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Chapter 1

Introduction

Using an external input in order to move a system into a desired state is a very
common objective that naturally occurs in many areas of science. It arises in a
wide variety of practical problems. In robotics, the problem may be to plan a
sequence of actions that yield a motor behavior such as walking or grasping an

object [ , ] In finance, the problem may be to devise a sequence of
buy and sell actions to optimize a portfolio of assets, or to determine the optimal
option price [ ]. In many of these situations one faces the extra difficulty of

uncertainty due to model imperfections and unpredictable external influences. The
theory of stochastic optimal control studies such problems.

The dynamic programming approach to stochastic optimal control problem
yields a partial differential equation that is known as the Hamilton-Jacobi-Bellman
(HJB) Equation [ , ]. In general the HJB is impossible to solve analytically,
and numerical solutions are intractable due to the curse of dimensionality. One
way to proceed is to consider the class of control problems in which the HJB can be
linearized, and, consequently, expressed as a path integral [ ]. This approach
has led to efficient computational methods that have been successfully applied to
control, for example, multi agent systems and robot movement [ s i

R 1. Despite it’s success, some key aspects of path integral control have
not yet been addressed, such as:

e The optimal control depends on the state, and in a stochastic setting the
future state is uncertain. As a consequence, the optimal control is a so
called feedback function: it needs to react to random disturbances of the
system. Practical applications of path integral control methods to, for instance,
robotics have largely ignored this issue and the resulting ‘open loop’ controllers
are independent of state. It is well-known that such a control solution is not
stable with respect to disturbances.

e One of the main challenges in applications is to obtain a good numerical
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estimate of the path integrals involved. This can be a very difficult task
because of the weighting with path costs, which can severely reduce the
number of effective sample paths. To mitigate this, it has been suggested to
use an exploring control, which introduces an importance sampling scheme.
Numerical evidence shows that this can improve sampling [ ] but there
are no theoretical results to back this up.

e A very efficient way to implement importance sampling is via an adaptive
and mixed scheme known as Adaptive Multiple Importance Sampling (AMIS),
[ ]. In AMIS, samples are generated sequentially: at iteration k we
draw N, samples from a proposal distribution P“ that is parametrized by u.
The idea of AMIS is that the parameters u; are adapted sequentially, perhaps
using samples from previous iterations, such that the successive proposals
improve over successive iterations. Although AMIS has been shown to be a
very efficient sampling method, the consistency for the AMIS estimator has
only been established in a very restricted case [ ], where it is assumed
that the parameter u is only updated using the last N} samples (instead of all
N;+N, +...4+ N, samples at stage k), and Ny is assumed to grow to infinity as
k does. Furthermore, the high computational complexity of the re-weighting
in AMIS makes it unsuitable for applications involving diffusion processes,
and hence for path integral control.

o A satisfactory numerical approximation of a path integral can require millions
of sample paths. In contrast, it might be prohibitively expensive to obtain a
hundred samples, especially when said samples need to be drawn using real
world experiments. Even computer simulations might not be able to satisfy
the demand for samples if a complex problem is to be solved in real time.

In this thesis we will report recent theoretical and practical developments that
address these problems. These will then be applied to investigate whether path
integral methods can be used to control multiple agents in complicated cooperative
tasks. Below follows a short description of the Chapters in this thesis.

In Chapter 2 we give an introduction to stochastic optimal control theory, of
which path integral control is a special case. We give a derivation of the HJB
Equation that is used to build the path integral control theory in Chapter 3.

In Chapter 3 we extend the theory of path integral control. We prove a theo-
rem — the Main Path Integral Control Theorem — which can be used to construct
parametrized state dependent feedback controllers. The optimal parameters can
be expressed in terms of the generalized path integral formulas. Furthermore, we
derive an upper bound on the variance of the path weights in terms of distance
between the exploring- and optimal control. This means that both the control and



the sampling problem have the same solution. As a consequence, we can iteratively
improve control estimates with an increasingly effective sampling procedure.

Connected to this Chapter is the publication [ ] by the author. We further-
more included a unpublished result about the so called second order path integral
in Section 3.8.

In Chapter 4 we expand the theory of path integral control with results from
the more general notion of KL-control. This chapter forms a bridge between the
path integral control problem, as treated in Chapter 3, and the problem of efficient
Monte Carlo sampling, as treated in Chapter 5.

Included in this chapter is a new proof of the Main Path Integral Control Theo-
rem by means of the Girsanov Theorem.

In Chapter 5 we consider sequential and adaptive importance sampling for
diffusion processes. One of the key differences with standard AMIS from [ 1,
is that we propose to use a different re-weighting scheme. Whereas standard AMIS
uses the balance heuristic’ [ , ] for re-weighting, which modifies the
denominator of the importance weights to a mixture of all proposal distributions,
we propose a much simpler discarding-re-weighting scheme. The discarding-re-
weighting is of lower computational complexity than balance heuristic re-weighting,
and we prove that the resulting AMIS estimate is consistent. Using numerical
experiments, we demonstrate that discarding-re-weighting performs very similar to
the balance heuristic, but at a fraction of the computational cost.

Connected to this Chapter is the intended publication [ ] by the author.

In Chapter 6 we combine the results from Chapter 3 and 5 in order to formulate
the Path Integral Control Algorithm.

In Chapter 7 we investigate whether path integral methods can be used to control
multiple agents in complicated cooperative tasks. In a complicated scenario it is
tempting to define subtasks, solve them, and combine those by hand. Unfortunately
this leads to problem specific solutions. Instead we show that cooperative strategies
can also arise automatically when using one joint target cost function for all agents.

More specifically, we present in Chapter 7 a novel method for controlling teams
of unmanned aerial vehicles using Stochastic Optimal Control (SOC) theory. The
approach consists of a centralized high-level planner that computes optimal state
trajectories as velocity sequences, and a platform-specific low-level controller which
ensures that these velocity sequences are met. The planning task is expressed as a
centralized path-integral control problem, for which optimal control computation
corresponds to a probabilistic inference problem that can be solved by efficient
sampling methods. Through simulation we show that our SOC approach (a) has

1Balance heuristic is also referred to as deterministic multiple mixture in the literature.
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significant benefits compared to deterministic control and other SOC methods
in multimodal problems with noise-dependent optimal solutions, (b) is capable
of controlling a large number of platforms in real-time, and (c) yields collective
emergent behavior in the form of flight formations. Finally, we show that our
approach works for real platforms, by controlling a team of three quadrotors in
outdoor conditions.

Connected to this Chapter is the publication [ 1.



Chapter 2

Stochastic optimal control

2.1 Introduction

In stochastic optimal control we try to minimize a cost function that is constrained
by a controlled and randomly disturbed dynamical system. In contrast to a deter-
ministic system, the path of future states of a randomly disturbed system cannot be
deduced by the initial state. This has an important consequence: since the optimal
control input depends on the system state, it will be a feedback controller, whereas
in deterministic control, the optimal solution can be described by an open-loop feed
forward control signal that only depends on the initial state.

The dynamics, that describe the evolution of the states, will be given as a
stochastic differential equation (SDE). A realization of the SDE is sometimes called
a (random) path. Each path has an attributed cost, which is a random variable
depending both on the path and the control input. The dependence on path and
control in the cost will in general give rise to conflicting optimization targets. For
example, there might be a large cost for strong control inputs, while at the same
time a strong control input might decrease the path dependent part of the cost.

In this Chapter we will define the stochastic optimal control problem for finite
time horizon diffusion processes. In order to solve the control problem we take
a formal approach using the dynamic programming method, similar as in [ ,

X 1, which will lead to a differential equation, know as the Hamilton
Jacobi Bellman Equation.

We will assume that the reader is to some degree familiar with concepts such as
Brownian motion, stochastic differential equation and stochastic (It0) integral. We
advice [ s ] for more background on stochastic calculus.
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2.2 Definition

In this section we define the finite time horizon stochastic optimal control problem.
Such a problem is given in terms of a stochastic differential equation (SDE) that
depends on a control and a cost term, expressed in terms of the solution of the SDE,
that should be minimized with respect to the control.

More precisely, we consider the following controlled n-dimensional SDE

dxt = p*(t,x")dt + ot(t,X")dwW,, (2.1)

with t € [ty, t;], initial condition X 2‘0 = Xxy € R", and W, a standard m-dimensional
Brownian motion. The functions u" : [ty,t;] X R" = R" and 0" : [ty, t;] X R" —
R™™ should be such that a solution (X{), <<, of the SDE exists; for conditions
that ensure this, see for example [ , ]. The superscript u that appears
in the SDE is a Markov feedback control law, [ R 1, u = u(t, x), which
is a function u: [ty,t;] x R* — Rk, The coefficients of the SDE are such that
ut(t,x) = ult,x,u(t,x)) and o*(t,x) = o(t, x,u(t, x)).
For a given Markov control law u we define the cost-to-go as

t
st =<I>(Xiﬁ)+f L(% X3, u(z, X)) dv.
t

Here L(-,-,-) is know as the immediate cost-function, and &(-) as the end-cost-
function. We remark that (St”) telto.t1] is a random process that is not adapted,
which means, roughly speaking, that at time t the cost S ¢ is not independent of
future states X for 7 > t, see also [ Rk 1.

Next, if it exists, we define the expected cost to go function as

JU(t,x)=E[s"| X! =x].

The goal in stochastic optimal control is to minimize the expected cost with
respect to the control:

J*(t,x) =minJ"(t,x),

u*(+,-) =argminJ"(ty, xq).
u

Generally speaking, there is a two step approach in order to ensuring that a minimum
J*, and corresponding minimizer u* exist. In the first step, one assumes that there
exists a solution of the dynamic programming equation (see Eq. (2.6)). If this
solution is suitably well behaved, then it also solves the minimization problem. In the
literature this is called a verification theorem [ s ] and it can be interpreted
as a proof of sufficiency of the the dynamic programming equation. In the second
step, one gives conditions that ensure that a solution of the dynamic programming
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equation exist. Unfortunately such conditions are very restrictive [ ] and
exclude many systems of interest. In this work, however, we will mostly be interested
in a special case of of stochastic optimal control, called path integral control, see
Chapter 3. For path integral control, and the related KL-control, see Chapter 4, it is
much simpler to state necessary and sufficient conditions for existence of a solution,
see [ ] for an extensive treatment of this subject. Because the focus of this
work is on path integral control, we sill skip these issues in the general case, and
simply assume that J* and u* exist.

Based on existence of u* and J*, we will present in the next section a formal
derivation of the dynamic programing equation, which can be interpreted as a proof
of its necessity.

2.3 The Hamilton-Jacobi-Bellman equation

We continue with a formal derivation of the Hamilton-Jacobi-Bellman (HJB) equa-
tion for the stochastic optimal control problem that is given in the previous section.
The derivation is similar as those given in [ , ]. The starting point for this
derivation, is the assumption that the process (X}'), <<, as well as the optimal
cost- and control-functions J* and u*, exist and are suitably well behaved.

A great deal of information about a stochastic processes (X}');, <<, from Eq. (2.1)
is encoded by the backward evolution operator .«/, known as the (infinitesimal)
generator. The operator .<f is defined on functions ¢ : R x R" — R of class €2,
i.e. that are twice differentiable with continuous second order derivatives in the
second (state) variable, and continuously differentiable with respect to the first
(time) variable). ./ is defined by

AP = I}th_l(E[d)(t +hXY )X =x]—¢(t,x)).

Because in our case the underlying process X' is a diffusion process, .o/* takes the
form of a second order partial differential operator, see [ ) ] for details,

G =0+ (8,9) ' + 5 trace (0 (0" (3ue)), 2.2)

where ()7 denotes the transpose, 3, ¢ denotes the Hessian of ¢, and u* and o*
are the coefficients from Eq. (2.1).

Substituting a random state X' for x in J*(t, x), we obtain a stochastic process
J; = J*(t,X"). If we assume that J* € ¢"?, then according to It0’s Lemma
[ : ) ] J; satisfies the following SDE, which involves the generator

dJr = "Jrdt +(8J7) ot (e, X")dW,, (2.3)

where we use the notation .&/“J; = (.&/"J") (t,X;‘) and 3,J; = (8XJ*)(t,X;‘).
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Now we put Eq. (2.3) in integral notation (over times [t,s]) and take the
expected value conditioned on X}’ = x, so that

]E[J*(S,XS“)]zJ*(t,x)+Ef ﬂ“J:dr+f (B J) T o dw,.
t t

Assuming that E f : 1(a,J )TO'Lr‘llzdr < 00, the stochastic integral is a Martingale
[ ], such that

S
E[J*(s,X")]=J"(t,x) + Ef " Jdr. (2.4)
t
This result is know as Dynkin’s formula, see also [ 1.
Define the feedback control function @(r, y) by
- [ u(ry) ift<r<s
(r,y) = { u*(r,y) ifs<r ’ 2.5)

Using optimality of J* and conditional expectation, we get according to the dynamic
programming principle that

S

JH(t,x) TNt x) =E[J (s, X)] + ]Ef L(r,X"u)dr,

t
where we have denoted u, = u(r,X ;‘) Intuitively, the dynamic programming
equation says that the expected cost on the right-hand side is sub-optimal because
it used sub-optimal controls from time t to time s. As a consequence, this cost is
larger than the optimal cost (on the right-hand side). Note that the above is an
equality when u = u*. Combining this with (2.4) we get

S
0< IEJ L. +./" " dr,
t

where we have denoted L, = L (r,X bt ur). The expectation is over an integral that
depends on the process X" form time t to s. In order to get rid of the expectation
we divide by s — t and take the limit s | t, which results in

0 < L(t,x,u(t,x))+ .“J*(t,x).

Recall that this is an equality when u = u*. We now have derived the following
partial differential equation, known as the Hamilton-Jacobi-Bellman (HJB) equation,
for stochastic optimal control

0 =min[L(t,x,u) + "I (£, )], (2.6)

that should be solved with the end condition J*(t;,x) = ®(x). In general the HJB
equation is impossible to solve analytically, and numerical solutions are intractable
due to the problem of dimensionality. In order to proceed we will consider in
Chapter 3 the class of control problems in which the HIJB equation can be linearized.



Chapter 3

Path integral control theory

3.1 Introduction

Optimal control theory provides an elegant mathematical framework for obtaining
an optimal controller using the Hamilton-Jacobi-Bellman (HJB) equation. In general
the HJB equation is impossible to solve analytically, and numerical solutions are
intractable due to the problem of dimensionality. As a result, often a suboptimal
linear feedback controller such as a proportional-integral-derivative (PID) controller
[ ] or another heuristic approach is used instead. The use of suboptimal
controllers may be particularly problematic for nonlinear stochastic problems, where
noise affects the optimality of the controller.

One way to proceed is to consider the class of control problems in which the HJB
equation can be linearized. Such problems can be divided into two closely related
cases [ ]. The first considers infinite-time-average cost problems, while the
second considers finite-time problems. Approaches of the first kind [ R ]
solve the control problem as an eigenvalue problem. This class has the advantage
that the solution also provides a feedback signal, but the disadvantage that a
discrete representation of the state space is required, [ , ]. In the
second case the optimal control solution is given as a path integral [ ]. This
case will be the subject of this chapter. Path integral approaches have led to efficient
computational methods that have been successfully applied to multiagent systems
and robot movement [ , s , s

Despite its success, two key aspects have not yet been addressed.

1. The issue of state feedback has been largely ignored in path integral ap-
proaches and the resulting “open-loop” controllers are independent of the
state; they are possibly augmented with an additional PID controller to ensure
stability [ 1.
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2. The path integral is computed using Monte Carlo sampling. The use of an
exploring control as a type of importance sampling has been suggested to
improve the efficiency of the sampling [ R ] but there appear to
be no theoretical results to back this up.

These two aspects are related because the exploring controls are most effective
if they are state feedback controls. In this chapter we propose solutions to these two
issues. To achieve this, we derive a path integral control formula that can be utilized
to construct parametrized state-dependent feedback controllers. In Chapter 6 we
show how a feedback controller might be obtained using path integral control
computations that in a sense approximates the optimal control within the limits of
the parametrization. The parameters for all future times can be computed using a
single set of Monte Carlo samples.

We derive the key property that the path integral is independent of the im-
portance sampling when using infinite samples. However, importance sampling
strongly affects the efficiency of the sampler. In Theorem 3.12 we derive a bound
which implies that, when the importance control approaches the optimal control,
the variance in the estimates reduces to zero and the effective sample size becomes
maximal. This allows us to improve the control estimates sequentially by using
better and better importance sampling with increasing effective sample size.

Outline. This chapter is structured as follows. In Section 3.2 and 3.3 we review
path integral control and we extend the existing theory in Section 3.4 and 3.5. In
Sections 3.6 to 3.8 we use the new theory to derive three path integral formulas.
Furthermore, in Section 3.9, we derive upper- and lower bounds on the variance of
the weights that appear in the path integral formulas.

The main application of the theory in this chapter is of such importance that
we treat it separately in Chaper 6. There we will apply the path integral formula
from Section 3.7 in order to construct a feedback controller, and describe how to
compute it efficiently.

Most of the new results in this Chapter are based on [ 1.

3.2 Definition

The classical Path Integral control problem that we shall consider is a special instance
of a control problem as defined in Section 2.2, where the dynamics and cost(-to-go)

10
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are of the form

dx*=b(t,x")dt +o (t,x*)[(u(t,x*)dt +dwW,], @D

Sf:Q(X;*l)JrJ

t

t t
R(T,X;‘)+%u(r,X:)Tu(r,X;‘)d7+J u(T,X;‘)TdWT,
t

(3.2)

where t € [tg,t;] and X ;‘0 = Xx,. Here W, is an m-dimensional standard Brownian
motion, and

b:[ty, t;] x R" > R",

o : [ty t1] x R" —» R™™,

u:te, t;] xR* - R™.
Note that S;' depends on future (7 > t) values of X and is therefore not adaptive
[ R ] with respect to the Brownian motion. Note furthermore that we
have included a stochastic integral with respect to Brownian motion in the cost S.
This is somewhat unusual because the stochastic integral vanishes when taking the
expected value. However, when performing a change of measure with a drift u,
such a term appears naturally (see Sections 3.7 and 3.5), and hence it is convenient
to include it now.

For brevity we shall often suppress dependence on state in the notation of b, o,
u, and R. For example, Eq. (3.1) and Eq. (3.2) can also be described by

dX;=bdt + o, (udt+dW,),
t t
u __ XU 1 T d TdW
St—Q( t1)+ RT+§uruT T+ u dw,.
t t
The goal in stochastic optimal control, as we also described in Section 2.2, is to
minimize the expected cost with respect to the control.
J*(t,x) =minJ"(t,x) =minE[S* | X" = x], (3.3)
u u
u*(-,-) = argminJ“(¢tg, xq)- 3.4)
u

Here E denotes the expected value with respect to the stochastic process from
Eq. (3.1). The following, previously established result [ , ] gives a
solution of the control problem in terms of path integrals.

