(V) for three different

v values of I. The fixed points are defined by the solution
Figure 2. Currents charging  to F(V)=0, because then the voltage does not change

the membrane are anymore in time. Depending on the value of I there are
comprised of a leak and .
either 1or 3V

persistent sodium current. i )
values for which this

-500!

200
holds. The stability of the fixed points is e
determined by the derivative of F(V) at the fixed B \/\_'='25°
point. Negative means stable, this is indicated by s °
the direction of tangent. For the highest current = 100
value, there is only a stable high voltage FP, .
whereas for the lowest current there is only a -
stable low voltage FP. Vo
Figure 3. The number of zeros of
- Figure 4: For an F(V) depends on current offset.

intermediate current

value there is a low and

high voltage stable FP and ®

an intermediate voltage
e e e T = unstable FP.

Figure 4. Stability of FP

for [=-200. Figure 5. The unstable FP

acts as a separatrix. When a z 4
voltage starts below the unstable FP, it will converge to s ey
the low-V stable FP, whereas when it starts above the Figure 5. Convergence to
unstable FP will converge to the high-V stable FP. stable FPs (filled circles)

away from the unstable

Hence, one could view the voltage value for the .
FP (open circle).

unstable FP as the action potential threshold.



Figure 6. The behavior as a function of I can be
summarized in a bifurcation diagram where the
voltage value of the FPs is plotted for each value of V,
with their stability indicated by the line style (unstable:
dashed, stable: solid line). From this we recover the
features shown in Figure 3: low I and high I only one
stable FP and for intermediate I values, 2 stable FPs

feable o _ | and 1 unstable FP.
Figure 6. Bifurcation

diagram.
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Although the one-dimensional model has something
like an action potential threshold, is does not have an action potential. Once the
neuron is in the high voltage FP it will stay there. For action potentials, we need
limit cycles, hence a two-dimensional model such as the Morris-Lecar model
introduced earlier. We need to take a gating variable as the second variable and we
need another current to counterbalance the sodium current that generates the high-
voltage stable FP. The potassium current will return the neuron to near the resting
potential, in a way similarly to the resetting in the leaky integrate-and-fire model.
The assumption is that the sodium current is fast, hence that the slower gating
variable n of the potassium current is the second variable. This variable activates for
high voltage values.

CV =1-g,(V-E,)-gum.(V)V -Ey)-gnV - E)
n=m_V)-n)/t(V)

Note: for numerical exploration you can use, in standard units, C=1, E.=-80, g.=8,
gk=10; V1,2=-20, k=15 for m.(V); V1,2=-25, k=5 for n(V) and t=1, Ena=60,Ex=-90.

To understand the resulting limit cycle, we need to construct the null clines. The
first one, V =0 yields n = f(V) whereas the second one yields n =n_(V). Note that

f(V) = (I_ gL(V - EL) - gNamoc(V)(V - ENg))/gK(V - EK)

i The details of these functions are not relevant except
n for their typical shape. The first one is similar to the
case discussed before, and can be approximated by a
cubic polynomial, whereas the second one is sigmoidal.
These null clines are sketched in Figure 7. There is a

limit cycle when the FP at the intersection between the

\ null clines is unstable. The limit cycle corresponding to

Vv an action potential then has four stages. I: The

Figure 7. Phase plane of upstroke, where the voltage increases, but n does not

model with high threshold

potassium current yet increase. II: At the peak the n gate is open and

balances the current coming in through the sodium



channels. I1I: repolarisation, the potassium current dominates and brings the V back
to near resting values; IV: relative refractory period, the n variable needs to
decrease so that the neuron can spike again.

In general the analysis of these null clines is difficult and it is helpful to approximate
them by simple functions that have approximately the same shape. The Fitzhugh-
Nagumo is an example of this

V=V@@-V)V-1)-w+I

w=bV —cw

The V null cline is replaced by a cubic polynomial and the sigmoid by a linear
function. Because this form has only a few parameters a systematic analysis can be
attempted. Figure 8 illustrates what happens with the number of fixed points when

the slope of the w null cline is

w w reduced (by reducing c/b).
N\ . :
Vv v The next step is to recognize
Figure 8. Number of fixed points in Fitzhugh-Nagumo bifurcations that occur in
model depends on the tangent of the w null cline. neuroscience context.

