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Statistical Machine Learning

• Course setup

– Lectures (incl. guest lecture), Wed 10:45-12:30, HG00.308 (until 25/10)
from 14/11: Tue 13:45-15:30, HG00.310

– Tutorials, Fri 13:45-15:30, HG00.310 (until 27/10),
from 16/11: Thu 08:45-10:30, HG00.310

– Instructors: Gabriel Bucur, Jordi Riemens
– Textbook ”Pattern Recognition and Machine Learning” (C.M Bishop, 2006)
– All other course materials (slides, exercises, sample exams) via Blackboard
– Homework assignments (4 in total, starting week 3)
– Mini seminar (mandatory)
– Written exam Thu. 25 Jan. 2018, 13:30-15:30, HG00.068

(open book, one ‘cheat sheet’; no other notes/slides/laptops/etc.)

• Grading

– 2/3 final exam (≥ 5.0) + 1/3 avg. assignments
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Course contents

Chapter 1 Introduction

• Probability theory

• Model selection

• Curse of dimensionality

• Decision theory

• information theory

Chapter 2: Probability distributions

Chapter 3: Linear models for regression

Chapter 4: Linear models for classification

Chapter 5: Neural networks

Chapter 6: Kernel methods

Chapter 9: Mixture models and EM
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Chapter 1: Introduction

Introduction ML

• General introduction

• Polynomial curve fitting, regression, overfitting, regularization

• Probability theory, decision theory

• Information theory

• Math tools recap
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1: p.1-4

Recognition of digits

Image is array of pixels xi, each between 0 and 1.
x = (x1, . . . , xd)

T, vector with length d (the total number of pixels, e.g. d = 28× 28).

• Goal = input: pixels → output: correct category 0, . . . , 9

• wide variability

• brute force / hand-made rules infeasible
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1: p.1-4

Machine Learning

• Training set: large set of (pixel array, category) pairs

– input data x, target data t(x)
– category = class

• Machine learning algorithm

– adaptive model
– learning = tuning model parameters on training set

• Result: function y(x)

– Fitted to target data
– New input x → output y(x)
– Hopefully: y(x) ≈ t(x)
– Goal: generalization to new examples (use test set)
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1: p.1-4

Preprocessing

• transformation of inputs x→ x′

– easier to handle
– speed up computation
– training/test set + new instances

• by hand or rule based

– scaling, centering
– aspect ratio, greyscale

• feature extraction

– dimension reduction
– reduces variability within class (noise reduction) → easier to learn
– reduces variability between classes (information loss) → more difficult to learn
– trade-off
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1: p.1-4

Types of machine learning tasks

• Supervised learning: known targets

– Classification: targets are classes
– Regression: target is continuous

• Unsupervised learning: unknown targets

– clustering (similarity between input data)
– density estimation (distribution of input data)
– dimension reduction (to 2/3D for visualization)

• Reinforcement learning: find optimal target / strategy

– actions leading to maximal reward
– exploration vs. exploitation
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1.1: p.4-6

1.1. Polynomial curve fitting

x

t

0 1

−1

0

1

• Regression problem

• Given training set of N = 10 data points

– generated by tn = sin(2πx) + noise

• Goal: predict value t for new x (without knowing the curve)

– function t̂ = y(x)
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1.1: p.4-6

We will fit the data using M -th order polynomial

y(x,w) = w0 + w1x+ w2x
2 + . . .+ wMx

M =

M∑
j=0

wjx
j

y(x,w) is nonlinear in x, but linear in coefficients w, ”Linear model”

Training set: (xn, tn), n = 1, . . . , N . Objective: find parameters w, such that

y(xn,w) ≈ tn, for all n

This is done by minimizing the Error function

E(w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

E(w) ≥ 0 and E(w) = 0 ⇔ y(xn,w) = tn

t

x

y(xn,w)

tn

xn

Bert Kappen, Tom Claassen course SML 9



math recap for 1.1: p.4-6

Finding the minimum: partial derivatives and gradient

Let f(x1, . . . , xn) = f(x) be a function of several variables. The gradient of f , denoted
as ∇f (the symbol “ ∇” is called ‘nabla’) , is the vector of all partial derivatives:

∇f(x) =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)T
NB, the partial derivative ∂f(x1, . . . , xi, . . . , xn)/∂xi is computed by taking the derivative
with respect to xi while keeping all other variables constant.

Example:
f(x, y, z) = xy2 + 3.1yz

Then

∇f(x, y, z) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)T
=

(
y2, 2xy + 3.1z, 3.1y

)T
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math recap for 1.1: p.4-6

At local minima (and maxima, and so-called saddle points) of a differentiable function f ,
the gradient is zero, i.e., ∇f = 0.

Example:
f(x, y) = x2 + y2 + (y + 1)x

So
∇f(x, y) = (2x+ y + 1, 2y + x)

T

Then we can compute the point (x∗, y∗) that minimizes f by setting ∇f = 0,

2x∗ + y∗ + 1 = 0
2y∗ + x∗ = 0

}
⇒ (x∗, y∗) = (−2

3
,
1

3
)
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math recap for 1.1: p.4-6

Chain rule

Suppose f is a function of y1, y2, ..., yk and each yj is a function of x, then we can
compute the derivative of f with respect to x by the chain rule

df

dx
=

k∑
j=1

∂f

∂yj

dyj
dx

Example:
f(y(x), z(x)) = y(x)/z(x)

with y(x) = x4 and z = x2.

Then y′(x) = 4x3 and z′(x) = 2x, and so

df

dx
=

1

z(x)
y′(x)− y(x)

z(x)2
z′(x)

=
1

x2
4x3 − x4

(x2)2
2x

= 2x
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math recap for 1.1: p.4-6

Chain rule (2)

Suppose E is a function of y1, y2, ..., yN and each yj is a function of w0, . . . , wM , then
we can compute the derivative of E with respect to wi by the chain rule

∂E

∂wi
=

N∑
j=1

∂E

∂yj

∂yj
∂wi

Example:

E(w) =
1

2

N∑
j=1

(yj(w)− tj)2 ⇒ ∂E

∂yj
= yj − tj

and

yj(w) =

M∑
i=0

xijwi ⇒
∂yj
∂wi

= xij

So
∂E

∂wi
=

N∑
j=1

(yj(w)− tj)xij

tj and xjj are parameters in this example.
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math recap for 1.1: p.4-6

Minimization of the error function

E(w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

In minimum: gradient ∇wE = 0

Note: y linear in w ⇒ E quadratic in w

⇒ ∇wE is linear in w

⇒ ∇wE = 0: coupled set of linear equations (exercise)
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math recap, see also app. C

Matrix multiplications as summations

If A is a N ×M matrix with entries Aij and v an M -dimensional vector with entries vi,
then w = Av is a N -dimensional vector with components

wi =

M∑
j=1

Aijvj

In general, if B is a M ×K matrix with entries Bij, then C = AB is a N ×K matrix
with entries

Cik =

M∑
j=1

AijBjk
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math recap, see also app. C

Dummy indices

The indices that are summed over are ‘dummy’ indices, they are just a label, so e.g.,

M∑
k=1

AikBkj =

M∑
l=1

AilBlj

furthermore, the entries of the vectors and matrices are just ordinary numbers, so you
don’t have to worry about multiplication order. In addition, if the summation of indices
is over a range that does not depend on other indices, you may interchance the order of
summation,

N∑
i=1

M∑
j=1

. . . =

M∑
j=1

N∑
i=1

. . .

So e.g, by changing summation order and renaming dummy indices,

wk =

M∑
j=1

N∑
i=1

AijBjk =

N∑
l=1

M∑
i=1

BikAli
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math recap, see also app. C

Kronecker delta

The notation δij denotes usually the Kronecker delta symbol, i.e.,{
δij = 1 if i = j
δij = 0 otherwise

It has the nice property that it ‘eats’ dummy indices in summations:

M∑
j=1

δijvj = vi for all 1 ≤ i ≤M (1)

The Kronecker delta can be viewed as the entries of the identity matrix I. In vector
notation, (??) is equivalent to the statement Iv = v. In other words, δij = Iij

1

1Bishop used δ in his previous book, and I in the current book
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math recap, needed later

Taylor series, 1-d

Assuming that f(x) has derivatives of all orders in x = a, then the Taylor expansion of
f around a is

f(a+ ε) =

∞∑
k=0

f (k)(a)

k!
εk = f(a) + εf

′
(a) +

ε2

2
f
′′
(a) + . . .

The prefactors in the Taylor series can be checked by computing the Taylor expansion of
a polynomial.

Linearization of a function around a is taking the Taylor expansion up to first order:

f(a+ x) = f(a) + xf ′(a)

Bert Kappen, Tom Claassen course SML 18



math recap

Taylor series, examples

Examples: check that for small x the following expansions are correct up to second
order:

sin(x) = sin(0) + x cos(0) +
1

2
x2(− sin(0)) + ...

= 0 + x− 0 + ...

= x

cos(x) = 1− 1

2
x2

exp(x) = 1 + x+
1

2
x2

(1 + x)c = 1 + cx+
c(c− 1)

2
x2

ln(1 + x) = x− 1

2
x2
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math recap, needed later

Taylor expansion in several dimensions

The Taylor expansion of a function of several variables, f(x1, . . . , xn) = f(x) is (up to
second order)

f(x) = f(a) +
∑
i

(xi − ai)
∂

∂xi
f(a) +

1

2

∑
ij

(xi − ai)(xj − aj)
∂

∂xi

∂

∂xj
f(a)

or in vector notation, with ε = x− a

f(a+ ε) = f(a) + εT∇f(a) +
1

2
εTHε

with H the Hessian, which is the symmetric matrix of partial derivatives

Hij =
∂2

∂xi∂xj
f(x)

∣∣∣∣
x=a
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This is not in ch 1, but is an important concept in SML - ch 5.2.1

Error landscape

Polynomial curve fitting has a quadratic error function. In general the error function
E(w) may be a non-quadratic in the parameters w.

w1

w2

E(w)

wA wB wC

∇E

Gradient descent: walk downwards with small steps in the direction of the negative
gradient.

E is minimal when ∇E(w) = 0, but not vice versa!

⇒ gradient based methods find a local minimum, not necessary the global minimum.
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This is not in ch 1, but is an important concept in SML - ch 5.2.4

Application: Optimization by gradient descent

Gradient descent algorithm for finding w in y(x,w):

1. Start with an initial value of w and ε small.

2. While ”change in w large”: Compute w := w − ε∇E

Stop criterion is ∇E ≈ 0, which means that we stop in a local minimum of E.

Does this algorithm converge? Yes, if ε is ”sufficiently small” and E bounded from below.

Proof: Denote ∆w = −ε∇E.

E(w + ∆w) ≈ E(w) + (∆w)T∇E = E(w)− ε
∑
i

( ∂E
∂wi

)2 ≤ E(w)

In each gradient descent step the value of E is lowered. Since E bounded from below,
the procedure must converge asymptotically.

Note: if w has a closed-form solution then gradient descent not necessary!
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This is not in ch 1, but is an important concept in SML - ch 5.2.2

Newtons method

One can also use Hessian information for optimization. As an example, consider a
quadratic approximation to E around w0 (Taylor expansion up to 2nd order):

E(w) = E(w0) + bT (w −w0) +
1

2
(w −w0)H(w −w0)

bi =
∂E(w0)

∂wi
Hij =

∂2E(w0)

∂wi∂wj

∇E(w) = b+H(w −w0)

We can solve ∇E(w) = 0 and obtain

w = w0 −H−1∇E(w0)

This is called Newtons method. Inversion of the Hessian may be computational costly.
A number of methods, known as quasi-newton methods, are based on approximations of
this procedure.
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1.1: p 6-11

Model comparison, model selection

Back to polynomial curve fitting: how to choose M?