Theorem 3.1. The solution of the control problem Eqs. (3.3, 3.4) is given by:

J*(t,x)=—logE[e”% | X" =x], (3.5)
E[(W,—W,)e™S | X! =x

u*(t,x)—u(t,x)=1Ilim [( 2 - X, ] (3.6)
wlt E[(T—t)e—sr |X§‘=x:|

Here u(t, x) is an arbitrary Markov control.

11
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Proof. Eq. (3.5) will be proven in Corollary 3.6 and Eq. (3.6) will be proven in
Corollary 3.8. O

Because the solution of the control problem is given in terms of a path integral
Egs. (3.5, 3.6), the control problem Egs. (3.1, 3.2) is referred to as a path integral
control problem. Since these paths are conditioned on X}’ = x, the solutions u* and
J* must be recomputed for each t, x separately. This issue will be partly resolved
in the Main Path Integral Control Theorem 3.7, where we show that all expected
optimal future controls can be expressed using a single path integral.

The optimal control solution holds for any function u. In particular, it holds for
u = 0 in which case we refer to Eq. (3.1) as the uncontrolled dynamics. Computing
the optimal control in Eq. (3.6) with u # O implements a type of importance
sampling, which is further discussed in Section 3.9 and in Chapter 5.

3.3 Alternative formulation

In this section we will give an alternative formulation of the path integral problem
that at first glance appears to be more general than the path integral problem as
given in Section 3.2. The alternative form might give the feeling of more power to
express a control problem as one of the path integral type, and perhaps therefore it
was used in works as [ ]. We will show, however, that the alternative form is
equivalent to the definition given in Section 3.2.

Definition 3.2. The alternative form of the path integral problem has, instead of
Egs. (3.1, 3.2), the following respective dynamic and cost

dX, =b,dt+gu.dt+o,dwW,,

S=Q(Xf1)+J

to

t

1
(Rt + EutTVfut) dt,
with g, = g(t,X,) € R™™ and a non-singular V, = V(t,X,) € R™™ that satisfy the
following restriction
cr[crtT = cgtVt_lgtT, 3.7

for some scalar ¢ € R. We furthermore assume that m < n !, and that g and o are
of rank m, i.e., of full column rank. The terms b, u, R, Q, 0 and W are similarly
defined as in Section 3.2.

1If m > n we can consider a system where g, of rank n is replaced with an n x n matrix § satisfying
874 =gg". This system with m = n has the same uncontrolled dynamics and cost, and therefore the
same optimal cost and associated optimal distribution.

12
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Note that, in contrast to Eq. (3.2), we did not include a stochastic integral part
(the f uTdW term) in the in the alternative form of the cost. The f u'dW term is
a Martingale that vanishes when taking the expectation, so therefore it does not
affect the solution of the control problem. The reason to in-/exclude such a term
is therefore based on convenience and elegance. In the alternative form we aim
to state the problem as convenient as possible for an application, and therefore
we exclude the f u"dW term. In contrast, the form of Eq. (3.2) is such that the
development of the theory will be as elegant as possible, and the f u"dW term
plays a crucial role, as explained in Section 3.5.

In the proceeding we shall need that o and g have a left inverse. Note that
because o and g are assumed to have independent columns, they indeed do
have a left inverse — the so called Moore-Penrose pseudo inverse — defined by

gt= (ng)fl ¢!, and similarly for . This left inverse has the properties that
gtg=1, and (gT)+ =(g")", and similarly for o.

The next proposition shows that the problem in the alternative form from above
is equivalent to a control problem as defined in Section 3.2.

Proposition 3.3. Consider the control problem with dynamics and cost

dX,=bdt+o, [t dt +dW,],

S:Q(th)+J

to

ty ty

~ 1
(Rt + —ﬁjﬁt)dt +f i dw,,
2 t,

0

that is of the regular form as defined in Egs. (3.1, 3.2) in Section 3.2, where we take
ii=0"(g") Vu/c, Q =Q/c and R = R/c. Then X = X and E[S] = E[S]/c. In
particular; if J*, u* are the solution of the problem in alternative form, then J* = J*/c,
i* = o "(g")"Vu*/c are the solution of the problem in regular form.

Proof. By definition of it we have
ci=o0'(gH)vu/c,
which according to Eq. (3.7) is equal to
ol = gu.

It follows that the respective stochastic differential equations that define X and X
are the same.

In order to prove that E[S] = E[S]/c, it suffices to show that ii'&i = u' Vu/c,
because we have already chosen Q = Q/c and R = R/c. Again, by definition of i
we get that

il = ((IT(ng)TVu/c)T o'(gN)vu/c

=u'VigtooT(g")vu/c?.

13



3. Path integral control theory

Now use that V =V and, from Eq. (3.7), that V"' = g+ 0o T(g*) " /c, so that

i'a=u"Vu/c. O

3.4 Linearization of the HJB

In this section we start to solve the path integral control problem. The starting
point is the HJB equation (2.6), which we will analyze for the specific form of the
path integral problem. The next crucial step in the theory is a linearization trick
via a logarithmic transform. These ideas were first explored by [ ], and used
in the context of path integral control in [ ]. With the linearization of the
HJB we prove a useful lemma - the Main Lemma 3.4 — involving the controlled
process. This lemma we will be used to derive various results, including the Main
Path Integral Control Theorem, in the remainder of this Chapter.

The solution of the optimal control is described by the HJB Eq. (2.6). In case of
path integral control, i.e. when the cost and dynamics are of the form Egs. (3.1,
3.2) from Section 3.2, this is (suppressing dependence on time for brevity)

1
0 = min [R+ EuTu + szu(J*)}
u
: 1 T * T * 1 T *
=min|R+ Eu u+oJ +(b+ou) o.J"+ ETI‘(O'O' Orexd ) ,
with boundary condition J*(t1,x) = Q(x). In case of path integral control the

minimization can be solved for u, resulting in a partial differential equation for the
optimal expected cost to go J*

u = —GTE?XJ* (3.8)
0=R+3J" — %(8XJ*)TOO'T6’XJ* +bTo.J* + %Tr(GO'Té’XXJ*). (3.9)
Throughout the rest of this work we reserve the symbol (¢, x) for the function
P(t,x) = e/,
and the symbol 1, for the process
Y =P(t,X ).

When it is clear from the context that we are discussing either the function or the
process, we will simply use the symbol ). Note that in terms of v, the optimal
control formula Eq. (3.8) can also be expressed by

wp =—0'3,(J )Y =0"3d.. (3.10)

14



3.4. Linearization of the HIB

Applying the generator of the uncontrolled process to the function (t, x)
results in the following equation

1 1
Y = (—atJ* + E(axJ*)TaaTaxJ* —b'3.J — ETr(aaTaxxJ*)) .
Combining with Eq. (3.9), we obtain a linear equivalent of the HJB in terms of the
function 1
%Y =R, (3.11)

with boundary condition v(t, x) = e ™). This linear relation is very useful, and
it allows us to prove the following Lemma.

Lemma 3.4 (Main Lemma). Let u(s,y) be any Markov control function, and let
t € [tg,t,]. Let J7" = J*(t,X") denote the process that gives the optimal expected
cost to go, initialized at time t in a random and sub-optimally controlled future state
XY, Then

t

ty
u *U u u__ g T
e St = 7S J. eS+ s [u; —uT] dw.. (3.12)
t
Proof. For T € [t,t;]let

T T
1
Z, =S'—s" =f R, + Eu;rusdt+f ul dw,
t t

denote the cost that is made from time ¢ to time 7. Then Z is — in contrast to S* —
adapted, and hence satisfies the following SDE

dz, = (RT + %uzuf)d’c +uldw,.
Let ¢. = e %<, then, by It6’s Lemma [ , ]
dp, =—¢.dZ, + %q‘)fd[Z,Z]T
=—¢.(R.d7+juludr+uldW,)+ 1. ulu.dr
=—¢, (RTdT + uIdWT)

Similarly, we apply It6’s Lemma in order to obtain a SDE for the process ¢, =

Y(7,X7)
A =" (1)dT + 0, (Y)] o dW,.

This can be simplified by using the linearized HJB Eq. (3.11). Note that .&" =
%+ (ou)"d,, so that

dy, =R.p.dv+ 8, (P) o (udt+dW,).

15



3. Path integral control theory

Combining with the analytical expression Eq. (3.10) for the optimal control we
obtain

dyp. =, (Redr +u Tu dr +uTdW,).
Using the product rule from stochastic calculus [ ] we obtain

d(¢:Y) =2 dp. + ¢ dp. +d[$, Y]
=¢. ¢, (—R.dr—uldW,)
+ ¢, (Rodr +ut Tudr +ut TdW,)
—(;bTQ,bTqu;dT
= ¢, () —u;) dW,. (3.13)

Integrating the above from t to t; gives

¢tlwtl - ¢twt = J d)rlpr[u; _ur]TdWT'

From the definitions of ¢ and 1) we get ¢ ). = 575 ~/"

S;‘l =Q (X ?1), we obtain

, and because J;* =

Rearranging terms gives the statement of the lemma. O

3.5 The optimal cost is not random

The Main Lemma has the following immediate consequence

Corollary 3.5. Let us denote S} = S’tf. When initializing with X, = x, at time t,
then, at time t, the optimal cost to go is equal to the optimal expected cost to go:

x _ pRut gk u*
Sr=Jr =J(t,x").

In particular, when we condition on X ;‘ = X, we get
S, =J (¢, x).

Proof. Take u=u" in Eq. (3.12). O
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3.6. A path integral for the optimal expected cost

This result can be interpreted as follows. Let us define an optimally controlled

random path as an instance of Eq. (3.1) with u = u*, i.e. this path is X* = (X:)t i<t
oststy

where we have used the shorthand notation X} = X é‘ Although X* is random,
it’s attributed cost S :O = J*(ty, xo) has zero variance, because the initial condition
X :O = X, has zero variance.

Looking back at the definition of S in Eq. (3.2), we now see that, in order to
obtain this result, it was critical to include the stochastic integral f u"dW. This can
be explained intuitively as follows. The control u,dt of the system is disturbed by
the noise dW,. So if u, and dW, go in opposite directions this might be considered
as bad luck because the noise pushes the system away from the direction you
want to control it into. Fortunately, this bad luck is compensated for in the cost,
because f u'dW gives a negative contribution to the cost when u and dW go in
opposite directions. Similarly, if u and dW go in the same direction, you can be
considered lucky, but you are penalized for that by the positive f u'dW term in
the cost. The Corollary shows that this compensation is fair in the following sense:
when controlling optimally the cost is always the same, regardless of good/bad
luck.

3.6 A path integral for the optimal expected cost

With the following Corollary of the Main Lemma, we see that the optimal expected
cost to go can be computed with a path integral.

Corollary 3.6. Let t € [ty,t;]. Then

Yo=e =E[eS | Z,], (3.14)
and the optial expected cost to go is given by

J*(t,x)=—logE[e”% | X" =x]. (3.15)

Here u(t, x) is an arbitrary Markov control, E denotes the expected value with respect
to the stochastic process from Eq. (3.1), and the filtration &, denotes that we are
taking the expected value conditioned on events up to time t.

Proof. Take E[- | Z,] on both sides of Eq. (3.12). When conditioning on X;' = x,
note that J? =J* (t,Xi‘) = J*(t,x), and recall that J* = —log. O

We remark that when u = 0, Eq. (3.15) is equivalent to
w(t’x) = E[w (tl,Xg)eiftthde IX? = x] )

which is known as the Feynman-Kac formula [ ) ] for the PDE of Eq. (3.11).
Therefore the result from the Corollary can also be obtained by using the Feynman-
Kac theorem, and subsequently performing a change of measure from X° to X“. The
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3. Path integral control theory

correction term for this change of measure is given by the Radon-Nikodym derivative
e~/ GuTudt+uTdW) ' \which explains why we included f u'dW in the definition of S.

3.7 A path integral for the optimal control

In this chapter we present a new theorem from [ ]: The Main Path Integral
Control Theorem. This theorem is a generalization of Theorem 3.1 and gives
a solution of the control problem in terms of path integrals. The disadvantage
of Theorem 3.1 is that it requires us to recompute the optimal control for each
t,x separately. Here, we show that we can also compute the expected optimal
future controls using a single set of trajectories with initialization X ;‘0 = Xxy. We
furthermore generalize the path integral expressions by considering the product
with some function g(t, x). In the Chapter 6 we utilize this result to approximate a
good feedback controller. Here we proceed with the statement and the proof of the
generalized path integral formula.

Theorem 3.7 (Main Path Integral Control Theorem). Let t € [t, t;], and let u(t, x)
be any Markov control function. Let g : R x R® — R!, and consider the process
g. = g(7,X}), then

t 5]
E[e_sgf gTde—] :]E|:€_S‘uf gT(u;—uT)TdT:|. (316)
t t

Here E denotes the expected value w.r.t. the process given in Eq. (3.1).

Proof. Consider the Main Lemma, multiply with f:l gtdW[T, and take the expected

value:
t t
E[e_S?J gTdWTT} =E|:e_srf eSﬁ_Jf*gT(u;—uT)TdT}.
t t

On the right-hand side the term e+ f :1 gdW T has vanished because e’ is adapted,
and hence, independent from the stochastic integral that has zero mean. Note
that the term e~ f ttl gdWT on the left-hand side has not vanished, since S} is not
adapted. We have furthermore used the It6 Isometry on the right-hand side.

The left-hand side is now as in the statement of the theorem. To see that the
right-hand side is also as in the statement we apply Eq. (3.14), interchange E and
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3.8. A path integral for the optimal control gradient

f, and then use the Law of total expectation. This gives

t t
e [ aaw = [ Bl - s
t t
131
_ J E[eSSE[e | 2. ]g. 0 —u)T]dr
t

t
:E[e_sff gT(u;—uf)TdT]. O
t

Corollary 3.8. The above can be used to prove Eq. (3.6) of Theorem 3.1.

Proof. Let t,T be such that t; <t < v < tq, and take Eq. (3.16) with g(s,y) =
Tse¢ -1 Dividing by 7 — t and taking the limit 7 | t we obtain

li EleSi(W,—W) | =E[e ™S (u —u,)"].
im [eSi (W, —W)T]=E[e 5 (u] —u)"]
If we condition this on X;' = x, then the expression u} —u, = u*(t, x)—u(t, x) can be
pulled outside the expectation. Dividing by E [e—stu | X} = x] we get Eq. (3.6). O

3.8 A path integral for the optimal control gradient

If we were to call Eq. (3.14) and Eq. (3.16) respectively the zeroth- and first-order
path integral, then we will derive in this section the second order path integral.
The first order path integral is used in Chapter 6 in order to compute the parameter
A of a parametrized control u(t, x) = Ag(t, x). A is computed via a linear matrix
equation, and the resulting control u = Ag is in a certain way an approximation of
u*. Using the second order path integral from this section in a similar way results
in a quadratic equation for A. Unfortunately we have not been able to apply this
quadratic equation to improve the control computations, and it remains unclear if
there are other theoretical implications. Nevertheless we think that this unpublished
result is interesting.

The path integral formulas that we will derive are very long, and would not fit
the width of the paper if we were to use the same notation as in the previous sections.
Therefore we shall simplify the notation somewhat by suppressing notation for
dependence on time or dependence on importance control. Furthermore we will
use the notation {i = u* —u. E.g. the result from the Main Path Integral Control
Theorem is denoted more briefly by

E[efs’fs(z)gﬂTdT] = ]E[efs'fé(z)gdWT]’ (3.17)
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3. Path integral control theory

where §(t) is the time interval &6(t) = [t,t;]. We obtained this from the Main
Lemma by multiplying with f dW and taking the expected value. If we instead

multiply with ff dWdW T, we get a new path integral formula.

Theorem 3.9. Let u(t, x) be any Markov control function, and write it = u* —u. Let
t €[to, t1], and let A(t) be the triangular set of times A(t) ={(7,p) €R? |t <p <
T < ty}, then

E[e™ [y, dWdWT]
=E[e™ [[ \, (1" + @, 0)0 + (" (@) + (@, d)oi) [dW }d72]. (3.18)

Here the double integration is in the following order ff A(t)d Wdw' = f:l (f: de) dw,,
and ffA(t)...drz = f:l (f:...dp)d’r.

Proof. In this proof we will use the process ¢, as defined in the proof of the Main
Lemma. Recall that this is the process ¢, = e5>< 5. The result of this lemma can be
expressed in the brief notation as

e =+ [ v dW, (3.19)

where 6 = [t, t;]. We multiply with ff A dWdW T and take the expected value:

E[e_stffA(r)deWT] = E[fﬁ(r)¢¢ﬁTdefA(r)deWT]'

On the right-hand side v, ff A dWdW T vanishes when taking the expectation,

because v, is independent from the Martingale ff A dWdWT. We proceed by
applying the It6 Isometry on the right-hand side

E[e [[ ndWdW™ | =E[ [, vifdw dr].

Similar as in the proof of the Main Path Integral Control Theorem, the next step is
to swap E and f on the right-hand side and use that E[¢ . | Z.] = E[e55te™ |
Z.]=e5 for all T € 5(t), in combination with the law of total expectation
-5, T - T
E[e™ [ [, dWdW | = [, E[¢ypafdw]dr
= [sE[El¢y | Z.Jafdw  ]de
- ~Ser T
= f5(t)IE[e ude ]dT
- -5, ~ T 2
—E[e fé(t)ude dT]. (3.20)
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3.8. A path integral for the optimal control gradient

Because the integrand at the right-hand side evaluates to 0 at the time 7 = t, we
can rewrite it as ﬁTf:deT = f: d (ﬁdeT)p. Next, we try to find the SDE of this

term. Itd’s product rule gives
d(@fdw’)=adw’ +di[dw’ +d[a, [dw']. (3.21)

where [, -] denotes the quadratic variation process. Next, we require the SDE of i,
which by It6’s Lemma is given by

dii, = .o/"(f)dp + 0, (i)odW.
Using this with Eq. (3.21) we obtain
d (ﬂdeT)p =ddW' + (" (@)dp + 3, (@odW) [dW T + 3, (D)odp.

We use this to rewrite the integrand on the right-hand side of Eq. (3.20), which
results in

E[e™ [ dWdwT]
=E[e™ [[ \,idW] + (o (@)dp +2,(@)odW, ) [dW T + 8 (Wodp d].