Case 1. In the saddle-node bifurcation a
stable equilibrium disappears in the
presence of a stable limit cycle, as
illustrated in Figure 9-top. In the bottom
panel, the voltage trace is shown when the
current is increased over time. When the
voltage is near rest, and the current is
increased, it stays near rest until the stable
FP defining the rest potential disappears
when it merges with the unstable FP Figu.re.‘).Saddle-nodebifurcation,outside
(saddle-node). At this point the neuron the limit cycle

converges to the stable limit cycle and

starts spiking. This scenario has the
following properties: (1) no subthreshold
oscillations, (2) nonzero amplitude of the
action potentials after the bifurcation, (3)
firing starts at nonzero frequencies. This
bifurcation occurs at I1=4.51 in the
aforementioned V-n system.

Figure 10. Supercritical Hopf.



Case 2. Supercritical Hopf bifurcation. Below the bifurcation point there is a stable
FP (an inward spiral), which bifurcates into an unstable FP and a stable limit cycle,
which grows in amplitude. This bifurcation is characterized by (1) subthreshold
oscillations because of the spiral, (2) amplitude at bifurcation is zero, growing
roughly as the square root of the bifurcation variable; (3) spiking frequency jumps
directly to a nonzero value.

Case 3. A subcritical Hopf is also possible,
but does not change much. Initially, there
is a stable FP, inside an unstable LC, which
itself is inside a stable LC (this needs to be
the case for stability reasons, otherwise

the system will diverge for some initial
condition. The radius of the unstable LC
will shrink until it merges with the stable

FP. At the point all that remains is an Figure 11. Subcritical Hopf (stabilized)
unstable FP, together with the stable LC.

Hence, the neuron will jump from its rest potential directly to a finite amplitude
periodic spike train. The bifurcation has the following features: (1) subthreshold
oscillations, (2) firing starts at a non-zero amplitude, (3) spiking frequency jumps
directly to a nonzero value.

Case 4. A saddle-node on an invariant circle

(SNIC). Initially there is a heteroclinic orbit

from the unstable FP to the stable FP, going ©

around the high-V unstable FP. The unstable Hl
]

and stable FP merge (saddle-node), generating

a homoclinic orbit at the bifurcation. Above the C_j
bifurcation the saddle-node has disappeared .

and only the stable limit cycle remains. The

bifurcation has the following features: (1) no /JUM @

subtreshold oscillations, (2) amplitude at onset Figure 12. SNIC bifurcation.
nonzero, (3) frequency starts at zero at the

bifurcation as it is proportional to the square root of the distance to the bifurcation
point.

We can now relate this transition to the behavior of real neurons.

First, some terminology. A neuron is excitable,
when you can push it out of its stable FP, to which ¢

it then returns via an action potential. Hence, it /
will not fire spontaneously, because for each /

action potential you need to stimulate it. It is

oscillatory when there is a stable LC and the

| |
Figure 13. (Left) Class I and (right)
II firing rate vs current curves.



neuron then fires a repetitive train of action potentials. It is bistable when it has
both a stable FP and a stable LC. Hence it can go from quiescent to periodically
spiking and vice versa, using a current pulse.

Nobel Laureates Hodgkin & Huxley distinguished two (actually three) classes of
firing based on the firing rate versus current curve. For the class 1 neuron, the
neuron can fire at an arbitrarily low firing rate, whereas for a class 2 neuron, it
jumps from zero to a finite firing rate, and it can not fire at rates between 0 and the
onset firing rate. The question is whether this implies that class 1 and class 2 have a
different bifurcation from
quiescent (non-spiking, stable

low V FP) to spiking. From our
discussion above we have that

class 1 is consistent with SNIC ®O
(saddle-node on invariant circle) N
because that one starts at N
arbitrarily low  frequencies,
whereas class 2 is consistent with
the other three (super/subcritical
Hopf and saddle-node not on the
circle) o -

There are two other defining

characteristics. These are Figure 14. Schematic of the four bifurcation

whether a neuron is a resonator, involving loss of stability of the quiescent state.
displaying subthreshold

oscillations, or an integrator in which case it does not display subthreshold
oscillations. And whether the neuron is bistable or not. These map onto the four
bifurcations we encountered, as shown in the table and illustrated schematically in
Figure 14.