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Which of these models is the best one?
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1.1: p 6-11

Define root-mean-square error on training set and on test set {(x̃n, t̃n)}Ñn=1, respectively:

ERMS =
√

2E(w∗)/N, ERMS =

√√√√ 1

Ñ

Ñ∑
n=1

(
y(x̃n,w∗)− t̃n

)2

M

E
R
M
S

 

 

0 3 6 9
0

0.5

1
Training
Test

Too simple (small M) → poor fit
Too complex (large M) → overfitting (fits the noise)
Q : Taylor expansion of sin(x) contains all odd order terms ... shouldn’t M = 9 be better?
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1.1: p 6-11

M=0 M=1 M=3 M=9
w∗0 0.19 0.82 0.31 0.35
w∗1 -1.27 8 232
w∗2 -25 5321
w∗3 -17 48568
w∗4 -231639
w∗5 640042
w∗6 -10618000
w∗7 10424000
w∗8 -557683
w∗9 -125201
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1.1: p 6-11

Model comparison, model selection

x

t

N = 15

0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

Overfitting is not due to noise, but more due to sparseness of data.

Same model complexity: more data ⇒ less overfitting
With more data, more complex (i.e. more flexible) models can be used
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1.1: p 6-11

Regularization

Change the cost function E by adding regularization term Ω(w) to penalize complexity.

Ẽ(w) = E(w) + λΩ(w)

For example,

Ẽ(w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

+
λ

2
||w||2

(here, ||w||2 :=
∑M
m=0w

2
m)

Weight decay = shrinkage = ridge regression

Penalty term independent of number of training data

• small data sets: penalty term relatively large

• large data sets: penalty term relatively small

• → effective complexity depends on #training data
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1.1: p 6-11

x

t

M = 9

0 1

−1

0

1

x

t

ln λ = −18

0 1

−1

0

1

x

t

ln λ = 0

0 1

−1

0

1

lnλ = −∞ lnλ = −18 lnλ = 0

w∗0 0.35 0.35 0.13

w∗1 232 4.74 -0.05

w∗2 5321 - 0.77 -0.06

w∗3 48568 -31.97 -0.05

w∗4 -231639 - 3.89 -0.03

w∗5 640042 55.28 -0.02

w∗6 -10618000 41.32 -0.01

w∗7 10424000 -45.95 -0.00

w∗8 -557683 -91.53 0.00

w∗9 -125201 72.68 0.01

E
R
M
S

 

 

ln λ−35 −30 −25 −20
0

0.5

1
Training
Test

• Training set to optimize (typically many) parameters w

• Validation set to optimize (typically a few) hyperparameters λ, M

• used in e.g. cross-validation (§1.3) ... but even better: Bayesian approach!
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1.2: p 12-17

§1.2 Probability theory

• Consistent framework for quantification and
manipulation of uncertainty
→ Foundation for Bayesian machine learning

• random variable = stochastic variable

Example:
boxes (B = {r, b}) and fruit (F = {a, o}).

• Consider an experiment of (infinitely) many (mentally) repeated trials
(randomly pick a box, then randomly select an item of fruit from that box)

under the same macroscopic conditions
(number of red/blue boxes and apples/oranges balls in the boxes)

but each time with different microscopic details
(arrangements of boxes and fruits in boxes).

Probability of an event (e.g. selecting a orange) is fraction of times that event
occurs in the experiment.

• Notation: p(F = o) = 9/20, etc (or P (. . .), IP(. . .), Prob(. . .), etc.)
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1.2: p 12-17

Experiment with a drawing pin

(a)

(b)

Q: What is the probability of getting ‘pin up’?

Bert Kappen, Tom Claassen course SML 31



1.2: p 12-17

Outcome as a function of speed vs. pin length

(10x)

(100x)

(1000x)

(10,000x)

(100,000x)

• ‘Randomness’ in deterministic systems is due to uncertainty about initial states.

• More information does not imply gradual convergence to true value.
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1.2: p 12-17

Drawing pin outcomes: sliding averages

0 1.0 2.0 3.0 4.0
0

10

20

30

40

50

60

70

80

90

→ Pin length (cm)

→
 O

ut
co

m
e:

 p
in
−u

p 
(%

)

 

 
top →
mid →
bottom →
left (h=0cm)
mid ↓
right ↓

16 17 18 19 20
→ Rotational speed at t=0 (rad/sec)

A: For typical drawing pin: p(Outcome = ‘pin up’) ≈ 66%
... but depends on what you know about the experiment (no unique, objective value!)
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1.2: p 12-17

Joint, marginal, and conditional probabilities

X can take the values xi, i = 1, . . . ,M .
Y can take the values yj, j = 1, . . . , L.

N : total number of trials (N →∞).
nij: number of trials with X = xi and Y = yj
ci: number of trials with X = xi
rj: number of trials with Y = yj

}

}ci

rjyj

xi

nij

Joint probability of X = xi and Y = yj:

p(X = xi, Y = yj) =
nij
N

= p(Y = yj, X = xi)
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1.2: p 12-17

Joint, marginal, and conditional probabilities

X can take the values xi, i = 1, . . . ,M .
Y can take the values yj, j = 1, . . . , L.

N : total number of trials (N →∞).
nij: number of trials with X = xi and Y = yj
ci: number of trials with X = xi
rj: number of trials with Y = yj

}

}ci

rjyj

xi

nij

Marginal probability of X = xi:

p(X = xi) =
ci
N

=

∑
j nij

N
=
∑
j

p(X = xi, Y = yj)

Conditional probability of Y = yj given X = xi

p(Y = yj|X = xi) =
nij
ci

=
p(X = xi, Y = yj)

p(X = xi)
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1.2: p 12-17

p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)
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1.2: p 12-17

• Explicit, unambiguous notation: p(X = xi)
• Short-hand notation: p(xi)
• p(X): “distribution“ over the random variable X
• NB: {xi} is assumed to be mutually exclusive and complete

The Rules of Probability

Sum rule p(X) =
∑
Y

p(X,Y )

Product rule p(X,Y ) = p(Y |X)p(X)

Positivity p(X) ≥ 0

Normalization
∑
X

p(X) = 1
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1.2: p 12-17

p(X,Y ) = p(Y |X)p(X) = P (X|Y )p(Y ) ⇒

Bayes’ theorem

p(Y |X) =
p(X|Y )p(Y )

p(X)

(
=

p(X|Y )p(Y )∑
Y p(X|Y )p(Y )

)

Bayes’ theorem = Bayes’ rule

Bert Kappen, Tom Claassen course SML 38



1.2: p 12-17

Fruits again

Model

p(B = r) = 4/10

p(B = b) = 6/10

p(F = a|B = r) = 1/4

p(F = o|B = r) = 3/4

p(F = a|B = b) = 3/4

p(F = o|B = b) = 1/4

Note that the (conditional) probabilities are normalized:

p(B = r) + p(B = b) = 1

p(F = a|B = r) + p(F = o|B = r) = 1

p(F = a|B = b) + p(F = o|B = b) = 1
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1.2: p 12-17

• Marginal probability

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1

4
× 4

10
+

3

4
× 6

10
=

11

20

and from normalization,

p(F = o) = 1− p(F = a) =
9

20

• Conditional probability (reversing probabilities):

p(B = r|F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

3

4
× 4

10
× 20

9
=

2

3

• Terminology:
p(B): prior probability (before observing the fruit)
p(B|F ): posterior probability (after observing F )
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1.2: p 12-17

(Conditionally) independent variables

• X and Y are called (marginally) independent if

P (X,Y ) = P (X)P (Y )

This is equivalent to
P (X|Y ) = P (X)

and also to
P (Y |X) = P (Y )

• X and Y are called conditionally independent given Z if

P (X,Y |Z) = P (X|Z)P (Y |Z)

This is equivalent to
P (X|Y,Z) = P (X|Z)

and also to
P (Y |X,Z) = P (Y |Z)

Bert Kappen, Tom Claassen course SML 41



1.2.1

Probability densities

• to deal with continuous variables (rather than discrete ones)

When x takes values from a continuous domain, the probability of any value of x is zero!
Instead, we must talk of the probability that x takes a value in a certain interval

Prob(x ∈ [a, b]) =

∫ b

a

p(x) dx

with p(x) the probability density over x.

p(x) ≥ 0∫ ∞
−∞

p(x) dx = 1 (normalization)

• NB: that p(x) may be bigger than one.

Probability of x falling in interval (x, x+ δx) is p(x)δx for δx→ 0
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1.2.1

xδx

p(x) P (x)

Cumulative distribution function F (z) =

∫ z

−∞
p(x)dx (not often used in ML).

Note that:

• Prob(x ∈ [a, b]) = F (b)− F (a).

• F ′(z) = p(z)
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1.2.1

Multivariate densities

• Several continuous variables, denoted by the d dimensional vector x = (x1, . . . , xd).
• Probability density p(x): probability of x falling in an infinitesimal volume δx around
x is given by p(x)δx.

Prob(x ∈ R) =

∫
R
p(x) dx =

∫
R
p(x1, . . . , xd)dx1dx2 . . . dxd

and

p(x) ≥ 0∫
p(x)dx = 1

• Rules of probability apply to multivariate continuous variables as well,

p(x) =

∫
p(x,y) dy

p(x,y) = p(y|x)p(x)

Bert Kappen, Tom Claassen course SML 44



math recap for 1.2.1

Integration

The integral of a function of several variables x = (x1, x2, . . . , xn)∫
R
f(x)dx ≡

∫
R
f(x1, x2, . . . , xn)dx1dx2 . . . dxn

is the volume of the n + 1 dimensional region lying ‘vertically above’ the domain of
integration R ⊂ IRn and ’below’ the function f(x).
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math recap for 1.2.1

Separable integrals

The most easy (but important) case is when we can separate the integration, e.g. in 2-d,

∫ b

x=a

∫ d

y=c

f(x)g(y) dxdy =

∫ b

x=a

f(x) dx

∫ d

y=c

g(y) dy

Example,

∫
exp

( n∑
i=1

fi(xi)
)

dx =

∫ n∏
i=1

exp(fi(xi)) dx =

n∏
i=1

∫
exp(fi(xi)) dxi
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math recap

Iterated integration

A little more complicated are the cases, in which integration can be done by iteration,
’from inside out’. Suppose we can write the 2-d region R as the set a < x < b and
c(x) < y < d(x) then we can write

∫
R
f(y, x) dydx =

∫ b

x=a

[∫ d(x)

y=c(x)

f(y, x) dy

]
dx

The first step is evaluate the inner integral, where we interpret f(y, x) as a function of y
with fixed parameter x. Suppose we can find F such that ∂F (y, x)/∂y = f(y, x), then
the result of the inner integral is

∫ d(x)

y=c(x)

f(y, x) dy = F (d(x), x)− F (c(x), x)

The result, which we call g(x) is obviously a function of x only,

g(x) ≡ F (d(x), x)− F (c(x), x)
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math recap

The next step is the outer integral, which is now just a one-dimensional integral of the
function g, ∫ b

x=a

[∫ d(x)

y=c(x)

f(y, x) dy

]
dx =

∫ b

x=a

g(x) dx

Now suppose that the same 2-d region R can also be written as the set s < y < t and
u(y) < x < v(y), then we can also choose to evaluate the integral as

∫
R
f(y, x) dxdy =

∫ t

y=s

[∫ v(y)

x=u(y)

f(y, x) dx

]
dy

following the same procedure as above. In most regular cases the result is the same (for
exceptions, see handout (*)).

Integration with more than two variables can be done with exactly the same procedure,
‘from inside out’.

In Machine Learning, integration is mostly over the whole of x space, or over a subspace.
Iterated integration is not often used.