Now we apply the Eq. (3.17) to replace the dW,, integrators from the inner integral
with @idp, so that

E[e™ [ [y, dWdWT]
=E[eS [[ il dp + (o"(@)dp +8,(@)oidp) [dWT +8,(@odp dt .0

Corollary 3.10. Let t,r such that ty < t < r < t;, and define the triangular set
A(t,r)={(t,p) €R? |t < p < T <)}, then

[u*(t,x)—u(t,x)[u(t,x)—u(t,x)]" + O [u(t,x)—u(t,x)]o(t,x)

. 9 E[e—si‘ffA(t LAWdWT | X :x]
= lim :
rle (r—t)? E[eS | X! =x]

Proof. Consider Eq. (3.18), and replace t; with r. To get rid of the ffA(t’r) ...dt?

on the right-hand side, we multiplying with 2/(r — t)? and take the limit r | t, so
that

. 2 —su T]_ St o T -

lim =5 [ [[ s ydWdWT | =E[e {@a] +(3.0)0,}].  (3.22)
2So far we have followed the exact same steps as in the Main Path Integral Control Theorem. So

perhaps it is not unsurprising that this intermediate result can also be obtained directly, from Eq. (3.17)

by choosing g = de. Strictly speaking this is only allowed when we generalize the Main Path

Integral Control Theorem to adaptive processes g; instead of Markov control functions g(t, x) with their

attributed process g, = g(t,X,).
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3. Path integral control theory

The term (,rz{r”(ﬁr) + (3xﬁr)crrﬁr) f:dWT has vanished on the right hand side, be-

cause f ZdW evaluates to zero when r = t. If we condition this on X} = x, we
get

~ ~T ~
uu, + (0,ti;)o,

= [w(t, x) —u(t, x)[w (¢, x) —u(t,x)]" + a, [u (t,x)—u(t,x)]o(t,x).

Since this term is not random, it can be pulled outside the expectation in Eq. (3.22).
Dividing by E [e‘sr“ | XY = x] we get the statement of the corollary. O

3.9 Path integral variance

A Monte Carlo approximation of the optimal control solution Eq. (3.6) is a weighted
average, where the weight depends on the path cost. If the variance of the weights
is high, then a lot of samples are required to obtain a good estimate. Critically,
Eq. (3.6) holds for all u, so that it can be chosen to reduce the variance of the path
weights. This induces a change of measure and an importance sampling scheme.
By the Girsanov Theorem [ . ], the change in measure does not affect the
weighted average (for a more detailed description in the context of path integral
control, see [ 1. The Radon-Nikodym derivative exp (— [ su'udt +u'dW)
is the correction term for importance sampling with u, which explains why we
included f u'dW in the definition of S.

We have seen in Section 3.5 that the optimal u for sampling purposes is u*. In
this section we will furthermore show that the variance will decrease as u gets
closer to u*. This motivates adaptive sampling, which we treat in Chapter 5, in
which increasingly better estimates u of u* improve sampling so that even better
approximations of u* might be obtained.

Definition 3.11. Given a feedback control u(t, x), and a realization of the cost Si‘o,
we define:

_gu
e o
1. The weight of a path is a* = ———.
g p E [eisto ]
. . . 1
2. The fraction A" of effective samples is A* = ————.
E[(a")?]

Because Var(a*) + 1 = E[(a%)?], the fraction of effective samples as defined
in Definition 3.11.2 satisfies 0 < A* < 1. It has been suggested [ ] that this
fraction can be used to determine how well one can compute a sample estimate
of a weighted average. Loosely speaking, the idea behind the effective fraction of
samples can be explained as follows. If the variance is high, then the path weight
of most samples in the estimate is negligible, with a few exceptional ‘lucky-samples’
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3.9. Path integral variance

that will have a relatively large path weight. In that case, only the lucky-samples
will contribute effectively to the weighted sample estimate. On the other hand, if
the variance is low, then all samples get roughly the same path weight, and they
can all be considered effective.

Next we present a novel theorem from [ ] that effectively gives a connection
between sampling efficiency and the control. More precisely, the theorem gives an
upper and lower bound on the variance of the path weight in terms of the control u.
An important consequence of this theorem is given in Corollary 3.13: if a control
u is close to the optimal u*, then also the fraction of effective samples is close to
optimal.

Theorem 3.12. We have the following upper and lower bounds for the variance of
the path weight:

t
var(a®) < f E[(« —u)"(w —u)(a@")?*]dt, (3.23)

Var(a) > J E[(u: —ut)a“]TE[(u: —ut)a”] dt. (3.24)

Let || - ||oo denote the L°°-norm that is defined by
lulloo =inf{A = 0: |u(t,X)| <A for almost every t,X}.
Corollary 3.13. If ||[u* —ullec < v €/(t; —ty), then
At=1—e.
Proof. Combining |ju* —ul|ee < v/€/(t; — to) with Eq. (3.23) gives
Var(a') < eE [(a“)z].
Recall that Var(a*) = E[(a*)*]—1, so that

E[(a")?]-1<€eE[(a")?],

1—-————<e¢,
E[(av)?]
and thus, by definition of A,
AY>1—e. O

Proof of Theorem 3.12. From Corollary 3.6 it follows that the denominator in the
definition of a is E [[S?o] —e o= Y, So if we consider the Main Lemma with
t = to, and divide by ¢, we get

t
a'=1 +J ateS i ur —u, 1T dw,.
to
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3. Path integral control theory

Using the It6 Isometry [ ], we see that the variance is given by
ty 5
Var (a") = IEJ (a“estu_J:) [u; — u[]T[u: —u,]dt. (3.25)
to

For the upper bound we consider Eq. (3.14), squared, and then we apply Jensen’s
inequality

et =E[e | 2, <E[e | 2,].

Substituting in Eq. (3.25) and using the Law of total expectation we obtain Ineq. (3.23).
For the lower bound we use Jensen’s Inequality on the whole integrand of
Eq. (3.25) to obtain

G
Var (a) > J El:auesf—J: (u: _ut)T]E[aueSf—J: (u: —ut)]dt.
t

0

Using Eq. (3.14) and the Law of total expectation we obtain Ineq. (3.24). O

We conclude that the optimal control problem is equivalent to the optimal
sampling problem. An important consequence, which is given in Corollary 3.13, is
that if the importance control is close to optimal, then so is the sampling efficiency.

Next we give a illustration of Theorem 3.12. For this, we consider the following
control problem, of which we know the analytical solution.

Example 3.14 (Geometric Brownian Motion). The path integral control problem
with dynamics and cost given respectively by

dx* =x"((3 +u)dt +dw,),

1 1
1
St = 510g(X1“)2 + > f ufdt +f utTth,
0

0

with 0 < t <1 and initial state X, = 1/2, has solution

oy Sloge? 1 B
J*(t,x) = To(—0)+1 + 2log(10(1 t)+1),
R _ —10log(x)
W)= a0 1

To verify that this is indeed the solution, it can readily be checked that J* satisfies
Eq. (3.9) and that u* satisfies Eq. (3.8), withR=0, b = x/2, and o = x.

In order to visualize Theorem 3.12 we consider a range of sub-optimal impor-
tance controls u¢(t,x) = u*(t, x) + /€. Each u¢ yields a path weight a¢ := a*".
Because (u* —u€)? = €, Theorem 3.12 implies that ¢ < Var(a¢) < 1= The results
are reported in Figure 3.1.
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e/(1—¢)
0.8 | Var(af) x |

0 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

Figure 3.1: Estimate of Var(a®), where a€ := =5 (t) /4 (to, xo) With upper and
lower bounds from Theorem 3.12 with respect to the control problem in Ex-
ample 3.14. Here we considered a range of sub-optimal importance controls
u(t,x) = u*(t,x) + +/€. The estimate of the variance is based on a MC estimate of
10* paths that were generated approximately with the Euler-Maruyama method
with time increment dt = 0.001.
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Chapter 4

Kullback Leibler control theory

4.1 Introduction

In the path integral control problem that we defined in Chapter 3, and more
generally, in the stochastic optimal control problem from Chapter 2, the randomness
comes from a stochastic process with a finite time horizon that is driven by a
Brownian motion. The theory of stochastic control, however, is not restricted to
these sources of randomness, as we shall see in this chapter. The main result is
that the path integral control problem can be generalized to a minimization over
probability measures that are regularized by a Kullback-Leibler (KL) divergence.
Consequently, the more general stochastic control problem is known as KL control
problem.

This chapter is not included for the sake a generalization alone. It is included
because a treatment of path integral- without KL-control is not complete. Three
critical contributions of the KL control generalization are that: the more the general
setup (1) allows for more mathematical rigor, (2) gives a broader perspective on
the matter, which makes it easier to make connections to related problems such
as efficient Monte Carlo sampling, as treated in Chapter 5, and (3) sheds a new
light on the more specific theory of path integral control, resulting in more elegant
proofs of established results.

Some of the key elements in KL control theory have been developed in the
closely related field large deviation, see for example [ ]. For more recent
developments see in KL control, we refer to [ R ]. A new result that is
included in this chapter is a new proof of the Main Path Integral Control Theorem,
at the end of Section 4.4.

Outline. The rest of this chapter is structured as follows. In Section 4.2 we
formulate the KL-control problem, that we subsequently analyze and solve in
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4. Kullback Leibler control theory

Section 4.3. These results are then interpreted in the specific case of path integral
control in Section 4.4.

4.2 Definition

Throughout the rest of this chapter we use the following objects. Let (2, %,Q) be
probability space with a random variable C, which is called the (state) cost . We call
Q the uncontrolled probability measure. Other probability measures on (Q, #) are
referred to as controlled probability measures, or more briefly by controlled measure.
Controlled probability measures will often be denoted by the letter P.

The goal will be to minimize E,[C] w.r.t. the controlled measure P, while at
the same time minimizing the distance from Q to Q. To be more precise, if for all
A€ Q we have Q(A) = 0 = P(A) = 0, then the measure P is said to be absolutely
continuous with respect to Q, which is denoted by P < Q. If this is the case then,
by the Radon-Nikodym Theorem [ 1, P has a density with respect to Q and
this density is called the Radon-Nikodym derivative, which is denoted by g—g. The
measure for distance that we will use is

Dy (PlIQ) = J log(j—g)dp,

which is known as the Kullback-Leibler divergence from Q to P, or as the relative
entropy of P with respect to Q. Now we can define respectively the total (random)
cost and the total expected cost. These combine the state cost with the KL-divergence.

S(P)=C +log g—g,
J(P)=Ep[S(P)]=Ep[C]+ Dy (PlIQ).

The goal in the KL-control is to compute J* := inf, J(P), and if it exists, to construct
a minimizing measure P* such that J(P*) =J".

4.3 KL solution

In this section we will describe the solution of the KL control problem. This so-
lution is based on the work of [ ] and is found without using the Dynamic
Programming Principle. Furthermore, since the randomness in KL control does not
necessarily involve stochastic processes, there is no equivalent of the HJB equation.
Instead, the solution directly gives a result that, in a sense, generalizes the path
integral formula Eq. (3.15) for the optimal cost.

Theorem 4.1. Suppose that E, [e‘c] < 00. Then a measure P* exists, such that
P* < Q and such that S(P*) = J(P*) = —logE, [e_c]. Furthermore, the measure P*
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4.3. KL solution

is optimal in the following sense: if P is a measure with P < P*, then J(P*) < J(P),
with equality if and only if P = P* almost everywhere.

Proof. Because Ey[e ] < 0o, we can define a measure P* by

dp* e €
dQ  Eg[e€]

4.1

For this measure we have P* < Q, and so it’s total cost is defined, and it satisfies
S(P*)=C +log(%7)
=C +log (EQE{TC,C])
=—logE,[e™¢].
Clearly S(P*) = J(P™); the total random cost equals the total expected cost because

it has zero variance. Now suppose that P is another measure with P < P*. Then
also P < Q, so that we can consider the total cost w.r.t. P, and rewrite it as

S(P)=C+log 35

=C +log (EQ?TC,C] %)
=—logE, [e_c] + log(%).
So the total expected cost is equal to
J(P) =Ep[S(P)] = —1ogEq[e ]+ Dy (PIIPY). (4.2)
Optimality of P* now follows from Gibbs’ inequality. O

The condition E, [e‘c] < oo is sufficient to guarantee that the measure P*
exists, including a total expected cost J* = J(P*) = —logE, [e‘c]. However, there
are cases where the solution P* has the peculiar property that Ep.[C] = —o0 while
at the same time Ep. [log %] = 00. To exclude these cases, it is sufficient [ ]
to assume that the following conditions hold: Eqg[1ccoo] > 0and E, [lC |e_C:| < 00,
These conditions also imply E, [e_c] < 0o,

In the next section we will analyze the special case when the KL control problem
is a path integral control problem. With this in mind, we can already see some
connections between the results of Theorem 4.1 and the theory developed in
Chapter 3. In both cases the optimal cost S* has zero variance, and is equal to the
optimal expected cost J*. Furthermore the optimal cost is given by J* = IEQ[e’C],
which we also found in Eq. (3.15) if we take u = 0.

29



4. Kullback Leibler control theory

4.4 KL and path integral control

KL control is a generalization of path integral control. If the randomness from the KL
control comes from a Brownian motion over a finite time interval, however, the KL
control problem becomes, loosely speaking, a path integral control problem. In this
Section we shall make the transition form KL control to path integral control. The
key connection is made by the Girsanov Theorem: the Radon-Nikodym derivative
attributed to a change of measure is exactly the exponentiated control cost of the
drift that is added in the change of measure. We use this idea in this section in
order to construct controlled measures P* for given a suitable control process u,.
Subsequently we shall analyze what the consequences are for the optimal control
and measure. In particular, we shall give a new proof of the Main Path Integral
Control Theorem.

Let W, be a standard m-dimensional Brownian motion on a filtered probability
space (2, (Z)ierr, e, 1- Q)- Let and X, an be n-dimensional It6 process of the form

dX, = b dt + o, dW,,

where b, € R" and o, € R™™. We call X a path, or more specifically, an uncon-
trolled path when considered with respect to the measure Q. In order to control X,
we shall consider control processes:

Definition 4.2. We call an m-dimensional measurable adapted process (u,),, </,

¢ 1t T
Lo udW;—3 fzo ug ugds

an (admissible) control process when Z, =e is a square integrable

Martingale.

The process Z, from the definition above is known as the Doléans-Dade ex-

ponential of f udW, and is also denoted by Z, = & (f; u.d Ws) More generally,
&(v,) is defined as the solution Y, = &(v,) of the SDE given by dY, = Y,dv,, with

initial condition Y, = 0. A well known condition that ensures that the process

Z, =6 (f:o udes) is a Martingale, is the so called Novikov Condition, which states

that E [e% [ ufwae

If u, is a control process, then we get by standard Girsanov theory that dP" =
Z,dQ defines a probability measure P* on (£, (F,),e[¢,,(,7) that is equivalent to Q.
We will refer to P* as the controlled measure. The connection with the control
process u, is given by the Girsanov Theorem: dB, = dW, —u,dt defines a P!-
Brownian motion B,, so that the stochastic representation of X in terms of P*
is

< 0Q.

dX,=b,dt+o,(udt+dB,),
which is a controlled path. Similarly, we get that

t t t t
eis(Pu) e dQ _ e—C—LOl utth+% Lol u;ru[dt — e—C—LOl u[dB[—% Yulude

= T — to ¢

dpu
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4.4. KL and path integral control

The connection with path integral control from Chapter 3 becomes apparent when
we choose the state cost of the form C =Q(X, ) + f;l R(t,X,)dt.
0

Next we consider the optimal measure P* as defined in Section 4.3, which exists
when E, [e_c] < 00. The first question is whether a an optimal control process

exists, which is a control process u} such that P* = pPv.

Theorem 4.3. Suppose that Z, = E, I:E(;{Tiq | 9}] is square integrable martingale
w.r.t. Q. Then there is an adapted uj such that P* = pv,
Proof. By the Martingale Representation Theorem [ ], we get that there exists

a process V, such that dZ, = V,dW,. Now take a process u; such that V, = u}Z,.
Then Z, is the solution of dZ, = u;Z,dW,, in other words, it is the Doléan-Dade

exponential Z, := & (f; us*dWs). Because Z, is a square integrable Martingale, the
1

process u; is an admissible control process. The theorem follows by the defining
property Eq. (4.1) of P* and the construction of P* as described above. O

Using the construction above we present a new result form [ 1, which
is a more elegant proof of the Main Path Integral Control Theorem than that of
Section 3.7.

Theorem 4.4 (Main Path Control Integral Theorem). Let u, be a control process,
and let B, be a P“-Brownian motion. Suppose that an optimal control u* exists. Let
g: be a k-dimensional measurable, square integrable and adapted process, then

t 31
Epu [e_S(Pu)J gtu:Tdt] =Epu [e_S(PH)J g.(dB, + ufdt)T:|.
to to

Proof. Because u* is an optimal control we have P* = P¥. Furthermore, the
equation
dB; +u;dt = dB, +u,dt.

defines a P*-Brownian motion B;. If we multiply this equation with the g, integrate,
and take the expected value w.r.t. P*, we obtain

t; ty
Ep. |:f gtu:Td t] =Ep. [J g (u dt+ dBt)T} .
to to

On the left hand side the f g:dB” term vanished because it is a Martingale w.r.t. P*

because g is square integrable. The variable e5" = ¢ ¢ 4L = E, [e~C] has zero
variance, so it is safe to multiply the equation above with it

t ty
Ep. {e‘s* J. gtu:Td t] =Ep. [e_s* J g.(u.dt+ dBt)T] .
to to
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4. Kullback Leibler control theory

Changing the measure from P* to P¥, and using that e 25 = ¢=5(*"), we obtain

t t
Ep. [e_S(P")j gtu:Tdt] =Ep. [e‘s(mf g (u dt + dBt)T] A O
to t

0

The theory in this chapter could be generalized somewhat if we drop the Martin-
gale condition in the definition of control process and in Theorem 4.3. In that case
one has, for example, to deal with the fact that P* and Q might not be equivalent
measures. In such a situation the standard Girsanov Theorem is not valid, and it
should be replaced by a version that only requires that P* < Q. We refer the reader
to [ ] for a treatment of the general case.

! Note that although B, is a P“-Brownian motion, the martingale term fgtdBt does not vanish
on the right hand side when taking the expected value w.r.t. P*. The reason is that the martingale is
multiplied by e S®*), which is not adapted.

32



Chapter 5

Adaptive multiple importance
sampling

5.1 Introduction

Monte Carlo (MC) integration is a broadly applied method to numerically compute
integrals that might be difficult to evaluate otherwise, due to, for example, high
dimensions. The main shortcoming of MC integration is perhaps that the estimator
can have a high variance, which has led to techniques such as Importance Sampling
(IS). The idea behind IS is reducing the variance of an estimator by drawing samples
from a chosen proposal distribution that puts more emphasis on “important” regions.
This will in general introduce a bias, which has to be corrected with an importance
weight.

There are, generally speaking, two different motivations for implementing IS.

First, one might be interested in an expected value over a distribution Q from
which it is impossible to draw samples (efficiently). In this case a proposal distribu-
tion can be constructed in order to generate samples [ , . 1.
When the density ¢ = dQ/dx is only known up to a factor, the normalization
constant needs to be estimated as well. For this reason, it is common to choose a
proposal distribution close to Q.

The second motivation to use IS, is whenever sampling from Q is possible but
very inefficient for the purpose of MC integration. This is, for example, typically the
case with conditioned diffusions [ ] or stochastic control problems [ 1,
which have important applications of IS in, for example, robotics, [ ]. Our
motivation to use IS is of the second kind.