Bistable (coexisting Monostable
quiescent state)
integrator SN SNIC
Resonator Subcritical Hopf Supercritical Hopf
(subthreshold
oscillations)

Self-test 2. Describe the scenario for each of the bifurcations in Figure 14 and how
they account for being an integrator/resonator or being monostable/bistable.

The distinction resonator/integrator is an important one. When a resonator is
perturbed in its quiescent state, it will return to it via an inward spiral in the phase
plane, which means that an oscillatory membrane potential is obtained.
Furthermore, noise, which will perturb the neuron away from the fixed point, will



therefore lead to sustained subthreshold oscillations. When a periodic current is
injected, the amplitude of the corresponding oscillation will depend on the
frequency. This can be plotted in an amplitude versus frequency graph. For a
resonator a curve with a peak at finite frequencies is obtained, this frequency value
is referred to as the resonance frequency. Likewise, when the neuron gets inputs in
the form of a periodic train of postsynaptic conductances, the response of the
neuron will depend on the period. Under the circumstances where the neuron is
quiescent, it may respond with a spike for intermediate frequencies near the
resonant frequency, but for much higher frequencies it will not spike.

The integrator behaves in the opposite way: it will spike most for input spike trains
with the highest frequency. Furthermore, its amplitude versus frequency curve will
have its maximum value for zero frequency, hence it looks like a low-pass filter.

To represent these properties, a model more complicated than the leaky integrate-
and-fire neuron is needed. One example would be the Fitzhugh-Nagumo or Morris-
Lecar model. Unfortunately, these models are complicated to parameterize. The
Izhikevich models are also two-dimensional, but are characterized by only a few
parameters.

u null cline
The V null cline has a cubic character with two
knees (local minimum for low V, local
maximum for high V). The key realization is
that the behavior is mostly determined by the
left knee, which can then be parameterized in to dynamics
terms of a quadratic function. The problem is  gjgyre 15. Reduction of dynamics to
that we only have half of the limit cycle, a quadratic function by focusing on
because neurons will have membrane theleftknee.
potentials going to infinity. To solve this a
voltage threshold is set, and a reset introduced. The standard notation is to use
lower case v in this model. Taken together, this yields:

\.) = I+ V2 —-Uu . . L V=¢C
together with if v larger than or equal 1 it is reset
a(bv — u) u

V null cline

Area most relevant

iU u+d

The parameters are: the depolarizing current I (bifurcation parameter), which could
also be time-varying; the time scale 1/a of u relative to v; the tangent b of u null
cline, this determines how many intersections there are (and where); the reset
value c of the voltage; the addition d to u after reset, this can incorporate the effect
of adaptation. Here adaptation means that in a repetitive spike train the firing rate
decreases over time, saturating at a lower value.

The above form is unit less, and has therefore the fewest parameters and is best
suited for analysis. For comparison to experiment it is useful to have the correct
voltage (mV), time (ms) and current scale (pA):



Cv=I+k(v-v)v-v,)-u o o v=c
) together withif v>v _ itisresetto
iu=albv-v,)-u) P u=u+d

For a L5 pyramidal cells the following parameters are representative a=0.03, b=-
2,c=-50 mV (reset), d=100, vpeax=35 mV, v;=-60 mV (rest voltage), vi=-40 mV
(threshold), k=0.7, C=100 pF. This model is characterized by the following
experimentally measurable quantities. The model was fitted to have a threshold
current [=50 pA (current at which the neuron starts spiking), the input resistance 80
MQ (voltage change divided by the current change producing it) and an RC time

(membrane time constant) of approximately 8 ms.

Self-test 3: Show how you can extract these quantities from the model parameters.
This can be done analytically, but if you wish, you could also simulate the model.

1. Izhikevich EM (2007) Dynamical systems in neuroscience : the geometry of
excitability and bursting. Cambridge, Mass.: MIT Press. xvi, 441 p. p.