Bert Kappen, Tom Claassen course SML 48



math recap

Transformation of variables (1-d)

Often it is easier to do the multidimensional integral in another coordinate frame. Suppose
we want to do the integration ∫ d

y=c

f(y) dy

but the function f(y) is easier expressed as a f(g(x)) which is a function of x. So we
want to use x as integration variable. If y and x are related via invertible differentiable
mappings y = g(x) and x = g−1(y) and the end points of the interval (y = c, y = d) are
mapped to (x = a, x = b), (so a = g−1(c), etc) then we have the equality∫ d

y=c

f(y) dy =

∫ d

g(x)=c

f(g(x)) dg(x)

=

∫ b

x=a

f(g(x))g′(x) dx

The derivative g′(x) comes in as the ratio between the lengths of the differentials dy and
dx,

dy = g′(x) dx
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math recap

Several variables

With several variables, the substitution rule is generalized as follows. We have the
invertible mapping y = y(x). Let us also assume that the region of integration of R is
mapped by to S, (so S = y(R)), then we have the equality

∫
y∈S

f(y) dy =

∫
y(x)∈S

f(y) dy(x)

=

∫
x∈R

f(y(x))

∣∣∣∣det

(
∂y(x)

∂x

)∣∣∣∣ dx

The factor det
(
∂y(x)
∂x

)
is called the Jacobian of the coordinate transformation. Written

out in more detail

det

(
∂y(x)

∂x

)
=

∣∣∣∣∣∣∣∣∣∣

∂y1(x)
∂x1

∂y1(x)
∂x2

. . . ∂y1(x)
∂xn

∂y2(x)
∂x1

∂y2(x)
∂x2

. . . ∂y2(x)
∂xn

. . . . . . . . . . . .
∂yn(x)
∂x1

∂yn(x)
∂x2

. . . ∂yn(x)
∂xn

∣∣∣∣∣∣∣∣∣∣
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math recap

The absolute value 2 of the Jacobian comes in as the ratio between that the volume
represented by the differential dy and the volume represented by the differential dx, i.e.,

dy =

∣∣∣∣det

(
∂y(x)

∂x

)∣∣∣∣ dx

As a last remark, it is good to know that

det

(
∂x(y)

∂y

)
= det

((
∂y(x)

∂x

)−1
)

=
1

det
(
∂y(x)
∂x

)

2In the single-variable case, we took the orientation of the integration interval into account (
∫ b
a f(x) dx = −

∫ a
b f(x) dx).

With several variables, this is awkward. Fortunately, it turns out that the orientation of the mapping of the domain always
cancels to the ’orientation’ of the Jacobian (= sign of the determinant). Therefore we take a positive orientation and the
absolute value of the Jacobian
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math recap

Polar coordinates

Example: compute the area of a disc.

Consider a two-dimensional disc with radius R

D = {(x, y)|x2 + y2 < R2}

Its area is ∫
D

dxdy

This integral is easiest evaluated by going to ‘polar-coordinates’. The mapping from polar
coordinates (r, θ) to Cartesian coordinates (x, y) is

x = r cos θ (2)

y = r sin θ (3)

Since In polar coordinates, the disc is described by 0 ≤ r < R (since x2 + y2 = r2) and
0 ≤ θ < 2π.
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math recap

The Jacobian is

J =

∣∣∣∣ ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ + sin2 θ) = r

In other words,
dxdy = rdrdθ

The area of the disc is now easily evaluated.

∫
D

dxdy =

∫ 2π

θ=0

∫ R

r=0

rdrdθ = πR2
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math recap

Gaussian integral

How to compute ∫ ∞
−∞

exp(−x2)dx

(∫ ∞
−∞

exp(−x2)dx
)2

=

∫ ∞
−∞

exp(−x2)dx

∫ ∞
−∞

exp(−y2)dy

=

∫ ∞
−∞

∫ ∞
−∞

exp(−x2) exp(−y2)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

exp(−(x2 + y2))dxdy

Bert Kappen, Tom Claassen course SML 54



math recap

The latter is easily evaluated by going to polar-coordinates,

∫ ∞
−∞

∫ ∞
−∞

exp(−(x2 + y2))dxdy =

∫ 2π

θ=0

∫ ∞
r=0

exp(−r2)rdrdθ

= 2π

∫ ∞
r=0

exp(−r2)rdr

= 2π ×
(
− 1

2
exp(−r2)

)∣∣∣∞
0

= π

So ∫ ∞
−∞

exp(−x2)dx =
√
π
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1.2.1: p.18

Transformation of densities

Under nonlinear change of variables, a probability transforms p(x) transforms differently
from an ordinary function, due to “conservation of probability” p(x)δx.

Consider x = g(y) then an ordinary function f(x) becomes f̃(y) = f(g(y)) by
straightforward substitution.

However for probability densities:
• px(x)δx: probability that point falls in volume element δx around x
• py(y)δy: same probability, now in terms of y

py(y)δy = px(x)δx ⇒ py(y) =
∣∣∣ det

(∂g
∂y

)∣∣∣px(g(y))

• Values p(x) of a probability density depends on choice of variable (p(x)δx is invariant)
• Maximum of a probability density depends on choice of variable (see exercise 1.4).
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math recap

Dirac’s delta-function

Dirac’s delta function δ(x) is defined such that

δ(x) = 0 if x 6= 0 and

∫ ∞
−∞

δ(x)dx = 1

It can be viewed as the limit ∆→ 0 of the function

f(x,∆) =
1

∆
if |x| ≤ ∆

2
and f(x,∆) = 0 elsewhere
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math recap

The Dirac delta δ(x) is a spike (a peak, a point mass) at x = 0. The function δ(x− x0)
as a function of x is a spike at x0. As a consequence of the definition, the delta function
has the important property ∫ ∞

−∞
f(x)δ(x− x0)dx = f(x0)

(cf. Kronecker delta
∑
j δijvj = vi ).

The multivariate deltafunction factorizes over the dimensions

δ(x−m) =

n∏
i=1

δ(xi −mi)
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math recap

Dirac’s delta-function / delta-distribution

The Dirac delta is actually a distribution rather than a function:

δ(αx) =
1

α
δ(x)

This is true since

• if x 6= 0 left and right-handside are both zero.

• after transformation of variables x′ = αx, dx′ = αdx we have∫
δ(αx)dx =

1

α

∫
δ(x′)dx′ =

1

α
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math recap for 1.2.2

Functionals vs functions

Function y: for any input value x, returns output value f(y).

Functional F : for any function y, returns an output value F [y].

Example (linear functional):

F [y] =

∫
p(x)y(x) dx

(Compare with f(y) =
∑
i piyi).

Other (nonlinear) example:

F [y] =

∫
1

2
(y′(x) + V (x))2 dx
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1.2.2

Expectations and variances

Expectation is a weighted average of a function f(x) under probability distribution p(x):

IE[f ] =
〈
f
〉

=
∑
x

p(x)f(x) discrete var’s

IE[f ] =

∫
x

p(x)f(x) dx continuous var’s

Variance measures variability around expectation value (mean):

var[f ] =
〈
f(x)2

〉
−
〈
f(x)

〉2
var[x] =

〈
x2
〉
−
〈
x
〉2
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1.2.2

Covariance

Covariance measures how much two random variables vary together (’synchronised
variability’):

cov[x, y] = 〈xy〉 − 〈x〉 〈y〉

Covariance matrix of the components of a vector variable

cov[x] ≡ cov[x,x] =
〈
xxT

〉
−
〈
x
〉〈
xT
〉

with components

(cov[x])ij = cov[xi, xj] =
〈
xixj

〉
−
〈
xi
〉〈
xj
〉
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1.2.3

Bayesian probabilities

• Classical or frequentists interpretation: probabilities in terms of frequencies of random
repeatable events

• Bayesian view: probabilities as subjective beliefs about uncertain event

– event not neccessarily repeatable
– event may yield only indirect observations
– Bayesian inference to update belief given observations

Why probability theory?

• Cox: common sense axioms for degree of uncertainty → probability theory
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1.2.3
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1.2.3

Maximum likelihood estimation

Given a data set

Data = {x1, . . . ,xN}

and a parametrized distribution

p(x|w), w = (w1, . . . , wM),

find the value of w that best describes the data.

The common approach is to assume that the data that we observe are drawn independently
from p(x|w) (independent and identical distributed = i.i.d.) for some unknown value of
w:

p(Data|w) = p({x1, . . . ,xN}|w) =

N∏
i=1

p(xi|w)
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1.2.3

Then, the most likely w is obtained by maximizing p(Data|w) wrt w:

wML = argmaxwp(Data|w) = argmaxw

N∏
i=1

p(xi|w)

= argmaxw

N∑
i=1

log p(xi|w)

since log is a monotonically increasing function.

wML is a function of the data. This is called an estimator.

Frequentists methods consider a single true w and data generation mechanism p(Data|w
provided by ’Nature’ and study expected value:

EwML =
∑
Data

p(Data|w)wML(Data)

For instance, µ̂ = 1
N

∑
i xi is estimator for the mean of a distribution. If data are

xi ∼ N (µ, σ2) then Eµ̂ = µ.
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1.2.3

Bayesian machine learning

Model parameters w: uncertain

• Prior assumptions and beliefs about model parameters: the prior distribution p(w)
• Observed data = {x1, . . . ,xN} = Data
• Probability of data given w (the likelihood): p(Data|w)

Apply Bayes’ rule to obtain the posterior distribution

p(w|Data) =
p(Data|w)p(w)

p(Data)
∝ p(Data|w)p(w)

p(w) : prior

p(Data|w) : likelihood

p(Data) =

∫
p(Data|w)p(w) dw : evidence

→ p(w|Data) : posterior
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1.2.3

Predictive distribution

Prior to ’learning’, the predictive distribution for new observation x is

p(x) =

∫
p(x|w)p(w) dw

After ’learning’, i.e., after observation of Data, the predictive distribution for new
observation x becomes

p(x|Data) =

∫
p(x|w,Data)p(w|Data) dw

=

∫
p(x|w)p(w|Data) dw
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1.2.3

Bayesian vs frequentists view point

• Bayesians: there is a single fixed dataset (the one observed), and a probability
distribution of model parameters w which expresses a subjective belief including
uncertainty about the ‘true’ model parameters.

- They need a prior belief p(w), and apply Bayes rule to compute p(w|Data).

- Bayesians can talk about the belief that w has a certain value given the particular
data set.

• Frequentists assume a single (unknown) fixed model parameter vector w.

- construct an estimator ŵ that is a function of the data. For instance, the maximum
likelihood estimator

- study statistical properties of estimators in similar experiments, each time with
different datasets drawn from p(Data|w), such as bias and variance.

-They cannot make a claim for this particular data set. This is the price for not having
a ‘prior’.

Bert Kappen, Tom Claassen course SML 69



1.2.3

Toy example

w is the probability that a coin comes up ’head’. Toss N times with NH outcomes ’head’.

The likelihood of the data p(NH|w,N) =

(
N
NH

)
wNH(1− w)N−NH .

The (frequentist) maximum likelihood estimator:

ŵ = argmaxwp(NH|w,N) = argmaxw [NH logw + (N −NH) log(1− w)] =
NH
N

ŵ is stochastic variable, because it depends on the data set.

But it has ’nice’ statistical property that on average (over many data sets) ŵ gives the
correct value:

Eŵ =
∑
NH

p(NH|w,N)
NH
N

= w

3

3Use
∑N
NH=0 p(NH|w,N) = 1.
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1.2.3

The Bayesian approach considers one data set and assumes a prior p(w) and compute
the posterior

p(w|NH, N) =
p(w)p(NH|w,N)

p(NH, N)
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1.2.3

Bayesian vs frequentists

• Prior: inclusion of prior knowledge may be useful. True reflection of knowledge, or
convenient construct? Bad prior choice can overconfidently lead to poor result.

• Bayesian integrals cannot be calculated in general. Only approximate results possible,
requiring intensive numerical computations.

• Frequentists methods of ‘resampling the data’, (crossvalidation, bootstrapping) are
appealing

• Bayesian framework transparent and consistent. Assumptions are explicit, inference is
a mechanstic procedure (Bayesian machinery) and results have a clear interpretation.