In cases where it is difficult to choose a single proposal distribution that covers
all the important regions, one can resort to a mixture of proposal distributions, This
technique is known as Multiple Importance Sampling (MIS) [ ]. An important
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5. Adaptive multiple importance sampling

problem in MIS is the choice or construction of good proposal distributions. Roughly,
there are two approaches: either the proposals are carefully chosen in advance
of the sampling procedure [ ], or the proposals are optimized during the
sampling procedure [ s ]. The advantage of the former is that it is
clearly consistent, because, in contrast to the latter, all samples are independent.
The advantage of the latter is that the optimization scheme might yield better
sampling efficiency.

A particular instance of MIS with optimization of the proposals during sam-
pling is the so-called Adaptive Multiple Importance Sampling (AMIS) algorithm
[ ]. In AMIS the samples and their associated importance weights are
combined according to the balance heuristic. Although the balance heuristic is
optimal in the sense of variance reduction when the number of samples goes to
infinity [ ], it also introduces a complicated dependence between the sam-
ples from the various proposals. As a consequence, consistency for AMIS is a non
trivial proposition, which only recently been established, and only in restricted
cases [ 1.

An aspect of AMIS, or more generally of MIS, that has not been addressed by
the literature, is that of the additional computational overhead that is caused by
re-weighting of the samples. This overhead is proportional to the cost of computing
a likelihood ratio. In some scenarios, for example when sampling requires real
world interaction, this cost might be negligible. However, in MC sampling this cost
will be roughly proportional to the cost of drawing a sample. This becomes an issue
when the re-weighting scheme has a higher computational complexity than the
drawing process, because in that case the algorithm will eventually spend more
time on re-weighting than on drawing samples. Critically, this is the case when
re-weighting uses the balance heuristic, which has a complexity of @(K2M), where
K is the number proposal distributions, and M the number of samples per proposal.
Note that this is larger than the complexity ¢(KM) of drawing all the MK samples,
particularly with many proposal distributions.

In this chapter we propose a new re-weighting scheme, called discarding-re-
weighting, and addresses the issues described above. In particular, discarding-
re-weighting will have a complexity of (KM). Furthermore we will provide a
consistency proof of the corresponding discarding-AMIS, without any restrictions,
aside from the usual, on the proposals distributions.

In this work we are mainly interested in sampling over diffusion processes. For
diffusion processes a natural proposal distribution arises by adding a drift term,
which can be interpreted as a control input that steers the diffusion process. Here
starts, loosely speaking, the connection with path integral control. In case of a
more general measure, there is a similar connection with KL control. We have
already seen in previous chapters that the solution to the stochastic control problem
can expressed as an expected value, which in turn could be computed via a MC
sampling method. In this chapter we shall see that the best proposal distribution

34



5.2. The generic AMIS

for sampling is also the solution to a stochastic optimal control problem. In a sense,
the sampling- and control-problem are mathematically indistinguishable.

Outline. The remainder of this chapter is structured as follows. In Section 5.2
we review the generic AMIS method. Sections 5.3-5.5 consider the re-weighting
scheme, where in Section 5.3 we treat consistency, in Section 5.4 introduce discarding-
re-weighting, which we apply in Section 5.5 to sampling over diffusion processes.
In Section 5.6 we propose a specific proposal update in the context of diffusion
processes. This update is used in Section 5.7 to compare our new re-weighting
scheme with the balance heuristic.

The new results in this Chapter are from [ 1.

5.2 The generic AMIS

In this section we briefly review IS, MIS and AMIS for MC integration. In particular
we shall give a description of a generic AMIS.

Let (22, Z,Q) be a probability space with an E-valued random variable X, and
an R-valued function h(X). The goal is to calculate

Y =Eq[h(X)],

using a MC estimate. In particular we will be interested in variance reduction that
can be achieved via importance sampling. Let P be another probability measure on
(Q,Z), and let dQ/dP denote a density of Q relative to P, then

N

1

PP = ~ E h(X,) 3 (x,), where X, ~ P, (5.1
n=1

is an unbiased estimator for v, provided that for all events A € &
P(A)=0 = h=0onA,Q-almost surely. (5.2)

Often condition (5.2) is replaced by the stronger assumption of absolute continu-
ity, Q < P, so that the importance weight dQ/dP exists everywhere. Regarding
importance sampling, however, we only require that dQ/dP exists whenever h # 0.

Instead of using one proposal, P, the MC estimate can also be based on a mixture
of proposals. For k =1,...,K let P, be probability measures on (2, &) all satisfying
Condition (5.2). The Multiple IS (MIS) estimator is defined as

K N
N 1
M= 2> D RO (K wi (X, (53)
k=1n=1
XYI;NP,(, forn=1,...,N,
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5. Adaptive multiple importance sampling

where N = 211;1 N is the total number of samples. If the X r’: are independent, and
the re-weighting functions w; (x) satisfy

K
R £0 = =3 New(x) =1,
Nk=1

then Y™ is an unbiased estimate [ ]. Remarkably there are many choices
for wy. A particularly simple choice would be w; = 1, which will henceforth be
referred to as flat re-weighting. Another scheme that is of interest is the so called
balance-heuristic, which is also called deterministic multiple mixture. It is defined
by

1
1K dp :
& 2=1 N p (%)

The advantage of balance heuristic over flat re-weighting is that the former results
in lower variance mixed estimates when combining, for example, a (good) proposal
that gives low variance estimates with a (bad) proposal that gives high variance
estimates. The reason is, roughly speaking, that the reciprocal of the variance of the
balance mix is the reciprocal of the harmonic mean of the variance of the individual
proposals, while for the flat re-weighted mix this is the standard arithmetic mean.
For a study on the relative merits of various related re-weighting schemes for MIS
see [ s 1.

In order to improve the efficiency of a MIS algorithm, one can adapt the proposals
sequentially. This idea was first mentioned in [ ] with the name Adaptive Im-
portance Sampling (AIS), and more recently in [ ] with the name Adaptive
Multiple Importance Sampling (AMIS). Both of these methods adapt the proposals
at iteration k by adapting a parameter that is estimated using all samples that are
draw up to iteration k. The two methods differ in the re-weighting: AMIS uses the
balance-heuristic, while AIS uses flat re-weighting. If we instead consider the idea
of adaptive sequential updates without specifying the form of the proposal or the
re-weighting scheme we obtain a generic AMIS [ , 1

The computational complexity of the generic AMIS will depend on the specifics
of both the adaptation and re-weighting step. For example, AMIS with K iterations
that uses the balance-heuristic has a complexity of @(MK?), when N, = M samples
are used at each iteration k, while for flat re-weighting this is only ¢(MK).

The unbiasedness and consistency from MIS does in general not carry over to
the generic AMIS. The adaptation step introduces dependencies between samples
from different iterations. Furthermore, the re-weighting might introduce extra
correlations. Consistency has been established for a specific AMIS in [ ]
under the assumption that the adaptation is only based on the last N, samples
and that N, grows at least as fast as k. The downside of this method is that the
proposal cannot be updated very frequently, and only while using a subset of all the

wi(x) =
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5.3. Consistency of flat-AMIS

Algorithm 1 generic AMIS

e Atiteration k=1,...,K do

Adaptation. Construct a measure Py, possibly depending on X fl and Wln with
1<l<k,1<n<N\N

Generation. Forn=1,...,N; draw X* ~ P,

Re-weighting. For n=1,..., N, construct wﬁ.
Forl=1,...,k—1landn=1,...,N;, update w'.

ro_ 1 k N dQ 1 1 1
Output. Return ¢, = SN Dt Dones a5 XD )w,

available samples. In the next section we will establish consistency of AMIS with
flat re-weighting (flat-AMIS) for generic proposal adaptations without any such
restrictions.

5.3 Consistency of flat-AMIS

In this section we will prove that flat-AMIS is consistent. Consistency can only be es-
tablished when we make some assumptions on the proposals (see Example 5.2), but
these assumptions will be quite general and they often do not pose any restrictions
in practice.

Let & be the class of proposal distributions. Let || X||, = (E [|X|r])1/r denote
the L"-norm. We will require that there are constants r > 1 and C > 0, such that
forall P e &

|hx)9R ]|, <C,  X~P (5.4)
The following theorem is a new result from [ 1.

Theorem 5.1 (Flat-AMIS is consistent). Let 1/3 « be defined as in the output step of
Algorithm 1 using flat re-weighting, i.e. with Wl:l = 1. Suppose that both Eq. (5.2) and
(5.4) are satisfied, then

b=y as (5.5)
when >, _, N; = oo.

Proof. Leti(n,k) =n+,_, N; denote the total number of samples so far, and define
Y, =h(X ,’:)j—}%(X k). Then by Eq. (5.2) we obtain that Y; is an unbiased estimator of
1), when conditioning on all samples up to i, i.e. E[Y; | X}, j <i] =1). Therefore
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5. Adaptive multiple importance sampling

{Y;—};s0 is a martingale difference sequence (see Definition 5.6). Furthermore, by
the Minkowski inequality, we get that ||Y; — ||, < ||Vl + ||y ]I, < C+1), where we
used Eq. (5.4) for the last inequality. We conclude that Y; —4) is bounded uniformly
in the L™-norm. By Theorem 5.7, we obtain I} Zle Y, — 1) almost surely as

I — 0o. Now note that 1, =I"! Zle Y; when I =I(Ny, k) =2}, N;. O

Note that in the proof above we did not make any assumptions about the relative
size between k and N,. In particular the result is valid in the two extreme cases
when N, =1 for all k and K — 00, or when K is finite and N;, — oo for any k.

Example 5.2. Here we show that the condition of Eq. (5.4) in Theorem 5.1 is
not redundant, by giving a sequence of proposals that will not yield a consistent
estimate. Specifically, we consider the sampling problem that is given by

_de_ 1 1.2
Q(X)—dx—mexp( 1x?)

h(x) = exp(—3x?).
We will consider the class # = {P": u € R} of proposal distributions, where

P =2 = L exp(~i(x—up?)
dx 421 2 '
In Figure 5.1 we give a graphical representation of the importance sampling
situation, with parameters u = 1,2,3,7. Here you can see that the value of
h(x)q(x)/p,(x) gets smaller in regions where p“(x) is large, when u increases
(compare the dashed and the solid line). Indeed, it is not difficult to prove that
for all ¥y > 0 we have lim,_,, P“(Ih(X);I?u (X)] > y) = 0. So if we take u; =k,
and N, = 1 and consider the flat-AMIS estimate 1), = lef:l h(X k)%(x k), where
Xk ~ Pk = pU_ then also limg_, o PI‘(I[JK > y) =0 for all y. In words: the estima-
tor 1,[3 x goes to zero in probability when K — 0. In contrast, for all u, we have
Y = IEpu[h(X)%] = 1/4/2 (area under the dotted line in Figure 5.1). So, per

definition, ¢k is not a consistent estimator of .

Theorem 5.1 holds for the generic proposal adaptation step in Algorithm 1, and
condition Eq. (5.4) is the weakest that we were able to find. As a consequence,
Eq. (5.4) is rather abstract and it might be hard to verify in practice. Therefore it
might be sensible to replace Eq. (5.4) with a stronger condition that is easier to
verify. We will do this for diffusion processes in Section 5.5.

5.4 AMIS with discarding

Flat-AMIS yields, in contrast to balance-AMIS, a provably consistent estimate, see
Theorem 5.1. Furthermore, the computational complexity of flat-AMIS, is 6(MK),
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5.4. AMIS with discarding

Figure 5.1: For u=1,2,3,7 we plot h(x)q(x)/p“(x) (solid line), p“(x) (dashed
line) and the product h(x)q(x) (dotted line). Although the overlap between
h(x)q(x)/p"(x) and p“(x) becomes smaller for larger u, the product does not
depend on u.
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when N, = M for all k, which is optimal, while the complexity of balance-AMIS is
0(MK?). Nevertheless, balance-AMIS will outperform flat-AMIS in most practical
applications. The reason is that in a flat re-weighting scheme, samples from a poor
proposal typically dominate the computation, while this effect is averaged out by the
balance-heuristic. In this section we will show that a simple modification of the flat
re-weighting scheme results in an AMIS that is both consistent and computationally
efficient.

The issue with flat re-weighting can be understood in more detail as follows.
For a good proposal P; the terms h:iiqu do not deviate much from v). For a bad

proposal P, most terms hgTQz are close to zero, while a few will be exceptionally
large compared to 7). These large terms obviously dominate the IS estimate with
P,, but when mixing P; and P,, the large terms from P, will also dominate over
the samples from P;. As a result, the mixing estimate might be worse than the IS
estimate from the P; samples alone.

To improve upon flat re-weighting we therefore propose to simply ignore the
samples from bad proposals. Since the idea of AMIS is that with each adaptation
the proposal improves, one will expect that the variance decreases over time, and
the quality of the samples improves. This brings us to the following algorithm
which we will call discarding-AMIS, where we specifically choose the following
re-weighting step.

Discarding-re-weighting (at iteration k)
Determine a discarding time t;, € {1,2,...,k—1}.
Forl=1,...,tyandn=1,...,Nj, setwln =0.
Forl=t+1,...,kandn=1,...,N,, set Wf1 =k/(k—ty).

Note that with this re-weighting the output at iteration k of discarding-AMIS is

) 1 k&
= D > xR,

k
Zl:tk+l Nl =t +1n=1

The discarding time t; as given above is generic. We will now discuss two
specific implementations of t; that both have their merits.
The first choice is motivated by the consistency issue.

Remark 5.3. Theorem 5.1 still holds whenever ¢, is chosen independently of the

sampling process and when Zf: t+1 N1 = ©0. For example, one can take t; = [k/2]
so long as k — oo.

Secondly, let us consider a discarding time that aims to re-cycle the samples as
efficiently as possible. When we have a measure of performance, we can utilize
it to dynamically choose a discarding time that leaves us with the samples that
yield the highest performance. For example, at iteration k we can calculate the
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5.5. Consistent AMIS for diffusion processes

Effective Sample Size (ESS, see Eq. (5.10)) for all possible discarding times, and
then choose the one that maximizes ESS. Clearly this will introduce a new level of
dependence so that Theorem 5.1 no longer holds, and consistency is not guaranteed.
The computational cost of checking the ESS for all discarding times at iteration k is
O(Mk). If we do this at each iteration k = 1,...,K, we get a total complexity of
0(MK?), which is more than ¢(MK) for the computations of the weights of all
samples over all iterations. The latter however, might have a much larger prefactor,
so that in practice the cost for finding the best ESS is negligible. This is for example
the case with diffusion processes. Alternatively, one could consider the ESS for
a sparser set of possible discarding times, such as t = 2° fors = 1,2,...,log(K),
which will yield a complexity of (MK log(K)).

In Section 5.7 we illustrate the difference in efficiency between t, = [k/2] and
ESS-optimized discarding.

5.5 Consistent AMIS for diffusion processes

In this section we apply AMIS in order to compute expected values over a diffusion
process, i.e. with respect to the Wiener measure. By adding a drift to a diffusion
process, we obtain a change in measure, and hence proposals that can be used for
AMIS. We will give an easy to verify condition, involving the drift, that ensures
consistency of flat-AMIS.

In case of Wiener noise, the target measure Q, will implicitly be given by an
d-dimensional It6 process of the form

dX, =y dt +o.dwW, (5.6)

with (U )o<t<r and (o )o<;<r adapted processes of dimension d and d x m respec-
tively, and W, an m-dimensional Brownian motion. The function h in E,[h(X)] can
be any function of the entire path: h(X) =h ((XI)OStST)'

If we have an adapted m-dimensional process (u;)y<;<7, We can implement IS
with the proposal P* that is implicitly given by

dX, =u dt+ o, (u dt +dw,). 5.7)

Often the adapted processes are given as feedback functions: u, = u(t,X,), yu, =
w(t,X,), o, = o(t,X,). Instead of an explicit formula for the densities densities
dP"/dx, dQ/dx with respect to a reference (e.g. Lebesgue) measure dx, we only
have access to stochastic differential equations such as Eq. (5.7). On the upside,
we will be able to generate (approximate) samples, for example by using the Euler-
Maruyama method, [ ]. So the goal in this scenario is not to generate samples
close to the target Q; we can already do that by choosing u = 0. Instead, the
aim of IS, or more generally, of AMIS, in this context, is to reduce the variance
in the MC estimate of E,[h(X)] = Ep.[h(X)dQ/dP"]. In case of Wiener noise
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5. Adaptive multiple importance sampling

we are able to compute the importance weight dQ/dP", which, by the Girsanov
Theorem [ , ], is given by:

T T
dQ 1
Ipa :exp(—fo udeWt_EJ; ujutdt), (5.8)

where we have used T to denote the transpose. Note that since this equation is
exact, we do not have to worry about normalization.

Next, we will investigate consistency of flat-AMIS in case of Wiener noise. Let
% be a class of of adapted processes (u,)o<;<7 and let Z = {P* | u € %} be the
corresponding class of proposal measures. We will replace the abstract conditions
Eq. (5.2, 5.4), that appear in Theorem 5.1, by some assumptions that, although
stronger, are easier to verify in practice. The following theorem is a new result
from [ 1.

Theorem 5.4. Let % be a class of adapted processes. Suppose that
1. % is uniformly bounded in the L*° norm.
2. Thereis an r > 1 such that h € L™(Q).
Then flat-AMIS with proposals from the class & = {P" | u € %} is consistent.

Proof. See the Proofs and definitions Section 5.8. O

If the adapted processes u € % are given by feedback functions u, = u(t,X,),
then Condition 1 is, for example, satisfied when %/ is uniformly bounded. Similarly,
if h is of the form h(X) = fOT H(X,)dt, or of the form h(X) = H(X;), for some
function H, then Condition 2 is satisfied if H is bounded.

5.6 The choice of proposal

In this section, we propose a specific adaptation step for Algorithm 1 that can
be used to sample over diffusion processes. We will adapt the proposal P* by
estimating a ‘good’ feedback function u(t, x) that we can use in Eq. (5.7). Here we
interpret ‘good’ as a function u such that P" is close to an optimal proposal P*. For
this optimal proposal to exist, we will assume for the remainder of this section that
the function h is strictly positive. Note that if this is not the case, one can consider
h = (h; +1)—(h_+1), where h_(x) = max(h(x),0) and h_(x) = max(—h(x),0),
and compute Eq[h, + 1] and Eq[h_ + 1] separately.
Since h is strictly positive and E,[h(X)] < oo, the equation

dP*  h(X)
dQ  Eo[h(X)]’

(5.9)
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defines a measure P* that is equivalent to Q, which means, loosely speaking, that
their densities have the same support. The measure P* is the optimal proposal
because IS with P* gives zero variance estimates h(X)dQ/dP* = E,[h(X)]. Note
that, for the time being, this optimality is not of practical interest, since the definition
of P* requires Eq[h(X)], which is what we want to evaluate in the first place.

One might wonder whether there exists an optimal process (u})o<,<r satisfying
P* = P¥. We have seen in Chapter 4, when taking C = —log(h), that under certain
conditions there indeed is such a u*. Furthermore we have seen that the solution
to this problem is also the solution of a KL control problem, and in Section 3.9 we
have seen that close to optimal controls yield close to zero variance. Therefore,
stochastic control theory can be applied in order to find a good proposal-feedback-
function u(¢, x) with corresponding proposal measure P“. The idea is to use the
control computations, that are further detailed in Chapter 6, for the proposal
update in the Adaptation step in the generic AMIS as given in Algorithm 1. In
Section 5.7 we give a demonstration of the path integral adaptation, where it is
used to implement various AMIS algorithms for an example sampling problem over
a diffusion processes.

5.7 Numerical example

In this Section we provide a numerical example in which we compare discarding-
AMIS with balance-AMIS. In both cases the adaptation step will be implemented as
proposed in Section 5.6, via a path integral control computation, which is detailed
in Section 6.3.

We compare the various re-weighting schemes of AMIS in terms of Effective
Sample Size (ESS). In the literature [ R ] this is often defined by
N/ (1 + Varp [g—g]). However, since our goal is to minimize the variance of h‘;—g, we
instead consider

ESS? = N = al = >
1+ Varp [hz—g] Y2 14N Varp [P ]2

where the second equality follows from Varp[hz—g'] =N Varp[lﬁp ],which is a conse-
quence of the definition in Eq. (5.1). We remark that A* = ESS” /N is the fraction
of effective samples, which we analyzed in the context of diffusion processes in
Section 3.9; there we prove that proposals that are close to the optimal proposal,
have a fraction of effective samples that is close to 1, which is optimal.

Similar to [ ] we generalize the ESS for MIS:

N
1+ N Varp [Q,BMIS] P2’

ESSMIS =
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5. Adaptive multiple importance sampling

which can be evaluated approximately with the following sample estimate

(an y"lk)z
an (ynk)z ’

where y,;, = h(X 5)5—%(X r’;)wk(X f;), with X rlf ~ Py. The estimator ESS takes values
between 1 (when all but one y,; are zero) and N (when all y,; are equal, which
happens with positive probability iff P = P*).

In the following example we will describe a sampling problem that will be used
to compare discarding-AMIS with balance-AMIS.

ESS = (5.10)

Example 5.5. This example is similar to Example 5.2, where we interpret X as a
diffusion process, and generalize to R?. The target measure Q is implicitly given
by an d-dimensional standard Brownian motion. This is the process (X,)o<;<1 as
given in Eq. (5.6) with X, = 0 € R? and a constant drift and diffusion equal to
u, = 0,0, =1 € R4 The target function is a Gaussian function centered around a
target point z € R%:

h((X)o<e<1) = exp (_%(Xl _Z)T(Xl _Z))~

For importance sampling we will consider two different classes of proposals P¥,
corresponding with two different parameterizations of u that are of the linear form
u =Ag(t,x), as detailed in Section 6.2.

The first case that we consider is g = 1 € R. The class of proposals that
corresponds to g = 1 is in a sense the same class as we used in Example 5.2. It
is a degenerate case of a diffusion process: since the control u(t,x) =A € R? is
constant, all states, except the end state X;, of the entire path (X,)y<;<; can be
ignored, because h is only a function of X;.

The second class is constructed with g = (1,x) € R™. The corresponding
u(t,x) = Ag with A € R+*D*d are linear feedback controls, making the interme-
diate states X, with t < 1 relevant to the distribution of X;. This more complex
parametrization will give us more control over the process, and hence more flexibil-
ity in finding a good proposal. So although we need to learn a parameter A with a
higher dimension, we expect a higher ESS.

We use Example 5.5 withd =3,andz=2-1¢€ R3 (where 1 is the vector with
all ones) in order to compare four types of AMIS algorithms. All four methods will
be implemented with the same adaptation step; the path integral adaptation that is
described in Section 6.3, using a parametrization based on g = 1. The difference
between the four methods comes from the following different re-weighting schemes
that they use:

e Balance re-weighting, with N, = 1 sample per iteration.
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Figure 5.2: Average ESS of AMIS for various re-weighting schemes with adaptation
based on g = 1, taken over 100 independent runs. On the x-axis are the number of

samples that are used so far in the AMIS estimate, i.e., Zi;l N; fork=1,...,K.

e Optimized discarding time, i.e. flat re-weighting with t; that maximizes ESS
and N, = 1 sample per iteration.

o Flat re-weighting with discarding time t; = [k/2] and N, = 1 sample per
iteration.

e An iterative non-mixing scheme, with constant batch sizes N, , where only the
samples of the last iteration are used, i.e. with wy o< 1 and w;, =0 for k < K.

We report how the E/S\S, averaged over 100 runs, increased with the number of
samples that was used by each of the AMIS algorithms, see Figure 5.2. The upper
bound is the optimal achievable ESS within the class of proposals corresponding to
g = 1. The slope of this upper bound is max{ESS”": u=A, A€ R} =(3/4). The
two methods that perform the best are balance-AMIS and optimized-discarding-
AMIS. These two methods make optimal use of new samples when the underlying
parameter A has converged to it’s optimal value, as can be seen by the slope that
matches the upper bound. When discarding half of the samples, the slope in average
ESS is halved as well. The iterative non-mixing schemes perform the worst: the
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Figure 5.3: Average ESS of balance-AMIS and optimized-discarding-AMIS with
adaptation based on g = (x, 1), taken over 100 independent runs. On the x-axis

are the number of samples that are used so far in the AMIS estimate, i.e., Zle N;
fork=1,...,K.

average ESS never uses more than the N, samples of one batch in the estimate, and
therefore ESS does not increase with k, or equivalently with the total number of
samples used.

A fifth method that we also tested uses flat re-weighting without discarding.
Although this method seemed to perform reasonably on average, this result is not
significant because of very large error bars. For these reasons this method is not
included in Figure 5.2.

We make the same comparison between optimized-discarding-AMIS with balance-
AMIS while using the more complex parametrization with g = (1, x). The results
are reported in Figure 5.3. Compared to the experiment with g = 1 we notice that
the average ESS is higher, and that the two methods perform similar; balance-AMIS
is slightly better. However, balance-AMIS also required a lot more computational
resources to produce these results, see Table 5.1. From the table it appears that com-
putation time for balance-AMIS is roughly proportional to the number of iterations.
This is exactly what one would expect based on the complexity @(K2M) = 0(KN)
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5.8. Proofs and definitions

Table 5.1: Computation time in seconds for 100 runs of AMIS based on g = (1, x)
for a fixed number N = 211;1 N, =200 of samples, but with different numbers of
iterations K.

K|10 25 50 100 200
balance | 46 104 200 392 780
optimized-discarding | 5.9 6.2 64 6.9 7.9

of the adaptation step, when the total number of samples N = 200 is fixed. This
complexity can be avoided in the adaptation step for optimized-discarding, because
with that re-weighting scheme the weights are not changed in future iterations. We
conclude that for a given number of samples optimized-discarding-AMIS performs
almost as well as balance-AMIS, but at a fraction of the computational cost.

5.8 Proofs and definitions

Lemma 5.9 and all proofs from this section are new results from [ 1.

Definition 5.6. Let {X,},- be a sequence of random variables that is adapted to
the filtration {Z,},~o. Then X is called a Martingale Difference Sequence w.r.t. &
when for alln >0

1. E[X,] < oo,
2. E[X,1 | F1]1=0.

Theorem 5.7 (Generalized Strong Law of Large Numbers). Let {Y,,},-o be a Mar-
tingale Difference Sequence relative to {F,}nso- If {Yn}nso IS uniformly bounded in
the L"-norm for some r > 1, then

N
1
N Z Y,, — 0 almost surely, as N — ©0.

n=1
Proof. This is proven in [ ] for Mixingale Sequences, which are more general
than Martingale Difference Sequences. O

Remark 5.8. The theorem above does not generalize to the case r = 1. However,
for r =1 there is a weak law (convergence in probability) when the set {Y,},~ is
uniformly integrable, see [ 1-
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5. Adaptive multiple importance sampling

Lemma 5.9. Let % be a set of adapted processes. Suppose that % is uniformly
bounded in the L°° norm, i.e. there is a constant C such that for all u € %,

llulloo =inf{A=0: |u,| <Aforall t,P*-almost surely} < C.
Then dQ/dP" is bounded uniformly in the L"-norm for all r > 1.
Proof. Letr > 1 and u € %. Choose a such thata > r.
ldQ/dPY||, = ”exp fo tTdW — —fout u, dt ”

—||exp fo tTdW 5 Outudt)exp( = Outudt Hr

Let b be such that % = % + % Then b > 1, and by Holders Inequality and the bound
on u we obtain respectively

[[dQ/dPY||, < ”exp(—fgujdwt - Zfou u, dt Ha Hexp(‘%lfgujutdt)”b

< ”é”(—afgutTth) |i aexp((a—l)CZT/Z).

The Doléan exponential & (—a fo utTth) is a local martingale that is positive.
Hence, it is a super martingale, so that

ldQ/dP"|l, < exp((a—1)C?T/2). O

Proof of Theorem 5.4. Note that Assumption 1 of the theorem implies Novikov’s
Condition, so that P* ~ Q for all u € %. So in particular we have P* < Q and and
therefore the condition of Eq. (5.2) holds.

Now we will show that condition Eq. (5.4) also holds, so that consistency follows
from Theorem 5.1. Let r > 1, and choose a, b > 1 such that % = % + %. Then, using
Holders inequality, we get

IRl < Ikl |51l -

Now, ||h||, is bounded by Assumption 2 of the theorem, and H ar || , is bounded by
Lemma 5.9.
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Chapter 6

The path integral control
algorithm

6.1 Introduction

Since in a stochastic system there is uncertainty about the future states, a state
independent feed forward control cannot be optimal. Instead, the optimal control
must in general be a function of the state, i.e., a feedback control. There are two
ways to implement feedback. Either the optimal control action is be re-computed
on the fly each time a new state is visited, or a state feedback control function is
learned in advance of the problem. Although the former solution is quite resource
intensive, it can be implemented relatively straightforward. In Chapter 7 we give a
detailed description of this approach. In this chapter we will show how the Main
Path Integral Control Theorem can be used in order to construct parametrized
feedback control functions.

In order to construct our feedback controllers we shall need to evaluate path
integrals, which is achieved with Monte Carlo integration. The computations
that are required can be very expensive due to high variance. Fortunately we
have already addressed this issue: in Section 3.9 we have shown that importance
sampling can be implemented efficiently with control functions, and in Chapter 5
we analyzed how to optimize the sampling scheme. These results will all be put
together in this Chapter, resulting in the Path Integral Control Algorithm.

Outline. This chapter is structured as follows. In Section 6.2 we propose a
parametrization of the control, and we show how to obtain a good parameter
with path integrals. In Section 6.3 we combine this with MC integration and
sampling techniques, in order to create feedback control functions. We give an
illustration of the constructed algorithm in Section 6.4.
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6. The path integral control algorithm

6.2 Parametrized control

In this section we illustrate how the Main Path Integral Control Theorem can be
used to construct a feedback controller i, that will in a sense approximate u*. The
starting point is that we choose a linear parametrization of the form

a(t,x)=Ag(t,x).

Here g(t,x) € R! is an [-dimensional basis function that should be chosen by the
user in advance of running the path integral control algorithm, and A € R™! is a
parameter that shall be optimized by the algorithm. The idea behind the algorithm
is to approximate u* by i by optimizing over A. We can do this, for given g (and a
given importance sampling control u), if we substitute @ for u* in Eq. (3.16) of the
Main Path Integral Control Theorem. This will yield a system of equations that can
be solved for A as follows:

th th -1
A* :]Epu [e_suf (utdt+th)g;r:| (]Epu [e_suf gtg:dt}) . (6-1)
to to

Here E,. denotes that the expected value is w.r.t. the process given by Eq. (3.1),
and S* = S;‘O is defined as in Eq. (3.2).

The solution A* is optimal in the sense that the corresponding PY (where I* =
A*g) minimizes the Kullback-Leibler divergence between P* and P?, i.e. Dy, (P*||P%),
over the class of proposal feedback functions with the given parametrization {ii =
Ag |Ae R™!}, see [ , ]. Interestingly, the optimal control problem,
when seen as a KL control problem, requires us to minimize Dy; (P%||P*) instead;
see Eq. (4.2).

The smallest possible divergence Dy, (P*||P%) will depend on the function g(t, x) €
R!. Generally, complex g, i.e. with [ large, yield more expressive power. In practice,
however, there is a trade-off, since it is difficult to obtain good estimates of Eq. (6.1),
when [ is large. From a more practical point of view, it should be noted that the
scenario where the algorithm is applied might put constraints on g. Whether or not
that is the case, it is clear that the choice of the function g is very important, be-
cause it determines what kind of controller you will create. For example, two types
of controllers, which have perhaps been applied the most, are (1) the open-loop
feed forward controller, and (2) a linear feedback controller. The (time constant)
open-loop controller can be realized with g = 1, and the linear feedback controller
with g = (1,x). Note that time dependence can be introduced by using piece-
wise time-constant controls, i.e. with functions of the form g(t,x) = >, g(x)1,c A
where the A; are small time intervals that cover [t, t;].
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6.3. Control computations

6.3 Control computations

In this section we give a detailed description of the path integral control algorithm.
This algorithm computes MC estimates of expected values over a diffusion process.
Therefore the algorithm can be used to solve a sampling problem, as described
in Section 5.5, but it can also be used to solve a path integral control problem
as described in Section 3.2. In order to compute the MC estimates efficiently we
will use adaptive multiple importance sampling (AMIS), as descried in Chapter 5.
Therefore the overall structure of the path integral control algorithm is very similar
to Algorithm 1 in Section 5.2.

Algorithm 2 Path Integral Control Algorithm with AMIS

Iterate. Fork=1,...,K do

Path Integral Adaptation. Construct a feedback control u(t,x), possibly
depending on Xi and Wln withl1 <l <kand1<n<N,.

Generation. For n =1,...,N, draw sample paths X L‘ ~ Py, where P, = P'%,
and compute the cost Sfj of the path.

Re-weighting. For n=1,..., N, construct W’:l.
Forl=1,...,k—landn=1,...,N, update Wl

Intermediate Output. Return J; = —log =— Zl Zz S e Sl

and return u (¢, x).

Output. Return the optimal control estimate u;;(t, x) that would be computed
by the Adaptation at iteration K + 1.

This algorithm runs k = 1,...,K iterations, and at each iteration four steps
are executed. The first step is the Path Integral Adaptation, that implements
the control computations for importance sampling. This step contains the core
of path integral control. It is explained in more detail below. The second step is
Generation. Here N, samples paths are drawn from the process given in Eq. (3.1)
with importance control u(t, x) = u,(t, x), and the cost of each path is calculated
using Eq. (3.2). Approximate samples from a diffusion process can for example
be obtained with the Euler-Maruyama method, or similar higher order schemes,
see [ ]. The third step is the computation of the Re-weighting. This step is
discussed in detail in Sections 5.3 and 5.4. In the Intermediate Output step we
return the estimate J*, based on Eq. (3.15).

Next, we give a detailed description of the Path Integral Adaptation, that
is given in pseudo code in Algorithm 2. Given a parametrization of the control
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Algorithm 3 Path Integral Adaptation (at iteration k)

e If k =1 (initialization), set:

Ay =0eR™
F,=0€R™,
G, =0eRM™,

e Else,if k > 1,
Forn=1,...,N,_4, set

g =g (6, (X)),

nk—1 __ n,k—1
u, —Algt s

RY =R(e, (7))
ty

_ 1T _ 1 1T e _
sk 1=Q(th)+f uL (dwh) 4y kg e 4 R

[0 ‘ 2 ‘
And set
k-1 N ty
o= 3> A (el | aertTat,
o o
Fo= 303 h(x!) el f (wide + (aw?),) g Tat,
to

=1 n=1
Ak = FkG’zl.

Let uy(t,x) = A, g(t, x).
Let P, be the measure induced by Eq. (3.1) with u = u,.
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u(t,x) =Ag(t,x), for a given function g(t, x), Algorithm 2 computes a MC estimate
of the optimal cost to go J* as given in Eq. (3.15), and the optimal parameter A*
as given in Eq. (6.1). The MC estimates are computed sequentially, where at each
iteration k = 1,...,K we draw N, new samples. At iteration k we use importance
sampling with the estimate A; of A*, so that the combined sample estimate over
multiple iterations is an AMIS estimate. More specifically, at iteration k we draw N,
samples from the proposal distribution P, = P!, where u;(t,x) = Azg(t,x). The
parameters A; are computed with samples from previous iterations according to
Eq. (6.1), which we state here again

A = F*G*—l,

dQ ("
F*:EPU [h(X)@J (utdt+dW[)gtT],
to

aqQ (" -
G =Ep |h(X)— dt|.
p[( )dPuL 88 }

At each iteration k the terms F* and G* will be estimated by F; and G, respectively.

Note that the path weights e~ are also required in the Intermediate Output
step of Algorithm 2. The time integrals above could, for example, be estimated
approximately with the Euler-Maruyama method. We remark that the algorithm
above is of order @(MK?) when N, = M for all k, because it is given for a generic
re-weighting scheme. When flat- or discarding-re-weighting is used, G, and F;
might be computed incrementally because the re-weighting does not change once
set, dropping the first sum, so that the algorithm becomes ¢(MK).

6.4 Example

In this section we give an illustration of the path integral control algorithm that
is described in the previous section. The focus of the illustration is on the path
integral adaptation, and therefore we run Algorithm 2 with only K = 1 iteration,
i.e. we do not use AMIS (for an example that illustrates the effect of AMIS, see
Section 5.7). We will illustrate the effect of various choices of the parameterizing
function g(t, x) on the quality of the solution u(t, x) = Ag(t, x).

For the illustration we consider the following control problem, of which we
know the analytical solution.

Example 6.1 (Geometric Brownian Motion). The path integral control problem
with dynamics and cost given respectively by

dX" = X" ((1/2 +u)dt +dW,),

1 1
1
S* = 5log(X4)* + 3 J udt +J ul dw,,
0

0
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Table 6.1: Performance estimates of various controllers based on 10* sample
paths. Although for numerical consistency we used 10% sample paths to compute
the parameters, only roughly 10? samples are required to obtain well-performing
controllers.

| u=0 u® u u® a(t)log(x) u*

E[S'] [ 7526 5139 1507 1.461 1.422 1.420
Var(a®) | 1.981 1.376 0.143 0.0506  0.0085  0.0071
ESSY 3354 4208 8748 9518 9915 9929

with 0 < t <1 and initial state X, = 1/2, has solution

—51log(x)

wX= s ot

It is clear that a very good parametrization of the problem in Example 6.1 can
be obtained with the basis functions: g(t,x) = log(x)1,cs,, where the A; are
small time intervals. This is because the state dependence, log(x), is exactly as
in u*. So the path integral control algorithm only has to approximate the time
dependence on the intervals A;. We shall also consider three parametrizations that
cannot describe u* very well: a constant, an affine, and a quadratic function of the
state. The three controllers that we obtain in this way are denoted by u©®, u™®,
and u®, e.g., u@(t,x) = a(t) + b(t)x + c(t)x2. The connection between the time
dependent functions a, b and ¢ with the parameterizing g is, for example in the
state-independent case that g = 1,¢,, and a(t) = DAl e a,» and analogously for
b and c. Here, the A; are to be estimated (in this case, independently for each tine
interval A;) by the path integral adaptation.