This course place emphasis on Bayesian approach.
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1.2.3

Medical example

Suppose w = {0, 1} is a disease state (absent/present). The disease is rare, say
P (w = 1) = 0.01. There is a test x = 0, 1 that measures whether the patient has the
disease.

p(x = 1|w = 1) = p(x = 0|w = 0) = 0.9

The test is performed and is positive: x = 1. What is the probability that the patient
has the disease?
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1.2.3

p(w = 1|x = 1) = 0.9∗0.01
0.9∗0.01+0.1∗0.99 = 1

1+0.1∗0.99
0.9∗0.01

= 1
12 = 0.0825
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1.2.4: p.24-25

Gaussian distribution

Normal distribution = Gaussian distribution

N (x|µ, σ2) =
1√

2πσ2
exp

{
− (x− µ)2

2σ2

}
Specified by µ and σ2

N (x|µ, σ2)

x

2σ

µ
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1.2.4: p.24-25

Gaussian is normalized, ∫ ∞
−∞
N (x|µ, σ2) dx = 1

The mean (= first moment), second moment, and variance are:

IE[x] = 〈x〉 =

∫ ∞
−∞

xN (x|µ, σ2) dx = µ

〈
x2
〉

=

∫ ∞
−∞

x2N (x|µ, σ2) dx = µ2 + σ2

var[x] =
〈
x2
〉
− 〈x〉2 = σ2
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1.2.4: p.24-25

Multivariate Gaussian

In D dimensions

N (x|µ,Σ) =
1

(2π)D/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
x,µ are D-dimensional vectors.

Σ is a D ×D covariance matrix, |Σ| is its determinant.
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1.2.4: p.24-25

Mean vector and covariance matrix

IE[x] = 〈x〉 =

∫
xN (x|µ,Σ) dx = µ

cov[x] =
〈
(x− µ)(x− µ)T

〉
=

∫
(x− µ)(x− µ)TN (x|µ,Σ) dx = Σ

We can also write this in component notation:

µi = 〈xi〉 =

∫
xiN (x|µ,Σ) dx

Σij = 〈(xi − µi)(xj − µj)〉 =

∫
(xi − µi)(xj − µj)N (x|µ,Σ) dx

N (x|µ,Σ) is specified by its mean and covariance, in total D(D+1)/2+D parameters.
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1.2.4: p.26-28

The likelihood for the 1-d Gaussian

Consider 1-d data Data = x = {x1, . . . , xN}. The likelihood of the data under a Gaussian
model is the probability of the data, assuming each data point is independently drawn
from the Gaussian distribution:

p(x|µ, σ) =

N∏
n=1

N (xn|µ, σ2) =

(
1√
2πσ

)N
exp

(
− 1

2σ2

N∑
n=1

(xn − µ)2

)

x

p(x)

xn

N (xn|µ, σ2)
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1.2.4: p.26-28

Maximum likelihood

Consider the log of the likelihood:

ln p(x|µ, σ) = ln

((
1√
2πσ

)N
exp

(
− 1

2σ2

N∑
n=1

(xn − µ)2

))

= − 1

2σ2

N∑
n=1

(xn − µ)2 − N
2

lnσ2 − N
2

ln 2π

The values of µ and σ that maximize the likelihood are given by

µML =
1

N

N∑
n=1

xn σ2
ML =

1

N

N∑
n=1

(xn − µML)2
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1.2.4: p.26-28

Bias in the ML estimates

Note that µML, σ
2
ML are functions of the data. We can take their expectation value,

assuming that xn is from a N (x|µ, σ).

〈µML〉 =
1

N

N∑
n=1

〈xn〉 = µ
〈
σ2
ML

〉
=

1

N

N∑
n=1

〈
(xn − µML)2

〉
= . . . =

N − 1

N
σ2

(a)

(b)

(c)

The variance is estimated too low. This is called a biased estimator. Bias disappears
when N →∞. In complex models with many parameters, the bias is more severe.

(Bayesian approach gives correct expected values)
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1.2.5: p.28-29

Curve fitting re-visited

Now from a probabilistic perspective.

Target t is Gaussian distributed around mean y(x,w) =
∑M
j=0wjx

j,

p(t|x,w, β) = N (t|y(x,w), β−1)

β = 1/σ2 is the precision.

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)
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1.2.5: p.28-29

Curve fitting re-visited: ML

Training data: inputs x = (x1, . . . , xn), targets t = (t1, . . . , tn). (Assume β is known.)

Likelihood function,

p(t|x,w) =

N∏
n=1

N (tn|y(xn,w), β−1)

Log-likelihood

ln p(t|x,w) = −β
2

N∑
n=1

(y(xn,w)− tn)2 + const

With wML one can make predictions for a new input values x. The predictive distribution
over the output t is:

p(t|x,wML) = N (t|y(x,wML), β−1)
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1.2.5: p.30

Curve fitting re-visited MAP

More Bayesian approach.
Prior:

p(w|α) = N (w|α−1I) =
( α

2π

)(M+1)/2

exp
(
−α

2
wTw

)
M is the dimension of w. Variables such as α, controling the distribution of parameters,
are called ‘hyperparameters’.

Posterior using Bayes rule:

p(w|t, x, α, β) ∝ p(w|α)

N∏
n=1

N (tn|y(xn,w), β−1)

− ln p(w|x, t, α, β) =
β

2

N∑
n=1

(y(xn,w)− tn)2 +
α

2
wTw + const

Maximizing the posterior wrt w yields wMAP . Similar as Eq. 1.4. with λ = α/β
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1.2.5: p.30

Bayesian curve fitting

Given the training data x, t we are not so much interested in w, but rather in the
prediction of t for a new x: p(t|x, x, t). This is given by

p(t|x, x, t) =

∫
p(t|x,w)p(w|x, t)dw

It is the average prediction of an ensemble of models p(t|x,w) parametrized by w and
averaged wrt to the posterior distribution p(w|x, t).

All quantities depend on α and β. (How?)
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1.2.6

Bayesian curve fitting

Generalized linear model with ‘basis functions’ e.g., φi(x) = xi,

y(x,w) =
∑
i

φi(x)wi = φ(x)Tw

So: assuming Gaussian noise, prediction given w is

p(t|x,w) = N (t|y(x,w), β−1) = N (t|φ(x)Tw, β−1)
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1.2.6

Result Bayesian curve fitting

Predictive distribution

p(t|x, x, t) = N (t|m(x), s2(x))

m(x) = βφ(x)TS

N∑
n=1

φ(xn)tn = φ(x)TwMAP

s2(x) = β−1 + φ(x)TSφ(x)

S−1 = αI + β

N∑
n=1

φ(xn)φ(xn)T

Note, s2 depend on x. First term as in ML estimate describes noise in target for fixed w.
Second term describes noise due to uncertainty in w.
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1.2.6

Example

x

t

0 1

−1

0

1

Polynomial curve fitting with M = 9, α = 5× 10−3, β = 11.1. Red: m(x)± s(x). Note√
β−1 = 0.3
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1.3

Model selection

Q: If we have different models to describe the data, which one should we choose?
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1.3

Model selection/Cross validation

Q: If we have different models to describe the data, which one should we choose?

A1: If data is plenty, use separate validation set to select model with best generalization
performance, and a third independent test set for final evaluation.

A2: Small validation set: use S-fold cross validation.

run 1

run 2

run 3

run 4

A3: Information criteria: penalty for complex models
• Akaike IC (AIC): ln p(D|wML)−M
• Bayesian IC (BIC): ln p(D|wMAP )− 1

2M lnN (Bayesian + crude approximation)
• Full Bayesian → penalties arises automatically
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1.4: pp. 34–35

High-dimensional data/Binning

Sofar, we considered x one-dimensional. How does pattern recognition work higher
dimensions?

x6

x7

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

x6

x7

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

Two components of 12-dimensional data that describe gamma ray measurements of a mixture of oil, water

and gas. The mixture can be in three states: homogenous (red), annular (green) and laminar (blue).

Classification of the ’x’ can be done by making a putting a grid on the space and assigning
the class that is most numerous in the particular box.
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1.4: p. 35

High-dimensional data/Binning

Q: What is the disadvantage of this approach?
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1.4: p. 35

Curse of dimensionality/Binning

Q: What is the disadvantage of this approach?
A: This approach scales exponentially with dimensions.

x1

D = 1
x1

x2

D = 2

x1

x2

x3

D = 3

In D dimensions: grid with length n consists of nD hypercubes.
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1.4: p. 36

Curse of dimensionality/Polynomials

The polynomial function considered previously becomes in D dimensions:

y(x,w) = w0 +

D∑
i=1

wixi +

D∑
i=1

D∑
j=1

wijxixj +

D∑
i=1

D∑
j=1

D∑
k=1

wijkxixjxk

(here up to order M = 3).

The number of coefficients scales as . . . ?
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1.4: p. 36

Curse of dimensionality/Polynomials

The polynomial function considered previously becomes in D dimensions:

y(x,w) = w0 +

D∑
i=1

wixi +

D∑
i=1

D∑
j=1

wijxixj +

D∑
i=1

D∑
j=1

D∑
k=1

wijkxixjxk

(here up to order M = 3).

The number of coefficients scales as DM (unpractically large).
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1.4: p. 37

Curse of dimensionality/Spheres

Q: In a 10-dimensional hypersphere with radius R = 1: what is the volume fraction lying
in the outer “shell” between r = 0.5 and r = 1?
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1.4: p. 37

Curse of dimensionality/Spheres

Q: In a 10-dimensional hypersphere with radius R = 1: what is the volume fraction lying
in the outer “shell” between r = 0.5 and r = 1?
A: More than 0.999!

So in high dimensions, almost all data points are at more or less the same distance!

ε

vo
lu

m
e 

fr
ac

tio
n

D = 1

D = 2

D = 5

D = 20

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

VD(r) = KDr
D VD(1)− VD(1− ε)

VD(1)
= 1− (1− ε)D

Spheres in high dimension have most of their volume on the boundary.
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1.4: p. 37

Curse of dimensionality/Gaussians

D = 1

D = 2

D = 20

r

p(
r)

0 2 4
0

1

2

In high dimensions, the distribution of the radius of a Gaussian with variance σ is
concentrated around a thin shell r ≈ σ

√
D.

Intuition developed in low dimensional space may be wrong in high dimensions!
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1.4: p. 38

Curse of dimensionality

Is machine learning even possible in high dimensions?

• Data often in low dimensional subspace: only a few dimensions are relevant.

– Object located in 3-D→ images of objects are N -D→ there should be 3-D manifold
(curved subspace)

• Smoothness, local interpolation (note: this is also needed in low dimensions).
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1.5

Decision theory

Inference: given pairs (x, t), learn p(x, t) and estimate p(x, t) for new value of x (and
possibly all t).

Decision: for new value of x estimate ’best’ t.

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).
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1.5

Decision theory

Inference: given pairs (x, t), learn p(x, t) and estimate p(x, t) for new value of x (and
possibly all t).

Decision: for new value of x estimate ’best’ t.

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

Bayes’ theorem:

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)

p(Ck) is the prior probability of class Ck. p(Ck|x) is the posterior probability of class Ck
after seeing the image x.

Q: So, how to use this model to decide on the best action?
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1.5.1

Decision theory

A classifier is specified by defining regions Rk, such that all x ∈ Rk are assigned to class
Ck. In the case of two classes, the probability that this classifier gives the correct answer
is

p(correct) = p(x ∈ R1, C1) + p(x ∈ R2, C2) =

∫
R1

p(x, C1)dx+

∫
R2

p(x, C2)dx

R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x

p(correct) is maximized when the regions Rk are chosen such that

k = argmaxkp(x, Ck) = argmaxkp(Ck|x)
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1.5.1

Decision theory/Example

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

Q: Suppose p(C1) = 0.01 and p(C1|x) = 0.3 according to our model. Do we decide that
the patient has cancer and therefore start treatment?
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1.5.1

Decision theory/Example

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

Q: Suppose p(C1) = 0.01 and p(C1|x) = 0.3 according to our model. Do we decide that
the patient has cancer and therefore start treatment?

A: If we want to maximize the chance of making the correct decision, we have to pick k
such that p(Ck|x) is maximal.
Because p(C1|x) = 0.3 and p(C2|x) = 0.7, the answer is no: we decide that the patient
does not have cancer.
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1.5.2

Decision theory/Expected loss

Typically, not all classification errors are equally bad: classifying a healthy patient as sick,
is not as bad as classifying a sick patient as healthy.

L =

(
0 1000
1 0

)
Loss function. Rows are true classes (cancer, normal), columns are assigned classes (cancer, normal).