The performance of the resulting control functions is given in Table 6.1. The
row E[S"(t,)] gives the expected cost, which we want to minimize. The row
Var(a') gives the estimated variance of the normalized path weight a* = 5" /),
which is directly related to the estimated ESS" as given in Eq. 5.10, by EES" =
N/(Var(a") + 1).

Clearly the open-loop controller u®(t, x) = a(t) improves upon the zero con-
troller u(t, x) = 0. The control further improves when the affine and quadratic basis
functions are subsequently considered. The best result is obtained, unsurprisingly,
with the logarithmic parametrization.

In Figure 6.1 we plot the state dependence of the feedback controllers at the
intermediate time ¢t = 1/2. Although the parametrized functions yield a control
for all x, we are mainly interested in regions of the state space that are likely to be
visited by the optimal process X;. This is visualized by a histogram of 10* particles

that are drawn from X7_, /2 We observe that the optimal logarithmic shape is fitted,
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Figure 6.1: The approximate controls calculated with 10* sample paths in two im-
portance sampling iterations using a time discretization of dt = 0.001 for numerical
integration. The histogram was created with 10* draws from X f att=1/2.

and that more complex parametrizations yield a better fit in the important regions.
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Chapter 7

Real-time stochastic optimal
control for multi-agent
quadrotor systems

7.1 Introduction

The recent surge in autonomous Unmanned Aerial Vehicle (UAV) research has
been driven by the ease with which platforms can now be acquired, evolving
legislation that regulates their use, and the broad range of applications enabled by
both individual platforms and cooperative swarms. Example applications include
automated delivery systems, monitoring and surveillance, target tracking, disaster
management and navigation in areas inaccessible to humans.

Quadrotors are a natural choice for an experimental platform, as they provide
a safe, highly-agile and inexpensive means by which to evaluate UAV controllers.
Figure 7.1 shows a 3D model of one such quadrotor, the Ascending Technologies
Pelican. Quadrotors have non-linear dynamics and are naturally unstable, making
control a non-trivial problem.

Stochastic optimal control (SOC) provides a promising theoretical framework
for achieving autonomous control of quadrotor systems. In contrast to deter-
ministic control, SOC directly captures the uncertainty typically present in noisy
environments and leads to solutions that qualitatively depend on the level of un-
certainty [ ]. However, with the exception of the simple Linear Quadratic
Gaussian case, for which a closed form solution exists, solving the SOC problem
requires solving the Hamilton-Jacobi-Bellman (HJB) equation. This equation is
generally intractable, and so the SOC problem remains an open challenge.

In such a complex setting, a hierarchical approach is usually taken and the con-
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Figure 7.1: Control hierarchy: The path integral controller (1) calculates target
velocities/heights for each quadrotor. These are converted to roll, pitch, throttle
and yaw rates by a platform-specific Velocity Height PID controller (2). This control
is in turn passed to the platform’s flight control system (3), and converted to relative
motor speed changes.

trol problem is reduced to follow a state-trajectory (or a set of way points) designed
by hand or computed offline using trajectory planning algorithms [Ken12]. While
the planning step typically involves a low-dimensional state representation, the
control methods use a detailed complex state representation of the UAV. Examples
of control methods for trajectory tracking are the Proportional Integral Derivative
or the Linear-Quadratic regulator.

We introduced a generic class of SOC problems in Chapter 3 for which the
controls and the cost function are restricted in a way that makes the HJB equation
linear and therefore more efficiently solvable. This class of problems is known as
path integral (PI) control, linearly-solvable controlled diffusions or Kullback-Leibler
control, and it has lead to successful robotic applications, e.g. [KUD13,RTM*12b,
TBS10]. A particularly interesting feature of this class of problems is that the
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computation of optimal control is an inference problem with a solution given in

terms of the passive dynamics. In a multi-agent system, where the agents follow

independent passive dynamics, such a feature can be exploited using approximate

inference methods such as variational approximations or belief propagation [ ,
1-

In this chapter, we show how PI control can be used for solving motion planning
tasks on a team of quadrotors in real time. We combine periodic re-planning with
receding horizon, similarly to model predictive control, with efficient importance
sampling. At a high level, each quadrotor is modelled as a point mass that follows
simple double integrator dynamics. Low-level control is achieved using a standard
Proportional Integral Derivative (PID) velocity controller that interacts with a real
or simulated flight control system. With this strategy we can scale PI control to ten
units in simulation. Although in principle there are no further limits to experiments
with actual platforms, our first results with real quadrotors only include three units.
To the best of our knowledge this has been the first real-time implementation of PI
control on an actual multi-agent system.

In the next section we describe related work. We introduce our approach in
Section 7.3. Results are shown on three different scenarios in Section 7.4. Finally,
Section 7.5 concludes this chapter.

7.2 Related work on UAV planning and control

There is a large and growing body of literature related to this topic. In this section,
we highlight some of the most related literature to the presented approach. An
recent survey of control methods for general UAVs can be found in [ 1-
Stochastic optimal control is mostly used for UAV control in its simplest form, as-
suming a linear model perturbed by additive Gaussian noise and subject to quadratic
costs (LQG), e.g. [ ]. While LQG can successfully perform simple actions like
hovering, executing more complex actions requires considering additional correc-
tions for aerodynamic effects such as induced power or blade flapping [ 1.
These approaches are mainly designed for accurate trajectory control and assume a
given desired state trajectory that the controller transforms into motor commands.
Model Predictive Control (MPC) has been used to optimize trajectories in multi-
agent UAV systems [ ]. MPC employs a model of the UAV and solves an
optimal control problem at time ¢ and state x(t) over a future horizon of a fixed
number of time-steps. The first optimal move u*(t) is then applied and the rest of
the optimal sequence is discarded. The process is repeated again at time t + 1. A
quadratic cost function is typically used, but other more complex functions exist.
MPC has mostly been used in indoor scenarios, where high-precision motion
capture systems are available. For instance, in [ ] authors generate smooth
trajectories through known 3-D environments satisfying specifications on interme-
diate waypoints and show remarkable success controlling a team of 20 quadrotors.
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Trajectory optimization is translated to a relaxation of a mixed integer quadratic pro-
gram problem with additional constraints for collision avoidance, that can be solved
efficiently in real-time. Examples that follow a similar methodology can be found
in [ , ]. Similarly to our approach, these methods use a simplified
model of dynamics, either using the 3-D position and yaw angle [ , ]
or the position and velocities as in [ ]. However, these approaches are inher-
ently deterministic and express the optimal control problem as a quadratic problem.
In our case, we solve an inference problem by sampling and we do not require
intermediate trajectory waypoints.

In outdoor conditions, motion capture is difficult and Global Positioning System
(GPS) is used instead. Existing control approaches are typically either based on
Reynolds flocking [ R R R ] or flight formation [ )

]. In Reynolds flocking, each agent is considered a point mass that obeys
simple and distributed rules: separate from neighbors, align with the average
heading of neighbors and steer towards neighborhood centroid to keep cohesion.
Flight formation control is typically modeled using graphs, where every node is an
agent that can exchange information with all or several agents. Velocity and/or
position coordination is usually achieved using consensus algorithms.

The work in [ ] shares many similarities with our approach. Authors
derive a stochastic optimal control formulation of the flocking problem for fixed-
wings UAVs. They take a leader-follower strategy, where the leader follows an
arbitrary (predefined) policy that is learned offline and define the immediate cost
as a function of the distance and heading with respect to the leader. Their method
is demonstrated outdoors with 3 fixed-wing UAVs in a distributed sensing task. As
in this chapter, they formulate a SOC problem and perform MPC. However, in our
case we do not restrict to a leader-follower setup and consider a more general class
of SOC problems which can include coordination and cooperation problems.

Planning approaches

Within the planning community, [ ] consider search and tracking tasks, similar
to one of our scenarios. Their approach is different to ours, they formulate a plan-
ning problem that uses used search patterns that must be selected and sequenced to
maximise the probability of rediscovering the target. [ ]and [ ] con-
sider a different problem: dynamic data acquisition and environmental knowledge
optimisation. Both techniques use some form of replanning. While [ ] uses
a Markov Random Field framework to represent knowledge about the uncertain
map and its quality, [ ] rely on partially-observable MDPs. All these works
consider a single UAV scenario and low-level control is either neglected or deferred
to a PID or waypoint controller.
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Recent progress in path integral control

There has been significant progress in PI control, both theoretically and in applica-
tions. Most of existing methods use parametrized policies to overcome the main lim-

itations (see Section 7.3.1). Examples can be found in [ i s ]. In
these methods, the optimal control solution is restricted by the class of parametrized
policies and, more importantly, it is computed offline. In [ ], authors propose

to approximate the transformed cost-to-go function using linear operators in a re-
producing kernel Hilbert space. Such an approach requires an analytical form of the
PI embedding, which is difficult to obtain in general. In [ ], alow-rank tensor
representation is used to represent the model dynamics, allowing to scale PI control
up to a 12-dimensional system. More recently, the issue of state-dependence of the
optimal control has been addressed [ ], where a parametrized state-dependent
feedback controller is derived for the PI control class.

Finally, model predictive PI control has been recently proposed for controlling
a nano-quadrotor in indoor settings in an obstacle avoidance task [ ]. In
contrast to our approach, their method is not hierachical and uses naive sampling,
which makes it less sample efficient. Additionally, the control cost term is neglected,
which can have important implications in complex tasks involving noise. The
approach presented here scales well to several UAVs in outdoor conditions and is
illustrated in tasks beyond obstacle avoidance navigation.

7.3 Path integral control for multi-UAV planning

We first briefly review PI control theory. This is followed by a description of the
proposed method used to achieve motion planning of multi-agent UAV systems
using PI control.

7.3.1 Path integral control

We consider continuous time stochastic control problems, where the dynamics and
cost are respectively linear and quadratic in the control input, but arbitrary in the
state. More precisely, consider the following stochastic differential equation of the
state vector X € R" under controls u € R™

dx =f(x)dt + G(x)(udt + d&), (7.1)

where £ is m—dimensional Wiener noise with covariance £, € R™*™ and f(x) € R"
and G(x) € R™™ are arbitrary functions, f is the drift in the uncontrolled dynamics
(including gravity, Coriolis and centripetal forces), and G describes the effect of the
control u into the state vector x.

A realization T = X;.4,.7 of the above equation is called a (random) path. In
order to describe a control problem we define the cost that is attributed to a path
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(cost-to-go) by

1
S(7|xg,u) = ro(xp) + Z (rt(xt)dt + EutTRut) dt, (7.2)

t=0:dt:T—dt

where r;(x;) and r.(x,) are arbitrary state cost terms at end and intermediate
times, respectively. R is the control cost matrix. The general stochastic optimal
control problem is to minimize the expected cost-to-go w.r.t. the control

u* = argminE[S(7|xy, u)].
u

In general, such a minimization leads to the Hamilton-Jacobi-Bellman (HJB)
equation, which is a non-linear, second order partial differential equation. However,
under the following relation between the control cost and noise covariance %, =
AR™!, the resulting equation is linear in the exponentially transformed cost-to-go
function. The solution is given by the Feynman-Kac Formula, which expresses
optimal control in terms of a path integral, which can be interpreted as taking the

expectation under the optimal path distribution [ ]
p"(71%o) o< p(7|%p, u) exp(=S(7[xo,u)/A), (7.3)
(0 0x0)) = (e + (5 —§)/d1), (7.4)

where p(7|xy,u) denotes the probability of a (sub-optimal) path under equa-
tion (7.1) and (-) denotes expectation over paths distributed by p*.

The constraint %, = AR forces control and noise to act in the same dimensions,
but in an inverse relation. Thus, for fixed A, the larger the noise, the cheaper the
control and vice-versa. Parameter A act as a temperature: higher values of A result
in optimal solutions that are closer to the uncontrolled process.

Equation (7.4) permits optimal control to be calculated by probabilistic inference
methods, e.g., Monte Carlo. An interesting fact is that equations (7.3, 7.4) hold
for all controls u. In particular, u can be chosen to reduce the variance in the
Monte Carlo computation of (u: (xo)> which amounts to importance sampling. This
technique can drastically improve the sampling efficiency, which is crucial in high
dimensional systems. Despite this improvement, direct application of PI control into
real systems is limited because it is not clear how to choose a proper importance
sampling distribution. Furthermore, note that equation (7.4) yields the optimal
control for all times t averaged over states. The result is therefore an open-loop
controller that neglects the state-dependence of the control beyond the initial state.

7.3.2 Multi-UAV planning

The proposed architecture is composed of two main levels. At the most abstract
level, the UAV is modeled as a 2D point-mass system that follows double integrator
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dynamics. At the low-level, we use a detailed second order model that we learn
from real flight data [ ]. We use model predictive control combined with
importance sampling. There are two main benefits of using the proposed approach:
first, since the state is continuously updated, the controller does not suffer from the
problems caused by using an open-loop controller. Second, the control policy is not
restricted by any parametrization.

The two-level approach permits to transmit control signals from the high-level
PI controller to the low-level control system at a relatively low frequencies (we use
15Hz in this work). Consequently, the PI controller has more time available for
sampling a large number of trajectories, which is critical to obtain good estimates
of the control. The choice of 2D in the presented method is not a fundamental
limitation, as long as double-integrator dynamics is used. The control hierarchy
introduces additional model mismatch. However, as we show in the results later,
this mismatch is not critical for obtaining good performance in real conditions.

Ignoring height, the state vector x is thus composed of the East-North (EN)
positions and EN velocities of each agenti = 1,..., M as x; = [p;,v;]" where p;,v; €
R2. Similarly, the control u consists of EN accelerations u; € R2. Equation (7.1)
decouples between the agents and takes the linear form

dx; = Ax;dt + B(u;dt + d&,),

0 1 0
a=[0 1] s=[0] 79

Notice that although the dynamics is decoupled and linear, the state cost r,(x,) in
equation (7.2) can be any arbitrary function of all UAVs states. As a result, the
optimal control will in general be a non-linear function that couples all the states
and thus hard to compute.

Given the current joint optimal action u} and velocity v, the expected velocity
at the next time t’ is calculated as v, = v, + (t' — t)u; and passed to the low-level
controller. The final algorithm optionally keeps an importance-control sequence
U,.4;.++y that is incrementally updated. We summarize the high-level controller in
Algorithm 4.

The importance-control sequence u,.g4,.;,y iS initialized using prior knowledge
or with zeros otherwise. Noise is dimension-independent, i.e. &, = aild. To
measure sampling convergence, we define the Effective Sample Size (ESS) as ESS :=
1/ lejzl wi, which is a quantity between 1 and N. Values of ESS close to one
indicate an estimate dominated by just one sample and a poor estimate of the
optimal control, whereas an ESS close to N indicates near perfect sampling, which
occurs when the importance- equals the optimal-control function.

63



7. Real-time stochastic optimal control for multi-agent quadrotor systems

Algorithm 4 PI control for UAV motion planning

1: function PICONTROLLER(N, H,dt,r.(-), Xy, Wrgrer )

2: fork=1,...,N do

3 Sample paths T = {X;.4¢.r+1 }x With Eq. (7.5)

4: end for

5: Compute S = S(7,|xy,u) with Eq. (7.2)

6 Store the noise realizations {&,.;,.,x }«

7 Compute the weights: w, = e 5/*/ 3" e=51/%

8 fors=t:dt:t+Hdo

9: u; :u5+%zkwk ({§s+dt}k_{€s}k)

10: end for

11: Return next desired velocity: v, 4, = v, +ujdt and u
sampling at t +dt

12: end function

*

t:dt:t+H for importance
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Figure 7.2: The flight control system (FCS) is comprised of two control loops: one
for stabilization and the other for pose control. A low-level controller interacts with
the FCS over a serial interface to stream measurements and issue control.

7.3.3 Low level control

The target velocity v = [vg VN]T is passed along with a height p;; to a Velocity-Height
controller. This controller uses the current state estimate of the real quadrotor y =
[pgpyPu® O uvwpqr]', where (pg, py,py) and (¢, 6,v) denote navigation-
frame position and orientation and (u, v, w), (p, g, ) denote body-frame and angular
velocities, respectively. It is composed of four independent PID controllers for roll
qg, pitch 6, throttle 7 and yaw rate 7. that send the commands to the flight control
system (FCS) to achieve v.

Figure 7.2 shows the details of the FCS. The control loop runs at 1kHz fusing
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triaxial gyroscope, accelerometer and magnetometer measurements. The accelerom-
eter and magnetometer measurements are used to determine a reference global
orientation, which is in turn used to track the gyroscope bias. The difference be-
tween the desired and actual angular rates are converted to motor speeds using the
model in [ 1.

An outer pose control loop calculates the desired angular rates based on the
desired state. Orientation is obtained from the inner control loop, while position
and velocity are obtained by fusing GPS navigation fixes with barometric pressure
(BAR) based altitude measurements. The radio transmitter (marked TX in the
diagram) allows the operator to switch quickly between autonomous and manual
control of a platform. There is also an acoustic alarm on the platform itself, which
warns the operator when the GPS signal is lost or the battery is getting low. If the
battery reaches a critical level or communication with the transmitter is lost, the
platform can be configured to land immediately or alternatively, to fly back and
land at its take-off point.

7.3.4 Simulator platform

We have developed an open-source framework called CRATES *. The framework
is a implementation of QRSim [ ) ] in Gazebo, which uses Robot
Operating System (ROS) for high-level control. It permits high-level controllers to
be platform-agnostic. It is similar to the Hector Quadrotor project [ 1 with
a formalized notion of a hardware abstraction layers.

The CRATES simulator propagates the quadrotor state forward in time based
on a second order model [ ]. The equations were learned from real flight
data and verified by expert domain knowledge. In addition to platform dynamics,
CRATES also simulates various noise-perturbed sensors, wind shear and turbulence.
Orientation and barometric altitude errors follow zero-mean Ornstein-Uhlenbeck
processes, while GPS error is modeled at the pseudo range level using trace data
available from the International GPS Service. In accordance with the Military
Specification MIL-F-8785C, wind shear is modeled as a function of altitude, while
turbulence is modeled as a discrete implementation of the Dryden model. CRATES
also provides support for generating terrain from satellite images and light detection
and ranging (LIDAR) technology, and reporting collisions between platforms and
terrain.