The probability to assign an x to class j while to belongs to class k is p(x ∈ Rj, Ck).
Thus the total expected loss is

〈L〉 =
∑
k

∑
j

Lkjp(x ∈ Rj, Ck) =
∑
j

∫
Rj

p(x)
∑
k

Lkjp(Ck|x)dx

〈L〉 is minimized if each x is assigned to class j such that
∑
k Lkjp(Ck|x) is minimal.
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1.5.2

Decision theory/Example

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

C1 C2

C1 0 1000
C2 1 0

Loss function. Rows are true classes (cancer, normal), columns are assigned classes (cancer, normal).

Q: Suppose p(C1) = 0.01 and p(C1|x) = 0.3 according to our model. Do we decide that
the patient has cancer and therefore start treatment?
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1.5.2

Decision theory/Example

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

C1 C2

C1 0 1000
C2 1 0

Loss function. Rows are true classes (cancer, normal), columns are assigned classes (cancer, normal).

Q: Suppose p(C1) = 0.01 and p(C1|x) = 0.3 according to our model. Do we decide that
the patient has cancer and therefore start treatment?

A: If we want to minimize the expected loss, we have to pick j such that
∑
k Lkjp(Ck|x)

is minimal.
For j = 1, this yields 0× 0.3 + 1× 0.7 = 0.7,
for j = 2, this yields 1000× 0.3 + 0× 0.7 = 300.
Therefore, we now decide j = 1 that the patient has cancer (better safe than sorry).
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1.5.3

Decision theory/Reject option

It may be that maxj p(Cj|x) is small, indicating that it is unclear to which class x
belongs.

In that case, a different decision can be taken: the “reject” or “don’t know” option.

x

p(C1|x) p(C2|x)

0.0

1.0
θ

reject region

This can be done by introducing a threshold θ ∈ [0, 1] and only classify those x for which
maxj p(Cj|x) > θ (and answer “don’t know” otherwise).
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1.5.4

Decision theory/Discriminant functions

Instead of first learning a probability model and then making a decision, one can also
directly learn a decision rule (a classifier) without the intermediate step of a probability
model.

A set of approaches:

• Learn a model for the class conditional probabilities p(x|Ck). Use Bayes’ rule to
compute p(Ck|x) and construct a classifier using decision theory. This approach is the
most complex, but has the advantage of yielding a model of p(x) that can be used to
reject unlikely inputs x.

• Learn the inference problem p(Ck|x) directly and construct a classifier using decision
theory. This approach is simpler, since no input model p(x) is learned (see figure).

• Learn f(x), called a discriminant function, that maps x directly onto a class label
0, 1, 2, . . .. Even simpler, only decision boundary is learned. But information on the
expected classification error is lost.
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1.5.4

Decision theory/Discriminant functions

p(x|C1)

p(x|C2)

x

cl
as

s 
de
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es

0 0.2 0.4 0.6 0.8 1
0

1

2
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x

p(C1|x) p(C2|x)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Example that shows that detailed structure in the joint model need not affect class conditional probabilities.

Learning only the decision boundary is the simplest approach.

Approaches that model the distribution of both inputs and outputs are called generative
models, approaches that only model the conditional distribution of the output given the
input are called discriminative models.
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1.5.4

Decision theory/Discriminant functions

Advantages of learning a class conditional probability instead of discriminant function:

Minimizing risk When minimizing expected loss, the loss matrix may change over time
whereas the class probabilities may not (for instance, in a financial application).

Reject option One can reject uncertain class assignments

Unbalanced data One can compensate for unbalanced data sets. For instance, in the
cancer example, there may be 1000 times more healthy patients than cancer patients.
Very good classification (99.9 % correct) is obtained by classifying everyone as healthy.
Using the posterior probability one can compute p(Ck = cancer|x). Although this
probability may be low, it may be significantly higher than p(Ck = cancer), indicating
a risk of cancer.

Bert Kappen, Tom Claassen course SML 111



1.5.4

Decision theory/Discriminant functions

Combining models Given models for p(Ck|x) and p(Ck|y) one has a principled approach
to classify on both x and y. Naive Bayes assumption:

p(x,y|Ck) = p(x|Ck)p(y|Ck)

(given the disease state of the patient the blood and X-ray test results are independent).
Then

p(Ck|x,y) ∝ p(x,y|Ck)p(Ck) ∝ p(x|Ck)p(y|Ck)p(Ck) ∝
p(Ck|x)p(Ck|y)

p(Ck)
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1.5.5

Loss functions for regression

Decision theory generalizes straightforwardly to continuous variables: the loss matrix Ljk
becomes a loss function L(t, y(x)).

Examples:

y − t

|y
−
t|q

q = 0.3

−2 −1 0 1 2
0

1

2

y − t

|y
−
t|q

q = 1

−2 −1 0 1 2
0

1

2

y − t

|y
−
t|q

q = 2

−2 −1 0 1 2
0

1

2

y − t

|y
−
t|q

q = 10

−2 −1 0 1 2
0

1

2

Minkowski loss function Lq = |y − t|q for various values of q.
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1.5.5

Loss functions for regression/Quadratic loss

The average/expected loss is:

〈L〉 =

∫∫
L
(
t, y(x)

)
p(x, t) dx dt

For the quadratic loss function L2

(
t, y(x)

)
=
(
t−y(x)

)2
one can derive that the expected

loss is minimized by taking
y(x) = Et[t|x]

i.e., by the mean of the conditional distribution p(t|x). (The minimum of 〈L1〉 is obtained
by the conditional median.)

t

xx0

y(x0)

y(x)

p(t|x0)
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1.6: pp. 48–49

Information theory

Information is a measure of the ’degree of surprise’ that a certain value gives us.
Unlikely events are informative, likely events less so. Certain events give us no additional
information. Thus, information decreases with the probability of the event.

Let us denote h(x) the information of x. Then if x, y are two independent events:
h(x, y) = h(x) + h(y). Since p(x, y) = p(x)p(y) we see that

h(x) = − log2 p(x)

is a good candidate to quantify the information in x.

If x is observed repeatedly then the expected information is

H[x] := 〈− log2 p〉 = −
∑
x

p(x) log2 p(x)

is the entropy of the distribution p.
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1.6: p. 50

Information theory

Example 1: x can have 8 values with equal probability, then H(x) = −8 × 1
8 log 1

8 = 3
bits.

Example 2: x can have 8 values with probabilities (1
2,

1
4,

1
8,

1
16,

1
64,

1
64,

1
64,

1
64). Then

H(x) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

16
log

1

16
− 4

64
log

1

64
= 2bits

which is smaller than for the uniform distribution.

Noiseless coding theorem: Entropy is a lower bound on the average number of bits needed
to transmit a random variable (Shannon 1948).

Q: How can we transmit x in example 2 most efficiently?
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1.6: p. 50

Information theory

Example 1: x can have 8 values with equal probability, then H(x) = −8 × 1
8 log 1

8 = 3
bits.

Example 2: x can have 8 values with probabilities (1
2,

1
4,

1
8,

1
16,

1
64,

1
64,

1
64,

1
64). Then

H(x) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

16
log

1

16
− 4

64
log

1

64
= 2bits

which is smaller than for the uniform distribution.

Noiseless coding theorem: Entropy is a lower bound on the average number of bits needed
to transmit a random variable (Shannon 1948).

A: We can encode x as a 3 bit binary number, in which case the expected code length is
3 bits. We can do better, by coding likely x smaller and unlikely x larger, for instance 0,
10, 110, 1110, 111100, 111101, 111110, 111111. Then

Av.codelength =
1

2
× 1 +

1

4
× 2 +

1

8
× 3 +

1

16
× 4 +

4

64
× 6 = 2bits
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1.6: p. 52

Information theory

pr
ob

ab
ili

tie
s

H = 1.77

0

0.25

0.5

pr
ob

ab
ili

tie
s

H = 3.09

0

0.25

0.5

When x has values xi, i = 1, . . . ,M , then

H[x] = −
∑
i

p(xi) log p(xi)

When p is sharply peaked (p(x1) = 1, p(x2) = . . . = p(xM) = 0) then the entropy is

H[x] = −1 log 1− (M − 1)0 log 0 = 0

When p is flat (p(xi) = 1/M) the entropy is maximal

H[x] = −M 1

M
log

1

M
= logM
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1.6: p. 52
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1.6: pp. 53–54

Information theory/Maximum entropy

For p(x) a distribution density over a continuous value x we define the (differential)
entropy as

H[x] = −
∫
p(x) log p(x)dx

Suppose that all we know about p is its mean µ and its variance σ2.

Q: What is the distribution p with mean µ and variance σ2 that is as uninformative as
possible, i.e., which maximizes the entropy?
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1.6: pp. 53–54

Information theory/Maximum entropy

For p(x) a distribution density over a continuous value x we define the (differential)
entropy as

H[x] = −
∫
p(x) log p(x)dx

Suppose that all we know about p is its mean µ and its variance σ2.

Q: What is the distribution p with mean µ and variance σ2 that is as uninformative as
possible, i.e., which maximizes the entropy?

A: The Gaussian distribution N (x|µ, σ2) (exercise 1.34 and 1.35).
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1.6.1

Information theory/KL-divergence

Relative entropy or Kullback-Leibler divergence or KL-divergence:

KL(p||q) = −
∑
i

pi ln qi −
(
−
∑
i

pi ln pi
)

= −
∑
i

pi ln
{qi
pi

}
• Additional amount of information required to specify i when q is used for coding rather

than the true distribution p.

• Divergence between ‘true’ distribution p and ‘approximate’ distribution q.

• KL(p||q) 6= KL(q||p)

• KL(p||q) ≥ 0, KL(p||q) = 0⇔ p = q (use convex functions)

• with continuous variables: KL(p||q) = −
∫
p(x) ln

{q(x)
p(x)

}
dx
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1.6.1: p. 56

Convex functions

xa bxλ

chord

xλ

f(x)

Convex function: every chord lies on or above the function.

f is convex ⇐⇒ f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b) ∀λ ∈ [0, 1],∀a, b

• Examples: f(x) = ax+ b, f(x) = x2, f(x) = − ln(x) and f(x) = x ln(x) (exercise).

• Convex: ∪ shaped. Concave: ∩ shaped.

• Convex ⇔ second derivative non-negative.
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1.6.1: p. 56

Convex functions/Jensen’s inequality

Convex functions satisfy Jensen’s inequality

f

(
M∑
i=1

λixi

)
≤

M∑
i=1

λif(xi)

where λi ≥ 0,
∑
i λi = 1, for any set points xi.

In other words:
f(〈x〉) ≤ 〈f(x)〉

Example: to show that KL(p||q), we apply Jensen’s inequality with λi = pi, making use
of the fact that − ln(x) is convex:

KL(p||q) = −
∑
i

pi ln

(
qi
pi

)
≥ − ln

(∑
i

pi
qi
pi

)
= − ln

(∑
i

qi

)
= 0
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1.6.1: p. 57

Information theory and density estimation

Relation with maximum likelihood:

Empirical distribution :

p(x) =
1

N

N∑
n=1

δ(x− xn)

Approximating distribution (model) : q(x|θ)

KL(p||q) = −
∫
p(x) ln q(x|θ)dx−

∫
p(x) ln p(x)dx

= − 1

N

N∑
n=1

ln q(xn|θ) + const.

Thus, minimizing the KL-divergence between the empirical distribution p(x) and the
model distribution q(x|θ) is equivalent to maximum likelihood (i.e., maximizing the
likelihood of i.i.d. data with respect to the the model parameters θ).
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1.6.1: pp. 57–58

Information theory/mutual information

Mutual information between x and y: KL divergence between joint distribution p(x,y)
and product of marginals p(x)p(y),

I[x,y] ≡ KL(p(x,y)||p(x)p(y))

= −
∫ ∫

p(x,y) ln
(p(x)p(y)

p(x,y)

)
dxdy

• I(x,y) ≥ 0, equality iff x and y independent

Relation with conditional entropy

I[x,y] = H[x]−H[x|y] = H[y]−H[y|x]
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Appendix E

Lagrange multipliers

Minimize f(x) under constraint: g(x) = 0.

Fancy formulation: define Lagrangian,

L(x, λ) = f(x) + λg(x)

λ is called a Lagrange multiplier.

The constraint minimization of f w.r.t x equivalent to unconstraint minimization of
maxλL(x, λ) w.r.t x. The maximization w.r.t to λ yields the following function of x

max
λ

L(x, λ) = f(x) if g(x) = 0

max
λ

L(x, λ) =∞ otherwise
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Appendix E

Lagrange multipliers

Under certain conditions, in particular f(x) convex (i.e. the matrix of second derivatives
positive definite) and g(x) linear,

min
x

max
λ

L(x, λ) = max
λ

min
x
L(x, λ)

Procedure:

1. Minimize L(x, λ) w.r.t x, e.g. by taking the gradient and set to zero. This yields a
(parametrized) solution x(λ).

2. Maximize L(x(λ), λ) w.r.t. λ. The solution λ∗ is precisely such that g(x(λ∗)) = 0.

3. The solution of the constraint optimization problem is

x∗ = x(λ∗)
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Appendix E

Example

g(x1, x2) = 0

x1

x2

(x?
1, x

?
2)

f(x1, x2) = 1− x2
1 − x2

2 and constraint g(x1, x2) = x1 + x2 − 1 = 0

Lagrangian:
L(x1, x2, λ) = 1− x2

1 − x2
2 + λ(x1 + x2 − 1)

Minimize L w.r.t. xi gives xi(λ) = 1
2λ.

Plug into constraint: x1(λ) + x2(λ)− 1 = λ− 1 = 0.

So λ = 1 and x∗i = 1
2
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Appendix E

Some remarks

• Works as well for maximization (of concave functions) under constraints. The
procedure is essentially the same.

• The sign in front of the λ can be chosen as you want:

L(x, λ) = f(x) + λg(x) or L(x, λ) = f(x)− λg(x)

work equally well.

• More constraints? For each constraint gi(x) = 0 a Lagrange multiplier λi, so

L(x, λ) = f(x) +
∑
i

λigi(x)

• Similar methods apply for inequality constraints g(x) ≥ 0 (restricts λ).
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2

Chapter 2

Probability distributions

• Density estimation

• Parametric distributions

• Maximum likelihood, Bayesian inference, conjugate priors

• Bernoulli (binary), Beta, Gaussian, ..., exponential family

• Nonparametric distribution

Bert Kappen, Tom Claassen course SML 131



2.1

Binary variables / Bernoulli distribution

x ∈ {0, 1}

p(x = 1|µ) = µ,

p(x = 0|µ) = 1− µ

Bernoulli distribution:
Bern(x|µ) = µx(1− µ)1−x

Mean and variance:

IE[x] = µ

var[x] = µ(1− µ)
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2.1

Binary variables / Bernoulli distribution

Data set (i.i.d) D = {x1, . . . , xn}, with xi ∈ {0, 1}.

Likelihood:
p(D|µ) =

∏
n

p(xn|µ) =
∏
n

µxn(1− µ)1−xn

Log likelihood

ln p(D|µ) =
∑
n

ln p(xn|µ) =
∑
n

xn lnµ+ (1− xn) ln(1− µ)

= m lnµ+ (N −m) ln(1− µ)

where m =
∑
n xn, the total number of xn = 1.

Maximization w.r.t µ gives maximum likelihood solution:

µML =
m

N
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2.1.1

The beta distribution

Distribution for parameters µ. Conjugate prior for Bayesian treatment for problem.

Beta(µ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µa−1(1− µ)b−1, 0 ≤ µ ≤ 1

µ

a = 0.1

b = 0.1

0 0.5 1
0

1

2

3

µ

a = 1

b = 1

0 0.5 1
0

1

2

3

µ

a = 2

b = 3

0 0.5 1
0

1

2

3

µ

a = 8

b = 4

0 0.5 1
0

1

2

3
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2.1.1

The beta distribution

Beta(µ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µa−1(1− µ)b−1

∝ µa−1(1− µ)b−1 0 ≤ µ ≤ 1

Normalisation ∫ 1

0

Beta(µ|a, b) = 1

Mean and variance

IE[µ] =
a

a+ b

var[µ] =
ab

(a+ b)2(a+ b+ 1)
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2.1.1

Bayesian inference with binary variables

Prior:
p(µ) = Beta(µ|a, b) ∝ µa−1(1− µ)b−1

Likelihood – Data set (i.i.d) D = {x1, . . . , xN}, with xi ∈ {0, 1}.
Assume m ones and l zeros, (m+ l = N)

p(D|µ) =
∏
n

p(xn|µ) =
∏
n

µxn(1− µ)1−xn

= µm(1− µ)l

Posterior

p(µ|D) ∝ p(D|µ)p(µ)

= µm(1− µ)l × µa−1(1− µ)b−1

= µm+a−1(1− µ)l+b−1 ∝ Beta(µ|a+m, b+ l)
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2.1.1

Bayesian inference with binary variables

Interpretation: Hyperparameters a and b effective number of ones and zeros.

Data: increments of these parameters.

Conjugacy:
(1) prior has the same form as likelihood function.
(2) this form is preserved in the product (the posterior)

µ

prior

0 0.5 1
0

1

2

µ

likelihood function

0 0.5 1
0

1

2

µ

posterior

0 0.5 1
0

1

2

Posterior interpreted as updated prior: sequential learning
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2.1.1

Bayesian inference with binary variables

Prediction of next data point given data D:

p(x = 1|D) =

∫ 1

0

p(x = 1|µ)p(µ|D)dµ =

∫ 1

0

µp(µ|D)dµ = IE[µ|D]

with posterior is Beta(µ|a+m, b+ l), and IE[µ|a, b] = a/(a+ b) we find

p(x = 1|D) =
m+ a

m+ a+ l + b
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2.2

Multinomial variables

Alternative representation for Bernoulli distribution: x ∈ {v1, v2}, parameter vector:
µ = (µ1, µ2), with µ1 + µ2 = 1.

p(x = vk|µ) = µk

In fancy notation:

p(x|µ) =
∏
k

µ
δxvk
k

Generalizes to multinomial variables: x ∈ {v1, . . . , vK},

µ = (µ1, . . . , µK)
∑
k

µk = 1
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2.2

Multinomial variables: Maximum likelihood

Likelihood:

p(D|µ) =
∏
n

p(xn|µ) =
∏
n

∏
k

µ
δxnvk
k

=
∏
k

µ
∑
n δxnvk

k

=
∏
k

µ
mk
k

with mk =
∑
n δxnvk, the total number of datapoints with value vk. Log likelihood

ln p(D|µ) =
∑
k

mk lnµk

Maximize with constraints using Lagrange multipliers.
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2.2.1

Dirichlet distribution

Dir(µ|α) ∝
∏
k

µ
αk
k

Probability distribution on the simplex:

SK = {(µ1, . . . , µK)|0 ≤ µk ≤ 1,

K∑
k=1

µk = 1}

µ1

µ2

µ3

αk = 0.1, 1, 10
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2.2.1

Dirichlet distribution

Dir(µ|α) ∝
∏
k

µ
αk
k

Probability distribution on the simplex:

SK = {(µ1, . . . , µK)|0 ≤ µk ≤ 1,

K∑
k=1

µk = 1}

Bayesian inference: Prior Dir(µ|α) + data counts m

→ Posterior Dir(µ|α+m)

Parameters α: ‘pseudocounts’.
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2.3

Gaussian

Gaussian distribution

N (x|µ, σ2) =
1√

2πσ2
exp

{
− (x− µ)2

2σ2

}
Specified by µ and σ2

In d dimensions

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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2.3

Central limit theorem

Sum of large set of random variables is approximately Gaussian distributed.

Let Xi set of random variables (not Gaussian!) with mean µ and variance σ2.

The sum of first n variables is Sn = X1 + ...+Xn. Now if n→∞

Law of large numbers: The mean of the sum Yn =
Sn
n

converges to µ

Central limit theorem: Distribution of

Zn =
Sn − nµ
σ
√
n

converges to Gaussian N (Zn|0, 1)

N = 1

0 0.5 1
0

1

2

3
N = 2

0 0.5 1
0

1
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0
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3
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Appendix C

Understanding the Gaussian through the covariance matrix Σ

Dependence on x only through the quadratic form

∆2 = (x− µ)TΣ−1(x− µ)

Properties of symmetric matrices

Aij = Aji, AT = A

Inverse of a matrix A is a matrix A−1 such that A−1A = AA−1 = I, where I is the
identity matrix.

The inverse of a symmetric matrix A−1 is also symmetric:

I = IT = (A−1A)T = AT (A−1)T = A(A−1)T

Thus, (A−1)T = A−1. (So precision matrix and covariance matrix are both symmetric.)
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Appendix C

Eigenvalues

A symmetric real-valued d× d matrix has d real eigenvalues λk and d eigenvectors uk:

Auk = λkuk, k = 1, . . . , d

or
(A− λkI)uk = 0

Solution of this equation for non-zero uk requires λk to satisfy the characteristic equation:

det(A− λI) = 0

This is a polynomial equation in λ of degree d and has thus d solutions 4 λ1, . . . , λd.

4In general, the solutions are complex. It can be shown that with symmetric matrices, the solutions are in fact real.

Bert Kappen, Tom Claassen course SML 146



Appendix C

Eigenvectors

Consider two different eigenvectors k and j. Multiply the k-th eigenvalue equation by uj
from the left:

uTj Auk = λku
T
j uk

Multiply the j-th eigenvalue equation by uk from the left:

uTkAuj = λju
T
kuj = λju

T
j uk

Subtract
(λk − λj)uTj uk = 0

Thus, eigenvectors with different eigenvalues are orthogonal
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Appendix C

If λk = λj then any linear combination is also an eigenvector:

A(αuk + βuj) = λk(αuk + βuj)

This can be used to choose eigenvectors with identical eigenvalues orthogonal.

If uk is an eigenvector of A, then αuk is also an eigenvector of A. Thus, we can make
all eigenvectors the same length one: uTkuk = 1.

In summary,
uTj uk = δjk

with δjk the Kronecker delta, is equal to 1 if j=k and zero otherwise.

The eigenvectors span the d-dimensional space as an orthonormal basis.
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Appendix C

Orthogonal matrices

Write U = (u1, . . . ,ud).

U is an orthogonal matrix 5 , i.e.

UTU = I

For orthogonal matrices,

UT = UTUU−1 = U−1

So UUT = I, i.e. the transposed is orthogonal as well (note that U is in general not
symmetric).

Furthermore,

det(UUT ) = 1⇒ det(U) det(UT ) = 1

⇒ det(U) = ±1

5

Uij = (uj)i, (U
T
U)ij =

∑
k

(U
T

)ikUkj =
∑
k

UkiUkj =
∑
k

(ui)k(uj)k = u
T
i · uj = δij
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Appendix C

Orthogonal matrices implement rigid rotations, i.e. length and angle preserving.

x̄1 = Ux1 x̄2 = Ux2

then
x̄T1 x̄2 = xT1 U

TUx2 = xT1 x2
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Appendix C

Diagonalization

The eigenvector equation can be written as

AU = A(u1, . . . ,ud) = (Au1, . . . , Aud) = (λ1u1, . . . , λdud)

= (u1, . . . ,ud)

 λ1 . . . 0
... ...
0 . . . λd


= UΛ

By right-multiplying by UT we obtain the important result

A = UΛUT

which can also be written as ’expansion in eigenvectors’

A =

d∑
k=1

λkuku
T
k
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Appendix C

Applications

A = UΛUT ⇒ A2 = UΛUTUΛUT = UΛ2UT

An = UΛnUT A−n = UΛ−nUT

Determinant is product of eigenvalues:

det(A) = det(UΛUT ) = det(U) det(Λ) det(UT ) =
∏
k

λk
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Appendix C

Basis transformation

We can represent an arbitrary vector x in d dimensions on a new orthonormal basis U as

x = UUTx =

d∑
k=1

uk(u
T
kx)

6 The numbers x̄k = (uTkx) are the components of x on the basis uk, k = 1, . . . , d, i.e.
on the new basis, the vector has components (UTx). If the matrix A is the representation
of a linear transformation on the old basis, the matrix with components

A′ = UTAU

is the representation on the new basis.