7.4 Results

We now analyze the performance of the proposed approach in three different tasks.
We first show that, in the presence of control noise, PI control is preferable over

LCRATES stands for ’Cognitive Robotics Architecture for Tightly-Coupled Experiments and Simulation’.
Available at https://bitbucket.org/vicengomez/crates
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[

Figure 7.3: Drunken Quadrotor: a red target has to be reached while avoiding
obstacles. (Left) the shortest route is the optimal solution in the absence of noise.
(Right) with control noise, the optimal solution is to fly around the building.

other approaches. For clarity, this scenario is presented for one agent only. We
then consider two tasks involving several units: a flight formation task and a
pursuit-evasion task.

We compare the PI control method described in Section 7.3.2 with iterative
linear-quadratic Gaussian (iLQG) control [TL.O5]. iLQG is a state-of-the-art method
based on differential dynamic programming, that iteratively computes local linear-
quadratic approximations to the finite horizon problem. A key difference between
iLQG and PI control is that the linear-quadratic approximation is certainty equivalent.
Consequently, iLQG yields a noise independent solution.

7.4.1 Scenario I: Drunken Quadrotor

This scenario is inspired in [Kap05b] and highlights the benefits of SOC in a quadro-
tor task. The Drunken Quadrotor is a finite horizon task where a quadrotor has to
reach a target, while avoiding a building and a wall (figure 7.3). There are two
possible routes: a shorter one that passes through a small gap between the wall
and the building, and a longer one that goes around the building. Unlike SOC, the
deterministic optimal solution does not depend on the noise level and will always
take the shorter route. However, with added noise, the risk of collision increases
and thus the optimal noisy control is to take the longer route.

This task can be alternatively addressed using other planning methods, such as
the one proposed by [OWB13], which allow for specification of user’s acceptable
levels of risk using chance constraints. Here we focus on comparing deterministic
and stochastic optimal control for motion planning. The amount of noise thus
determines whether the optimal solution is go through the risky path or the longer
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Figure 7.4: Results: Drunken Quadrotor with wind: For different wind velocities
and fixed control noise 0'5 =0.5. (Left) cost of the obtained solutions and (Right)
percentage of crashes using iLQG and PI.

safer path.

The state cost in this problem consists of hard constraints that assign infinite cost
when either the wall or the building is hit. PI control deals with collisions by killing
particles that hit the obstacles during Monte Carlo sampling. For iLQG, the local
approximations require a twice differentiable cost function. We resolved this issue
by adding a smooth obstacle-proximity penalty in the cost function. Although iLQG
computes linear feedback, we tried to improve it with a MPC scheme, similar as
for PI control. Unfortunately, this leads to numerical instabilities in this task, since
the system disturbances tend to move the reference trajectory through a building
when moving from one time step to the next. For MPC with PI control we use a
receding horizon of three seconds and perform re-planning at a frequency of 15 Hz
with N = 2000 sample paths. Both methods are initialized with u, = 0, V¢t. iLQG
requires approximately 10° iterations to converge with a learning rate of 0.5%.

Figure 7.3 (left) shows an example of real trajectory computed for low control
noise level, O'i =1073. To be able to obtain such a trajectory we deactivate sensor
uncertainties in accelerometer, gyroscope, orientation and altimeter. External noise
is thus limited to aerodynamic turbulences only. In this case, both iLQG and PI
solutions correspond to the shortest path, i.e. go through the gap between the wall
and the building. Figure 7.3 (right) illustrates the solutions obtained for larger
noise level 0121 = 1. While the optimal reference trajectory obtained by iLQG does
not change, which results in collision once the real noisy controller is executed (left
path), the PI control solution avoids the building and takes the longer route (right
path). Note that iLQG can find both solutions depending on initialization. However,
However, it will always choose the shortest route, regardless of nearby obstacles.
Also, note that the PI controlled unit takes a longer route to reach the target. The
reason is that the control cost R is set quite high in order to reach a good ESS.
Alternatively, if R is decreased, the optimal solution could reach the target sooner,
but at the cost of a decreased ESS. This trade-off, which is inherent in PI control,
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can be resolved by incorporating feedback control in the importance sampling, as
presented in [TK15].

We also consider more realistic conditions with noise not limited to act in
the control. Figure 7.4 (a,b) shows results in the presence of wind and sensor
uncertainty. Panel (a) shows how the wind affects the quality of the solution,
resulting in an increase of the variance and the cost for stronger wind. In all our
tests, iLQG is not able to bring the quadrotor to the other side. Panel (b) shows the
percentage of crashes using both methods. Crashes occur often using iLQG control
and only occasionally using PI control. With stronger wind, the iLQG controlled unit
does occasionally not even reach the corridor (the unit did not reach the other side
but did not crash either). This explains the difference in percentages of Panel (b).
We conclude that for multi-modal tasks (tasks where multiple solution trajectories
exist), the proposed method is preferable to iLQG.

7.4.2 Scenario II: holding pattern

The second scenario addresses the problem of coordinating agents to hold their
position near a point of interest while keeping a safe range of velocities and avoiding
crashing into each other. Such a problem arises for instance when multiple aircraft
need to land at the same location, and simultaneous landing is not possible. The
resulting flight formation has been used frequently in the literature [VVS'14,
HBF08,YDSZ13,FMG*12], but always with prior specification of the trajectories.
We show how this formation is obtained as the optimal solution of a SOC problem.

Figure 7.5: Holding pattern in the CRATES simulator. Ten units coordinate their
flight in a circular formation. In this example, N = 10* samples, control noise is
0'5 = 0.1 and horizon H = 1 sec. Cost parameters are Vp;, = 1, V. = 3, G = 20
and d = 7. Environmental noise and sensing uncertainties are modeled using
realistic parameter values.
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Figure 7.6: Holding pattern: (a) evolution of the state cost for different number
of samples N = 10, 102,103, (b) scaling of the method with the number of agents.
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Consider the following state cost (omitting time indexes)
M
Fap() = D €XP (V; = Vinax) + €XP (Vi — ;)
i=1

M
+exp(ll pi—d lla)+ >, Cue/ Il pi—p; Il (7.6)

j>i

where v, and v, denote the maximum and minimum velocities, respectively, d
denotes penalty for deviation from the origin and Cy; is the penalty for collision
risk of two agents. || - ||, denotes £-2 norm.

The optimal solution for this problem is a circular flying pattern where units fly
equidistantly from each other. The value of parameter d determines the radius and
the average velocities of the agents are determined from v,;, and v,,,. Since the
solution is symmetric with respect to the direction of rotation (clockwise or anti-
clockwise), only when the control is executed, a choice is made and the symmetry
is broken. Figure 7.5 shows a snapshot of a simulation after the flight formation
has been reached for a particular choice of parameter values 2. Since we use an
uninformed initial control trajectory, there is a transient period during which the
agents organize to reach the optimal configuration. The coordinated circular pattern
is obtained regardless of the initial positions. This behavior is robust and obtained
for a large range of parameter values.

Figure 7.6(a) shows immediate costs at different times. Cost always decreases
from the starting configuration until the formation is reached. This value depends
on several parameters. We report its dependence on the number N of sample

2Supplementary video material is available at http://www.mbfys.ru.nl/staff/v.gomez/
uav.html
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Figure 7.7: Resulting trajectories of a Holding Pattern experiment using two plat-
forms in outdoors conditions.

paths. For large N, the variances are small and the cost attains small values at
convergence. Conversely, for small N, there is larger variance and the obtained
dynamical configuration is less optimal (typically the distances between the agents
are not the same). During the formation of the pattern the controls are more
expensive. For this particular task, full convergence of the path integrals is not
required, and the formation can be achieved with a very small N.

Figure 7.6(b) illustrates how the method scales as the number of agents increases.
We report averages over the mean costs over 20 time-steps after one minute of
flight. We varied M while fixing the rest of the parameters (the distance d which
was set equal to the number of agents in meters). The small variance of the cost
indicates that a stable formation is reached in all the cases. As expected, larger
values of N lead to smaller state cost configurations. For more than ten UAVs, the
simulator starts to have problems in this task and occasional crashes may occur
before the formation is reached due to limited sample sizes. This limitation can be
addressed, for example, by using more processing power and parallelization and it
is left for future work.

We also compared our approach with iLQG in this scenario. Figure 7.6(c) shows
the ratio of cost differences after convergence of both solutions. Both use MPC,
with a horizon of 2s and update frequency of 15Hz. Values above 1 indicate that
PI control consistently outperforms iL.QG in this problem. Before convergence, we
also found, as in the previous task, that iLQG resulted in occasional crashes while
PI control did not. The Effective Sample Size (ESS) is shown in Figure 7.6(d).
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Figure 7.8: Cat and mouse scenario: (Top-left) four cats and one mouse. (Top-
right) for horizon time H = 2 seconds, the four cats surround the mouse forever
and keep rotation around it. (Bottom-left) for horizon time H = 1 seconds, the
four cats chase the mouse but (bottom-right) the mouse manages to escape. With
these settings, the multi-agent system alternates between these two dynamical
states. Number of sample paths is N = 10*, noise level aﬁ = 0.5. Other parameter
values are d = 30, Vyin = 1, Vinax = 45 Vimin = 4 and Vax mouse = 3-

We observe that higher control noise levels result in better exploration and thus
better controls. We can thus conclude that the proposed methodology is feasible
for coordinating a large team of quadrotors.

For this task, we performed experiments with the real platforms. Figure 7.7
shows real trajectories obtained in outdoor conditions (see also the video that
accompanies this chapter for an experiment with three platforms). Despite the
presence of significant noise, the circular behavior was also obtained. In the real
experiments, we used a Core i7 laptop with 8GB RAM as base station, which run its
own ROS messaging core and forwarded messages to and from the platforms over
a [EEE 802.11 2.4GHz network. For safety reasons, the quadrotors were flown at
different altitudes.

7.4.3 Scenario III: cat and mouse

The final scenario that we consider is the cat and mouse scenario. In this task, a
team of M quadrotors (the cats) has to catch (get close to) another quadrotor (the
mouse). The mouse has autonomous dynamics: it tries to escape the cats by moving
at velocity inversely proportional to the distance to the cats. More precisely, let
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Pmouse denote the 2D position of the mouse, the velocity command for the mouse is
computed (omitting time indexes) as

= V max v where v = Z — Pmouse
TOE T Tmouse || y ||, l p; —

1%
Pmouse | |

The parameter v max determines the maximum velocity of the mouse. As state cost
mouse

function we use equation (7.6) with an additional penalty term that depends on
the sum of the distances to the mouse

M
rCM(X) = er(X) +Z ” Pi — Pmouse ”2 .

i=1

This scenario leads to several interesting dynamical states. For example, for a
sufficiently large value of M, the mouse always gets caught (if its initial position is
not close to the boundary, determined by d). The optimal control for the cats consists
in surrounding the mouse to prevent collision. Once the mouse is surrounded, the
cats keep rotating around it, as in the previous scenario, but with the origin replaced
by the mouse position. The additional video shows examples of other complex
behaviors obtained for different parameter settings. Figure 7.8 (top-right) illustrates
this behavior.

The types of solution we observe are different for other parameter values. For
example, for M = 2 or a small time horizon, e.g. H = 1, the dynamical state
in which the cats rotate around the mouse is not stable, and the mouse escapes.
This is displayed in Figure 7.8 (bottom panels) and better illustrated in the video
provided as supplementary material. We emphasize that these different behaviors
are observed for large uncertainty in the form of sensor noise and wind.

7.5 Conclusions

In this chapter we presented a centralized, real-time stochastic optimal control
algorithm for coordinating the actions of multiple autonomous vehicles in order
to minimize a global cost function. The high-level control task is expressed as a
path integral control problem that can be solved using efficient sampling methods
and real-time control is possible via the use of re-planning and model predictive
control. To the best of our knowledge, this is the first real-time implementation of
path integral control on an actual multi-agent system.

We have shown in a simple scenario (Drunken Quadrotor) that the proposed
methodology is more convenient than other approaches such as deterministic control
or iLQG for planning trajectories. In more complex scenarios such as the Holding
Pattern and the Cat and Mouse, the proposed methodology is also preferable and
allows for real-time control. We observe multiple and complex group behavior
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7.5. Conclusions

emerging from the specified cost function. Our experimental framework CRATES
has been a key development that permitted a smooth transition from the theory
to the real quadrotor platforms, with literally no modification of the underlying
control code. This gives evidence that the model mismatch caused by the use of a
control hierarchy is not critical in normal outdoor conditions. Our current research
is addressing the following aspects:

Large scale parallel sampling— the presented method can be easily paral-
lelized, for instance, using graphics processing units, as in [ ]. Although the
tasks considered in this work did not required more than 10* samples, we expect
that this improvement will significantly increase the number of application domains
and system size.

Distributed control— we are exploring different distributed formulations that
take better profit of the factorized representation of the state cost. Note that the
costs functions considered in this work only require pairwise couplings of the agents
(to prevent collisions). However, full observability of the joint space is still required,
which is not available in a fully distributed approach.

73






Bibliography

[AM12]

[And88]

[APSTK15]

[ASD12]

[BFL14]

[BK14]

[BKMRO5]

[BSK11]

R. Anderson and D. Milutinovi¢. A stochastic optimal enhancement
of feedback control for unicycle formations. In 11th International
Symposium on Distributed Autonomous Robotic Systems (DARS), 8-11
November 2012 2012.

Donald W. K. Andrews. Laws of large numbers for dependent
non-identically distributed random variables. Econometric Theory,
4(3):458-467, 1988.

Alexandre Albore, Nathalie Peyrard, Régis Sabbadin, and Florent Te-
ichteil Kénigsbuch. An online replanning approach for crop fields
mapping with autonomous uavs. In International Conference on Auto-
mated Planning and Scheduling, 2015.

E Augugliaro, A.P Schoellig, and R. D’Andrea. Generation of collision-
free trajectories for a quadrocopter fleet: A sequential convex pro-
gramming approach. In Intelligent Robots and Systems (IROS), pages
1917-1922, 2012.

Sara Bernardini, Maria Fox, and Derek Long. Planning the behaviour
of low-cost quadcopters for surveillance missions. In International
Conference on Automated Planning and Scheduling, 2014.

J. Bierkens and H.J. Kappen. Explicit solution of relative entropy
weighted control. Systems & Control Letters, 72(0):36 — 43, 2014.

Pieter-Tjerk de Boer, Dirk P Kroese, Shie Mannor, and Reuven Y. Ru-
binstein. A tutorial on the cross-entropy method. Annals of Operations
Research, 134(1):19-67, 2005.

Axel Biirkle, Florian Segor, and Matthias Kollmann. Towards au-

tonomous micro UAV swarms. J. Intell. Robot. Syst., 61(1-4):339-353,
2011.

75



BIBLIOGRAPHY

[BWKO8a]

[BWKO8b]

[CGMRO04]

[CMMR12]

[CTKL13]

[DN13]

[DNHO8]

[Doo57]

[EMLB15a]

[EMLB15b]

[Fle82]

[FM95]

B. van den Broek, W. Wiegerinck, and H.J. Kappen. Graphical model
inference in optimal control of stochastic multi-agent systems. J. Artif.
Intell. Res., 32(1):95-122, may 2008.

Bart van den Broek, Wim Wiegerinck, and H. J. Kappen. Graphical
model inference in optimal control of stochastic multi-agent systems.
J. Artif. Intell. Res., 32:95-122, 2008.

O. Cappe, A. Guillin, J. M. Marin, and C. P Robert. Population monte
carlo. Journal of Computational and Graphical Statistics, 13(4):907—
929, 2004.

Jean-Marie Cornuet, Jean-Michel Marin, Antonietta Mira, and Chris-
tian P Robert. Adaptive multiple importance sampling. Scandinavian
Journal of Statistics, 39(4):798-812, 2012.

Caroline Ponzoni Carvalho Chanel, Florent Teichteil-Kénigsbuch, and
Charles Lesire. Multi-target detection and recognition by uavs using
online pomdps. In AAAI, 2013.

Renzo De Nardi. The QRSim Quadrotors Simulator. Technical Re-
port RN/13/08, Department of Computer Science, University College
London, March 2013.

R. De Nardi and O.E. Holland. Coevolutionary modelling of a miniature
rotorcraft. In 10th International Conference on Intelligent Autonomous
Systems (IAS10), pages 364 — 373, 2008.

J.L. Doob. Conditional brownian motion and the boundary limits of
harmonic functions. Bulletin de la Société Mathématique de France,
85:431-458, 1957.

V. Elvira, L. Martino, D. Luengo, and M.E Bugallo. Efficient multi-
ple importance sampling estimators. Signal Processing Letters, IEEE,
22(10):1757-1761, Oct 2015.

Victor Elvira, Luca Martino, David Luengo, and Monica E
Bugallo. Generalized multiple importance sampling. arXiv preprint
arXiv:1511.03095, 2015.

Wendell H. Fleming. Logarithmic transformations and stochastic control.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1982.

Wendell H Fleming and William M McEneaney. Risk-sensitive control
on an infinite time horizon. SIAM Journal on Control and Optimization,
33(6):1881-1915, 1995.

76



BIBLIOGRAPHY

[FMG*12]

[FR75]

[FS06]

[GH99]

[GKPN14]

[GL12]

[GTS*15]

[HBF*08]

[HDB14]

[HHWT11]

[HIV*11]

Antonio Franchi, Carlo Masone, Volker Grabe, Markus Ryll, Heinrich H
Biilthoff, and Paolo Robuffo Giordano. Modeling and control of UAV
bearing-formations with bilateral high-level steering. Int. J. Robot. Res.,
page 0278364912462493, 2012.

Wendell Fleming and Raymond W. Rishel. Deterministic and stochastic
optimal control. Applications of mathematics. Springer, New York,
Berlin, Heidelberg, 1975.

W.H. Fleming and H.M. Soner. Controlled Markov Processes and Viscosity
Solutions. Stochastic Modelling and Applied Probability. Springer,
2006.

P Glasserman and P Heidelberger. Asymptotically optimal importance
sampling and stratification for pricing path-dependent options. Math.
Finance, 9:117-152, 1999.

Vicen¢ Goémez, H. J. Kappen, J. Peters, and G. Neumann. Policy search
for path integral control. In European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases
(ECML /PKDD), volume 8724, pages 482-497, 2014.

Josep Guerrero and Rogelio Lozano. Flight Formation Control. John
Wiley & Sons, 2012.

Vicenc Gomez, Sep Thijssen, Andrew Symington, Stephen Hailes, and
H. J. Kappen. Real-time stochastic optimal control for multi-agent
quadrotor systems. arXiv preprint arXiv:1502.04548, 2015.

J.P How, B. Bethke, A. Frank, D. Dale, and J. Vian. Real-time indoor
autonomous vehicle test environment. IEEE Contr. Syst. Mag., 28(2):51-
64, 2008.

M.B. Horowitz, A. Damle, and J.W. Burdick. Linear hamilton jacobi
bellman equations in high dimensions. In Decision and Control (CDC),
2014 IEEE 53rd Annual Conference on, pages 5880-5887, Dec 2014.

Gabriel M. Hoffmann, Haomiao Huang, Steven L. Waslander, and
Claire J. Tomlin. Precision flight control for a multi-vehicle quadrotor
helicopter testbed. Control. Eng. Pract., 19(9):1023 — 1036, 2011.

Sabine Hauert, Severin Leven, Maja Varga, Fabio Ruini, A. Cangelosi,
J.-C. Zufferey, and D. Floreano. Reynolds flocking in reality with fixed-
wing robots: Communication range vs. maximum turning rate. In
Intelligent Robots and Systems (IROS), pages 5015-5020, 2011.

77



BIBLIOGRAPHY

[Jon95]

[Kap05a]

[KapO5b]

[Ken12]

[KGO12]

[KMPK13]

[KP92]

[KR16]

[KS91]

[KUD13]

[Leh13]

[Liu08]

[MD98]

[MELC15]

R. M. de Jong. Laws of large numbers for dependent heterogeneous
processes. Econometric Theory, 11(2):347-358, 1995.

H.J. Kappen. Linear theory for control of nonlinear stochastic systems.
Phys. Rev. Lett., 95(20):200201, 2005.

H.J. Kappen. Path integrals and symmetry breaking for optimal control
theory. J. Stat. Mech.: Theory Exp., 2005(11):P11011, 2005.

Farid Kendoul. Survey of advances in guidance, navigation, and control
of unmanned rotorcraft systems. J. Field Robot., 29(2):315-378, 2012.

H. J. Kappen, V. Gémez, and M. Opper. Optimal control as a graphical
model inference problem. Mach. Learn., 87:159-182, 2012.

Alex Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay Kumar.
Towards a swarm of agile micro quadrotors. Auton. Robot., 35(4):287—-
300, 2013.

Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic
Differential Equations. Springer-Verlag Berlin Heidelberg, 1 edition,
1992.

H. J. Kappen and H. C. Ruiz. Adaptive importance sampling for control
and inference. Journal of Statistical Physics, 162(5):1244-1266, 2016.

Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic
Calculus (Graduate Texts in Mathematics). Springer, 2nd edition, August
1991.

K. Kinjo, E. Uchibe, and K. Doya. Evaluation of linearly solvable
markov decision process with dynamic model learning in a mobile
robot navigation task. Front. Neurorob., 7(7), 2013.

Joseph Lehec. Representation formula for the entropy and functional
inequalities. Annales de U'I.H.P Probabilités et statistiques, 49(3):885-
899, 2013.

Jun S. Liu. Monte Carlo Strategies in Scientific Computing. Springet,
corrected edition, January 2008.

Boué Michelle and Paul Dupuis. A variational representation for certain
functionals of brownian motion. The Annals of Probability, 26(4):1641-
1659, 1998.

L. Martino, V. Elvira, D. Luengo, and J. Corander. Layered adaptive
importance sampling. arXiv preprint arXiv:1505.04732, 2015.

78



BIBLIOGRAPHY

[MKC12]

[MPS12]

[MSKK12]

[Nie97]

[0B92]

[@ks85]

[OWB13]

[0Z00]

[QCH13]

[Rey87]

[RTM*12a]

[RTM*12b]

R Mahony, V Kumar, and P Corke. Multirotor aerial vehicles: Modeling,
estimation, and control of quadrotor. IEEE Robotics & Automation
Magazine, pages 20-32, September 2012.

Jean-Michel Marin, Pierre Pudlo, and Mohammed Sedki. Consis-
tency of the adaptive multiple importance sampling. arXiv preprint
arXiv:1211.2548, 2012.

Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, and Uwe
Klingauf. Comprehensive Simulation of Quadrotor UAVs Using ROS
and Gazebo. Lecture Notes in Computer Science, 7628:400-411, 2012.

Ole A. Nielsen. An introduction to integration and measure theory.
Wiley, 1997.

Man-Suk Oh and James O. Berger. Adaptive importance sampling
in monte carlo integration. Journal of Statistical Computation and
Simulation, 41(3-4):143-168, 1992.

Bernt @ksendal. Stochastic Differential Equations : An Introduction
with Applications. Springer, Berlin Heidelberg, 1985.

Masahiro Ono, Brian C. Williams, and Lars Blackmore. Probabilistic
planning for continuous dynamic systems under bounded risk. J. Artif.
Intell. Res. (JAIR), 46:511-577, 2013.

Art Owen and Yi Zhou. Safe and effective importance sampling. Journal
of the American Statistical Association, 95(449):135-143, 2000.

S.A.P Quintero, G.E. Collins, and J.P Hespanha. Flocking with fixed-
wing uavs for distributed sensing: A stochastic optimal control ap-
proach. In American Control Conference (ACC), pages 2025-2031,
2013.

Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. SIGGRAPH Comput. Graph., 21(4):25-34, 1987.

E. Rombokas, E. Theodorou, M. Malhotra, E. Todorov, and Y. Matsuoka.
Tendon-driven control of biomechanical and robotic systems: A path
integral reinforcement learning approach. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 208-214, 2012.

E. Rombokas, E. Theodorou, M. Malhotra, E. Todorov, and Y. Matsuoka.
Tendon-driven control of biomechanical and robotic systems: A path
integral reinforcement learning approach. In International Conference
on Robotics and Automation (ICRA), pages 208-214, 2012.

79



BIBLIOGRAPHY

[RTV13]

[SANJH14]

[SKS03]

[SM11]

[SS12]

[Ste94]

[TBS10]

[TK15]

[TK16]

[TLO5]

[TMK12]

[TT12]

K. Rawlik, M. Toussaint, and S. Vijayakumar. Path integral control by
reproducing kernel Hilbert space embedding. In Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence,
pages 1628-1634. AAAI Press, 2013.

A. C. Symington, R. de Nardi, S. J. Julier, and S. Hailes. Simulating
quadrotor UAVs in outdoor scenarios. In Intelligent Robots and Systems
(IROS), 2014.

David H Shim, H Jin Kim, and Shankar Sastry. Decentralized nonlinear
model predictive control of multiple flying robots. In IEEE conference
on Decision and control (CDC), volume 4, pages 3621-3626, 2003.

N. Sugimoto and J. Morimoto. Phase-dependent trajectory optimiza-
tion for cpg-based biped walking using path integral reinforcement
learning. In International Conference on Humanoid Robots, IEEE-RAS,
pages 255-260, 26-28 October 2011 2011.

E Stulp and O. Sigaud. Path integral policy improvement with covari-
ance matrix adaptation. In International Conference Machine Learning,
2012.

R.E Stengel. Optimal Control and Estimation. Dover, New York, 1994.

E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral con-
trol approach to reinforcement learning. Journal of Machine Learning
Research, 11:3137-3181, 2010.

Sep Thijssen and H. J. Kappen. Path integral control and state-
dependent feedback. Phys. Rev. E, 91:032104, Mar 2015.

Sep Thijssen and H. J. Kappen. Consistent adaptive multiple impor-
tance sampling and controlled diffusions. arXiv preprint arXiv:??.??,
2016.

Emmanuel Todorov and Weiwei Li. A generalized iterative LQG method
for locally-optimal feedback control of constrained nonlinear stochastic
systems. In American Control Conference, 2005. Proceedings of the 2005,
pages 300-306 vol. 1, June 2005.

M. Turpin, N. Michael, and V. Kumar. Decentralized formation control
with variable shapes for aerial robots. In International Conference on
Robotics and Automation (ICRA), pages 23-30, 2012.

E. Theodorou and E. Todorov. Relative entropy and free energy du-
alities: connections to path integral and kl control. In Decision and

80



BIBLIOGRAPHY

[VG95]

[VVS*14]

[WRD15]

[YDSZ13]

Control (CDC), 2012 IEEE 51st Annual Conference on, pages 1466-1473,
10-13 December 2012 2012.

Eric Veach and Leonidas J. Guibas. Optimally combining sampling
techniques for monte carlo rendering. In Proceedings of the 22Nd
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 95, pages 419-428, New York, NY, USA, 1995.

Gabor Vasarhelyi, Csaba Viragh, Gerg6 Somorjai, Norbert Tarcai, Tamas
Szorényi, Tamds Nepusz, and Tamas Vicsek. Outdoor flocking and
formation flight with autonomous aerial robots. In Intelligent Robots
and Systems (IROS), 2014.

Grady Williams, Eric Rombokas, and Tom Daniel. Gpu based path
integral control with learned dynamics. CoRR, abs/1503.00330, 2015.

Bocheng Yu, Xiwang Dong, Zongying Shi, and Yisheng Zhong. Forma-
tion control for quadrotor swarm systems: Algorithms and experiments.
In Chinese Control Conference (CCC), pages 7099-7104, 2013.

81






Index

0T, transpose, 7

J*, optimal expected cost, 6, 11, 28
P*, optimal controlled measure, 28
<, absolute continuity, 28

.o/, generator, 7

&(+), Dol’eans-Dade exponential, 30
Dy (+]]-), KL divergence, 28

J,x, Hessian, 7

1, value function, 14

u*, optimal control, 6, 11, 31
QRSim, 65

CRATES, 65

absolute continuity, 28, 35
adapted, 6

admissible control process, 30
AIS, 36

alternative form, 12

AMIS, 36

balance heuristic, 3, 36
Brownian motion, 6

control process, 30

controlled (probability) measure, 28
cost, 10, 28

cost to go, 6, 10

deterministic multiple mixture, 3, 36
discarding time, 40
Discarding-re-weighting, 40
Doléans-Dade exponential, 30, 31
dynamic programming, 6, 8
dynamics, 10

83

Dynkin’s formula, 8

end cost, 6
ESS, 41, 43
expected cost to go, 6

feedback, 1
Feynman-Kac, 17

generator, 7
Girsanov Theorem, 30

HJB equation, 8, 15

immediate cost, 6
importance sampling, 35
importance weight, 35
infinitesimal generator, 7
IS, 33

It6’s Lemma, 7

Kullback-Leibler divergence, 28
Law of Large Numbers, 47

Main Theorem, 18

Markov control, 6

Martingale, 30, 47

Martingale Difference Sequence, 47
MIS, 33, 35

Mixingale Sequence, 47

Multiple Importance Sampling, 33

Novikov Condition, 30, 48

path integral, 12, 17-19



INDEX

Path Integral Adaptation, 51, 52
path integral control algorithm, 51
proposal, 33

Radon-Nikodym derivative, 28
Radon-Nikodym Theorem, 28
re-weighting, 36, 51

relative entropy, 28

SDE, 5, 6
SOG, 3,57
state cost, 28

target measure, 41
total cost, 28
total expected cost, 28

uncontrolled (probability) measure, 28
uncontrolled path, 30

verification theorem, 6

84



Summary

The objective of stochastic control theory is to find an external input (the control)
in order to move a noisy system into a desired state. There are many applications of
control theory in everyday life and it appears naturally in various areas of science.
In robotics, the problem may be to plan a sequence of actions that yield a motor
behavior such as walking or grasping an object. In finance, the problem may be
to devise a sequence of buy and sell actions to optimize a portfolio of assets, or to
determine the optimal option price.

In certain cases, the optimal way to control the system can be described in
a mathematically convenient manner, so that the control can be approximated
by the Monte Carlo method, which relies on numerous random samples. The
control takes place over a certain time interval so that the random samples look like
paths. The involved computations for the optimal control are in a sense numerical
approximations of integrals. Hence the name Path Integral Control.

The goal in stochastic optimal control is to control a noisy system in such
a way that a given cost function is minimized in expectation. In general, this
problem can be solved by applying the principle of dynamic programming. In the
continuous time setting this yields a differential equation, known as the Hamilton-
Jacobi-Bellman (HJB) equation, that describes the optimal expected cost function.
Although, from a mathematical point of view, this can be interpreted as a solution,
the HJB equation cannot be applied directly to compute a control input. In general,
the HJB differential equation does not have an analytical solution and numerical
solutions are intractable due to the curse of dimensionality.

In order to proceed we consider in this thesis a class of control problems in
which the HJB can be linearized. For these problems the solution can be expressed
with the Feynman-Kac formula as an expectation over a stochastic process, i.e. a
path integral. Although this approach has been applied successfully before, we
will cover in this thesis some key aspects about path integral control that were
previously unknown or unclear.

In Chapter 3 we give a description of path integral control in terms of stochastic
calculus. An important new result is a generalization of the Main Theorem of path
integral control, which can be used to construct parametrized state dependent
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feedback controllers. The state dependent feedback is key, because the optimal
control is always a function of the state in a system with noise. Another new theorem
gives the connection between the control that is used in the Monte Carlo simulation
and the efficiency of the involved computation. The efficiency is measured in terms
of the variance of the path costs and is connected to the effective sample size of the
simulation. It turns out that the most efficient computations, with zero variance
in the samples, are achieved when using the optimal control. The positive and
self-reinforcing effect is that better controls yield better simulations, and better
simulations yield more efficient computations for the control.

In Chapter 4 we make the connection between path integral control and the
more general Kullback-Leibler (KL) control. This has led to some new insights about
the parametrized control function that we compute; the parametrization is only
an approximation of the optimal control, having the same outcome in expectation.
From the connection with KL control, however, we obtain that this approximation is
also an optimal control for a connected control problem in which the KL control cost
term is reversed. Furthermore, we give a more elegant proof of the Main Theorem
of path integral control that is based on Girsanov’s Theorem.

In Chapter 5 we show that finding the optimal control and optimizing the sam-
pling procedure are mathematically the same problem. Furthermore, we investigate
how simulations that are created with different controls can be combined in one
big simulation, and we give conditions that ensure that the resulting estimate is
consistent. We apply this by describing a method of low computational complexity
that computes an estimate that is both consistent and efficient in combining the
samples. The corresponding algorithms are described in Chapter 6.

In the last chapter we show that path integral control can be used to control a
team of quadcopters in a flight pattern that requires cooperation. This has been
shown in an outdoor demonstration where the quadcopters had to deal with wind,
turbulence and imperfect GPS signals.
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Samenvatting

Het doel in stochastische regeltechniek is om met een extern signaal (de aansturing)
een systeem dat onderhevig is aan ruis in een gewenste staat te krijgen. Er zijn
veel toepassingen van stochastische regeltechniek in zowel het alledaagse leven
als in de wetenschap; het idee om dingen zo goed mogelijk aan te sturen is heel
natuurlijk. In robotica is er bijvoorbeeld de uitdaging om met het aansturen van
sterke elektromotoren in een robotarm een fragiel object op te pakken. In de
financiéle wereld wil men een strategie voor koop- en verkoop-acties om een
portfolio te optimaliseren, of men wil de prijs van een aandeel of optie bepalen.

De optimale aansturing kan in bepaalde gevallen beschreven worden op een
wiskundig handige manier, zodanig dat de aansturing berekend kan worden met de
Monte-Carlosimulatie methode. Deze methode maakt gebruik van vele willekeurige
simulaties. Het aansturen vindt plaats gedurende een bepaalde tijd en daarom
zal een simulatie eruit zien als een pad. De berekeningen voor de optimale aans-
turing zijn in feite slimme benaderingen van integralen. Vandaar de titel van het
proefschrift: Path Integral Control (Padintegraal Aansturing).

De uitdaging in de stochastische optimale regeltechniek is om een systeem
met ruis zodanig aan te sturen dat een gegeven kostenfunctie naar verwachting
geminimaliseerd wordt. In het algemeen kan dit probleem opgelost worden door
gebruik te maken van het principe van dynamisch programmeren. Dit levert een
differentiaal vergelijking, de Hamilton-Jacobi-Bellman (HJB) vergelijking, die de
optimale verwachte koste van het probleem beschrijven. Hiermee heb je weliswaar
een wiskundige oplossing in handen, maar deze is niet direct toe te passen. Het is
namelijk in het algemeen erg moeilijk om differentiaal vergelijkingen op te lossen.
Analytische oplossingen zijn er vaak niet en numerieke oplossingen zijn moeilijk te
berekenen vanwege de vloek van de dimensionaliteit.

Om het bovenstaande probleem te doorbreken, beschouwen we in dit proef-
schrift een bepaalde klasse van problemen waarbij de HJB vergelijking gelin-
eariseerd kan worden. In dat geval kan de oplossing met de Feynman-Kac for-
mule beschreven worden als een verwachtingswaarde over een stochastisch proces;
oftewel een padintegraal. Alhoewel deze padintegraal aanpak al met succes is
toegepast, behandelen we in dit proefschrift een aantal belangrijke aspecten van de
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theorie die voorheen onduidelijk of onbekend waren.

In Hoofdstuk 3 geven we een beschrijving van padintegraal aansturing met
behulp van stochastische calculus. Een belangrijk nieuw resultaat is een general-
isatie van de hoofdstelling van padintegraal aansturing, die het mogelijk maakt
om de verwachte optimale feedbackloop efficiént uit te rekenen met behulp van
geparametriseerde functies van de toestand. Dit is van cruciaal belang omdat in
systemen met ruis de optimale aansturing altijd een feedback signaal gebruikt en
dus een functie van de toestand is. Een ander nieuw resultaat geeft een verband
tussen de gebruikte aansturing in de Monte-Carlo methode en de efficiéntie van
de simulaties. De efficiéntie wordt gemeten met de spreiding van de padkosten en
is gerelateerd aan de effectieve simulatiegrootte. De conclusie is dat de optimale
aansturing de meest efficiénte berekeningen levert met een variantie van nul. Dit
geeft het volgende positieve effect: betere aansturing levert betere simulaties en
betere simulaties leveren betere berekeningen voor de aansturing.

In Hoofdstuk 4 maken we de koppeling tussen padintegraal aansturing en het
algemenere Kullback-Leibler (KL) aansturingsprobleem. Dit heeft geleid tot meer
inzichten over de geparametriseerde aansturingsfunctie die we uitrekenen; deze
is slechts een benadering van de optimale aansturing die in verwachting dezelfde
uitkomst geeft. Uit de nieuwe theorie volgt echter ook dat deze benadering optimaal
is in een omgekeerd KL aansturingsprobleem. Verder geven we een eleganter bewijs
van de hoofdstelling van padintergaal aansturing door gebruik te maken van de
Stelling van Girsanov.

In Hoofdstuk 5 laten we zien dat het aansturingsprobleem en het bijbehorende
simulatie probleem, wiskundig gezien dezelfde problemen zijn. Verder onderzoeken
we hoe simulaties behorende bij verschillende aansturingen samengevoegd kun-
nen worden tot één grote simulatie en we geven voorwaarden waaronder deze
samengevoegde simulatie consistent is. Als toepassing geven we een manier om
de simulaties computationeel snel samen te voegen die zowel consistent is als een
efficiénte samengevoegde simulatie levert. De bijbehorende algoritmen worden
beschreven in Hoofdstuk 6.

In het laatste hoofdstuk laten we zien dat het mogelijk is om met padintegraal
aansturing een team van quadcopters een vluchtpatroon uit te laten voeren die
samenwerking vereist. Dit is ook uitgevoerd in een buitenexperiment waar de quad-
copters onder andere onderhevig waren aan ruis van de buitenwind, turbulentie en
een imperfect GPS signaal.
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