6

xi = (UU
T
x)i =

∑
kj

Uik(U
T

)kjxj =
∑
kj

(uk)i(uk)jxj =
∑
k

(uk)i(u
T
k · x) =

∑
k

uk(u
T
k · x)


i
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Appendix C

For instance if y = Ax, x̄ = UTx, ȳ = UTy, then

A′x̄ = UTAUx̄ = UTAUUTx = UTAx = UTy = ȳ

As a result, a matrix is diagonal on a basis of its eigenvectors:

A′ = UTAU = UTUΛUTU = Λ
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2.3

Multivariate Gaussian

In d dimensions

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
µ = 〈x〉 =

∫
xN (x|µ,Σ) dx

Σ =
〈
(x− µ)(x− µ)T

〉
=

∫
(x− µ)T (x− µ)N (x|µ,Σ) dx

We can also write this in component notation:

µi = 〈xi〉 =

∫
xiN (x|µ,Σ) dx

Σij = 〈(xi − µi)(xj − µj)〉 =

∫
(xi − µi)(xj − µj)N (x|µ,Σ) dx
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2.3, p. 80

Multivariate Gaussian

Spectral (eigenvalue) representation of Σ:

Σ = UΛUT =
∑
k

λkuku
T
k

Σ−1 = UΛ−1UT =
∑
k

λ−1
k uku

T
k

(x− µ)TΣ−1(x− µ) = (x− µ)TUΛ−1UT (x− µ)

= yTΛ−1y

x1

x2

λ
1/2
1

λ
1/2
2

y1

y2

u1

u2

µ
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2.3, p. 81

Multivariate Gaussian

Explain the normalization: use transformation7 y = UT (x− µ) = UTz∫
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
dx

=

∫
exp

(
−1

2
zTΣ−1z

)
dz =

∫ ∣∣∣∣det

(
∂z

∂y

)∣∣∣∣ exp

(
−1

2
yTΛ−1y

)
dy

=

∫
exp

(
− 1

2λ1
y2

1

)
dy1 . . .

∫
exp

(
− 1

2λd
y2
d

)
dyd

=
√

2πλ1 . . .
√

2πλd = (2π)d/2
(∏

i

λi
)1/2

= (2π)d/2 det(Σ)1/2

The multivariate Gaussian becomes a product of independent factors on the basis of
eigenvectors.

7Bishop alternates between defining matrix U as rows of eigenvectors uTi (2.52), and U as columns of eigenvectors ui
(C.37). In the slides we always use the more conventional column representation.
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2.3, p. 82

Multivariate Gaussian

Compute the expectation value : use shift-transformation z = x− µ
Take Z as normalisation constant.

Use symmetry f(z) = −f(−z)⇒
∫
f(z)dz = 0

IE[x] =
1

Z

∫
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
xdx

=
1

Z

∫
exp

(
−1

2
zTΣ−1z

)
(z + µ)dz

= µ
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2.3, p. 82

Multivariate Gaussian

Second order moment: use transformation y = UT (x− µ) = UTz

First, shift by z = x− µ

IE[xxT ] =

∫
N (x|µ,Σ)xxTdx

=

∫
N (z|0,Σ)(z + µ)(z + µ)Tdz

=

∫
N (z|0,Σ)(zzT + zµT + µzT + µµT )dz

=

∫
N (z|0,Σ)zzTdz + µµT
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2.3, p. 82

Multivariate Gaussian

Now use transformation y = UTz, and use Σ = UΛUT∫
N (z|0,Σ)zzTdz =

∫
N (y|0,Λ)UyyTUTdy

= U

∫
N (y|0,Λ)yyTdyUT

Component-wise computation shows
∫
N (y|0,Λ)yyTdy = Λ:

i 6= j →
∫
N (y|0,Λ)yiyjdy =

∫
N (yi|0, λi)yidyi

∫
N (yj|0, λj)yjdyj = 0

i = j →
∫
N (y|0,Λ)y2

i dy =

∫
N (yi|0, λi)y2

i dyi = λi

So ∫
N (z|0,Σ)zzTdz = UΛUT = Σ
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2.3, p. 82

Multivariate Gaussian

So, second moment is
IE[xxT ] = Σ + µµT

Covariance
cov[x] = IE[xxT ]− IE[x]IE[x]T = Σ
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2.3, p. 84

Multivariate Gaussian

Gaussian covariance has d(d+ 1) parameters, mean has d parameters.

Number of parameters quadratic in d which may be too large for high dimensional
applications.

x1

x2

(a)

x1

x2

(b)

x1

x2

(c)

Common simplifications: Σij = Σiiδij (2d parameters) or Σij = σ2δij (d + 1
parameters).
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2.3.2

Marginal and conditional Gaussians

Marginal and conditional of Gaussians are also Gaussian

xa

xb = 0.7

xb

p(xa, xb)

0 0.5 1
0

0.5

1

xa

p(xa)

p(xa|xb = 0.7)

0 0.5 1
0

5

10

1.

p(xa|xb) = N (xa|µa|b,Σa|b)
Σa|b = Σaa − ΣabΣ

−1
bb Σba µa|b = µa + ΣabΣ

−1
bb (xb − µb)

2.

p(xa) = N (xa|µa,Σaa)
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2.3.1

Conditional of Gaussian is Gaussian

Exponent in Gaussian N (x|µ,Σ): quadratic form

−1

2
(x− µ)TΣ−1(x− µ) = −1

2
xTΣ−1x+ xTΣ−1µ+ c = −1

2
xTKx+ xTKµ+ c

Precision matrix K = Σ−1.

Write x = (xa,xb). We wish to compute the conditional

p(xa|xb) =
p(xa,xb)

p(xb)
∝ p(xa,xb)

Exponent of conditional: collect all terms with xa, ignore constants, regard xb as
constant, and write in quadratic form as above

−
1

2
x
T
Kx+ x

T
Kµ = −

1

2
x
T
aKaaxa + x

T
aKaaµa − xTaKab(xb − µb)

= −
1

2
x
T
aKaaxa + x

T
aKaa(µa −K−1

aaKab(xb − µb)) = −
1

2
x
T
aΣ
−1
a|bxa + x

T
aΣ
−1
a|bµa|b

= −
1

2
(xa − µa|b)TΣ

−1
a|b(xa − µa|b) Σa|b = K

−1
aa µa|b = µa −K−1

aaKab(xb − µb)
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2.3.1
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2.3.1

Some matrix identities

We now need to relate K−1
aa to the components Σ.

(
A B
C D

)−1

=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)
with M =

(
A−BD−1C

)−1
.

(
Kaa Kab

Kba Kbb

)
=

(
Σaa Σab
Σba Σbb

)−1

=

(
M −MΣabΣ

−1
bb

−Σ−1
bb ΣbaM Σ−1

bb + Σ−1
bb ΣbaMΣabΣ

−1
bb

)

with M =
(
Σaa − ΣabΣ

−1
bb Σba

)−1
. Thus, Kaa = M and

Σa|b = K−1
aa = Σaa − ΣabΣ

−1
bb Σba

µa|b = µa −K−1
aaKab(xb − µb) = µa +M−1MΣabΣ

−1
bb (xb − µb)

= µa + ΣabΣ
−1
bb (xb − µb)
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2.3.3, p. 93

Bayes’ theorem for linear Gaussian model

Given marginal Gaussian on x and linear relation y = Ax + b + ξ:

p(x) = N (x|µ,Λ−1)

p(y|x) = N (y|Ax+ b,L−1)

Then (see next slide):

p(y) = N (y|Aµ+ b,L−1 +AΛ−1AT )

p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ)

Σ = (Λ +ATLA)−1

We will use these relations for Bayesian linear regression in section 3.3.
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2.3.3, p. 93

Details computation p(y)

p(x) = N (x|µ,Λ−1) IE[x] = µ cov[x] = Λ−1

p(y|x) = N (y|Ax+ b,L−1)

We write y = Ax+ b+ ε with IE[ε] = 0, cov[ε] = L−1.

x,y is jointly Gaussian (product of Gaussians). y is Gaussian (marginal of Gaussian).

IE[y] = IE[Ax+ b+ ε] = Aµ+ b

cov[y] = cov[Ax+ b+ ε] = cov[Ax] + cov[ε] = cov[Ax] +L−1

cov[Ax] = IE[(Ax−Aµ) (Ax−Aµ)
T

] = AIE[(x− µ) (x− µ)
T

]AT = AΛ−1AT

Thus,

p(y) = N
(
y|Aµ+ b,AΛ−1AT +L−1

)
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2.3.3, p. 93

Details computation p(x|y)

Write all relevant terms that occur in exponential of the joint Gaussian p(x,y):

−1

2
(x− µ)TΛ(x− µ)− 1

2
(y −Ax− b)TL(y −Ax− b)

Collect all quadratic and linear terms in x:

−1

2
xT
(
Λ +ATLA

)
x+ xT

(
Λµ+ATL(y − b)

)
Define Σ−1 = Λ +ATLA and m through Σ−1m = Λµ+ATL(y − b), then

−1

2
xTΣ−1x+ xTΣ−1m ∝ −1

2
(x−m)TΣ−1(x−m)

Thus

p(x|y) = N
(
x|Σ

(
Λµ+ATL(y − b)

)
,Σ
)
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2.3.6

Bayesian inference for the Gaussian

Aim: inference of unknown parameter µ. Assume σ given.

Likelihood of µ with one data point:

p(x|µ) = N (x|µ, σ) =
1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)

Likelihood of µ with the data set:

p({x1, . . . , xN}|µ) =

N∏
n=1

p(xn|µ) =

(
1√
2πσ

)N
exp

(
− 1

2σ2

∑
n

(xn − µ)2

)

= exp

(
−Nµ

2

2σ2
+
µ

σ2

∑
n

xn + const.

)
= exp

(
− N

2σ2
µ2 +

Nx̄

σ2
µ+ const.

)
= exp

(
− N

2σ2
(µ− x̄)2 + const.

)
with x̄ =

1

N

∑
n

xn
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2.3.6, pp. 98-99

Bayesian inference for the Gaussian

Likelihood:

p(Data|µ) = exp

(
− N

2σ2
µ2 +

Nx̄

σ2
µ+ const.

)
Prior:

p(µ) = N (µ|µ0, σ0) =
1√

2πσ0

exp

(
− 1

2σ2
0

(µ− µ0)2

)
= exp

(
− 1

2σ2
0

µ2 +
µ0

σ2
0

µ+ const.

)

µ0, σ0 hyperparameters. Large σ0 = large prior uncertainty in µ.

p(µ|Data) ∝ p(Data|µ)p(µ)

∝ exp

(
−1

2

(
N

σ2
+

1

σ2
0

)
µ2 +

(
Nx̄

σ2
+
µ0

σ2
0

)
µ+ const.

)
= exp

(
− 1

2σ2
N

µ2 +
1

σ2
N

µNµ+ const.

)
∝ exp

(
− 1

2σ2
N

(µ− µN)2 + const.

)
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2.3.6, pp. 98-99

1
σ2
N

= N
σ2 + 1

σ2
0

and µN = σ2
N

(
Nx̄
σ2 + µ0

σ2
0

)
.

N = 0

N = 1

N = 2

N = 10

−1 0 1
0

5

Posterior p(µ|D) for different number of training points. Prior mean is µ = 0. Likelihood mean is

µ = 0.8.

For N →∞: µN → x̄, σ2
N → 0

i.e., posterior distribution is a peak around ML solution
so Bayesian inference and ML coincides.
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2.3.9

Mixtures of Gaussians

Model for multimodal distribution

1 2 3 4 5 6
40

60

80

100
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2.3.9

Mixtures of Gaussians

Model for multimodal distribution

1 2 3 4 5 6
40

60

80

100

1 2 3 4 5 6
40

60

80

100

x

p(x)

p(x) =

K∑
k=1

πkN (x|µk,Σk)

Each Gaussian is called a component of the mixture. The factors πk are the mixing
coefficients.
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2.3.9

Mixtures of Gaussians

0.5 0.3

0.2

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1

p(x) =

K∑
k=1

πkN (x|µk,Σk)

• Mixing coefficients satisfy

πk ≥ 0 and
∑
k

πk = 1

this implies p(x) ≥ 0 and
∫
p(x)dx = 1.
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2.3.9

Mixtures of Gaussians

0.5 0.3

0.2

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1

p(x) =

K∑
k=1

πkN (x|µk,Σk)

• k: label of the mixture. Joint distribution p(x, k) = πkp(x|k). Since data is not
labeled: marginal distribution p(x) =

∑
k πkp(x|k). p(x, k) in exponential family.

However, mixture model p(x) not in the exponential family, no simple relation between
data and parameters

• One can also consider mixtures of other distributions (mixtures of Bernoulli 9.3.3)
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2.3.9

Mixtures of Gaussians

ML: by gradient ascent (numerical function maximization).

Learning with hidden variables is generally difficult (slow).

Instead, EM (Expectation Maximization) algorithm to deal with hidden variables.

For instance using Bayes’ rule compute the ”soft assignment’ of data xn to each of the
clusters:

γk(xn) ≡ p(k|xn) =
πkN (xn|µk,Σk)∑
k′ πk′N (xn|µk′,Σk′)

update according to

µk =

∑N
n=1 γk(xn)xn∑N
n=1 γk(xn)

See Chapter 9 for more details.
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2.4

The exponential family

Examples: Gaussian, Bernouilli, Beta, multinomial, Poisson distribution

p(x|η) = h(x)g(η) exp(ηTu(x))

η: ”natural parameters”
u(x): (vector) function of x, ”sufficient statistic”
g(η) to ensure normalization
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2.4

The exponential family

Examples: Gaussian, Bernouilli, Beta, multinomial, Poisson distribution

p(x|η) = h(x)g(η) exp(ηTu(x))

η: ”natural parameters”
u(x): (vector) function of x, ”sufficient statistic”
g(η) to ensure normalization

Example: Bernoulli distribution

p(x|µ) = Bern(x|µ) = µx(1− µ)(1−x)

= exp
(
x lnµ+ (1− x) ln(1− µ)

)
= (1− µ) exp

(
ln

(
µ

1− µ

)
x

)

Natural parameters: η = ln
( µ

1− µ
)
, sufficient statistic u(x) = x.
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2.4

The exponential family

p(x|η) = h(x)g(η) exp(ηTu(x))

Example: Gaussian distribution

p(x|µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
=

1√
2πσ2

exp
( µ
σ2
x− 1

2σ2
x2 − µ2

2σ2

)
=

( 1√
2π

)( 1√
σ2

exp(− µ2

2σ2
)
)

exp
(

[
µ

σ2
,− 1

2σ2
] · [x, x2]T

)

Natural parameters η = (
µ

σ2
,− 1

2σ2
)T , sufficient statistic u(x) = (x, x2)T , h(x) =

1√
2π

.

Rewrite − µ2

2σ2
=

η2
1

4η2
, and

1√
σ2

=
√
−2η2, then g(η) =

√
−2η2 exp

(
η2

1

4η2

)
.
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2.4.1

The exponential family / Maximum likelihood and sufficient
statistics

In the ML solution η = ηML, the likelihood is stationary:

∇η
∑
n

log p(xn|η) = 0

Since

∇η log p(xn|η) = ∇η log
(
h(xn)g(η) exp(ηTu(xn))

)
= ∇η log g(η) + u(xn)

this implies that in ML solution η = ηML

−∇η log g(η) =
1

N

∑
n

u(xn)

Bert Kappen, Tom Claassen course SML 181



2.4.1

Now, g(η) is the normalization factor, i.e.,

g(η)−1 =

∫
h(x) exp(ηTu(x))dx

So

−∇η log g(η) = ∇η log g(η)−1 = g(η)∇η
∫
h(x) exp(ηTu(x))

= g(η)

∫
h(x)u(x) exp(ηTu(x))

=

∫
u(x)p(x|η)dx = 〈u(x)〉η

and we have that in the ML solution:

1

N

∑
n

u(xn) = 〈u(x)〉ηML

ML estimator depends on data only through sufficient statistics
∑
nu(xn)
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2.4.2

Conjugate priors

Likelihood:

N∏
n=1

p(xn|η) = [
∏
n

h(xn)]g(η)N exp(ηT
∑
n

u(xn))

= [
∏
n

h(xn)]g(η)N exp(NηT [
1

N

∑
n

u(xn)])

= [
∏
n

h(xn)]g(η)N exp(NηT 〈u〉Data)

Conjugate prior
p(η|χ, ν) = f(χ, ν)g(η)ν exp(νηTχ)

in which ν: effective number of pseudo data and χ: sufficient statistic.

Posterior ∼ likelihood × prior:

P (η|X,χ, ν) ∝ g(η)N+ν exp(ηT (N〈u〉Data + νχ))
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2.5

Nonparametric methods/histograms

”Histograms”: p(x) = pi in bin i with width ∆i, then ML:

pi =
ni
N∆i

N∑
i=1

pi∆i = 1

∆ = 0.04

0 0.5 1
0

5

∆ = 0.08

0 0.5 1
0

5

∆ = 0.25

0 0.5 1
0

5

• number of bins exponential in dimension D

• validity requires ∆i large to estimate pi, and ∆i small to have pi constant.
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2.5.1

Nonparametric methods

pi =
ni
N∆i

i = x

• Fix ∆i, determine ni by data: kernel approach/Parzen window

• Fix ni = K, determine ∆i by data: K-nearest neighbour

Terminology:

• Parametric distribution: model given by a number of parameters p(x|θ)

• Nonparametric distribution: number of parameters grows with the data.
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2.5.1, p. 123

Kernel method

Kernel function:

k(u) =

{
1, |ui| ≤ 1/2
0, otherwise

k((x − xn)/h): one if xn in cube of side h centered around x. Total number of data
points lying in this cube:

nx =

N∑
n=1

k
(x− xn

h

)
Volume is V = hD, so

p(x) =
nx
NV

=
1

N

N∑
n=1

1

hD
k
(x− xn

h

)

Generalize to any k(u) with
∫
k(u)du = 1.

For example, Gaussian kernel k(u/h) = 1√
2πh2

exp(−||u||2/2h2).
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2.5.1, p. 123

Kernel methods

h = 0.005

0 0.5 1
0

5

h = 0.07

0 0.5 1
0

5

h = 0.2

0 0.5 1
0

5

h is smoothing parameter. Trade-off between bias (large h) and variance (small h).
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2.5.2

Nearest neighbour methods

p(x) =
K

NV (x)

V (x)=Volume of smallest ball centered on x that contains K data points.

For instance with K = 1 and one data point at y in one dimension, we obtain
p(x) = 1

2N |y−x|.

K = 1

0 0.5 1
0

5

K = 5

0 0.5 1
0

5

K = 30

0 0.5 1
0

5

NB: not a true density model (integral over x diverges)
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2.5.2

Nearest Neighbor classification

Training set Nk points in class Ck,
∑
kNk = N

Consider test point x and its K nearest neighbours in volume V . Then

p(Ck|x) =
Kk

K

K (number of neighbours) is smoothing parameter.

x1

x2

(a)
x1

x2

(b)
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2.5.2

Nearest neighbour methods

x6

x7

K = 1

0 1 2
0

1

2

x6

x7

K = 3

0 1 2
0

1

2

x6

x7

K = 31

0 1 2
0

1

2
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3

Chapter 3

Linear Models for Regression
Regression: predicting the value of continuous target/output variables given values of the
input variables.

In other words: given a training set of input/output pairs, constructing a function that
maps input values to continuous output values, like the polynomial curve fitting in §1.1.
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3

Chapter 3

Linear Models for Regression
Regression: predicting the value of continuous target/output variables given values of the
input variables.

In other words: given a training set of input/output pairs, constructing a function that
maps input values to continuous output values, like the polynomial curve fitting in §1.1.

This chapter: generalized approach to linear models for regression

• more flexible models

• exploit probabilistic noise models (chapter 2!)

• fully Bayesian predictive distributions

• connection to model selection
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3.1

Linear Basis Function Models

’Very’ linear regression:

y(x,w) = w0 + w1x1 + w2x2 + · · ·+ wDxD = w0 +

D∑
j=1

wjxj

Linear in parameters w, and “almost” linear (affine) in input x.

Most functions are not linear in input x ... can we generalize our model to that?
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3.1

Linear Basis Function Models

’Very’ linear regression:

y(x,w) = w0 + w1x1 + w2x2 + · · ·+ wDxD = w0 +

D∑
j=1

wjxj

Linear in parameters w, and “almost” linear (affine) in input x.

Most functions are not linear in input x ... can we generalize our model to that?

y(x,w) = w0 +

M−1∑
j=1

wjφj(x)

where φ1(x), . . . , φM−1(x) are basis functions or feature functions. Defining φ0(x) = 1,
we can write it more compactly:

y(x,w) =

M−1∑
j=0

wjφj(x) = wTφ(x)

Note: still linear in parameters w! Examples of basis functions?
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3.1

Linear Basis Function Models

Gaussians: φj(x) = exp(−β(x− µj)2)
Polynomials: φj(x) = xj

Sigmoids: φj(x) = σ(β(x− µj))
Fourier: φj(x) = exp(ijx)
Wavelets: ...

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
0   

0.25

0.5 

0.75

1   

−1 0 1
0

0.25

0.5

0.75

1
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3.1.1

Adding some noise

Let’s introduce some noise . . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).
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3.1.1

Adding some noise

Let’s introduce some noise . . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).

Some typical exam questions:

Q: what is the distribution of t, given x,w, β?
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3.1.1

Adding some noise

Let’s introduce some noise . . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).

Q: what is the distribution of t, given x,w, β?

p(t|x,w, β) = N (t|y(x,w), β−1)

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)
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3.1.1

Adding some noise

Let’s introduce some noise . . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).

Q: what is the conditional mean IE(t|x)?
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3.1.1

Adding some noise

Let’s introduce some noise . . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).

Q: what is the conditional mean IE(t|x)?

IE(t|x) =

∫
tp(t|x) dt = y(x,w)
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3.1.1

Maximum likelihood: least squares

Q: What is the log-likelihood of a data set {X, t} = {(xi, ti)}Ni=1 in this model?
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3.1.1

Maximum likelihood: least squares

Q: What is the log-likelihood of a data set {X, t} = {(xi, ti)}Ni=1 in this model?

ln p(t|X,w, β) = ln

N∏
i=1

N
(
tn|wTφ(xn), β−1

)
=

N∑
i=1

lnN
(
tn|wTφ(xn), β−1

)
=

N

2
lnβ − 1

2
β

N∑
i=1

(
tn −wTφ(xn)

)2
︸ ︷︷ ︸

sum-of-squares error function

−C

Q: How to find the maximum likelihood solution for the parameters w?
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3.1.1

Maximum likelihood: least squares

Q: What is the log-likelihood of a data set {X, t} = {(xi, ti)}Ni=1 in this model?

ln p(t|X,w, β) = ln

N∏
i=1

N
(
tn|wTφ(xn), β−1

)
=

N∑
i=1

lnN
(
tn|wTφ(xn), β−1

)
=

N

2
lnβ − 1

2
β

N∑
i=1

(
tn −wTφ(xn)

)2
︸ ︷︷ ︸

sum-of-squares error function

−C

Q: How to find the maximum likelihood solution for the parameters w?
A: Differentiate with respect to w, set to zero, and solve equations to find wML:

∇w ln p(t|X,w, β) = −β
N∑
i=1

(
tn −wTφ(xn)

)
φ(xn)T = 0
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3.1.1

Maximum likelihood: least squares

Rewriting:

0 =

N∑
n=1

tnφ(xn)T −wT

(
N∑
n=1

φ(xn)φ(xn)T

)
Solving for w:

wML = (ΦTΦ)−1ΦT︸ ︷︷ ︸
Moore-Penrose pseudo-inverse

t

where Φ is an N ×M matrix, the design matrix, with elements Φnj = φj(xn):

Φ =


φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

... ... . . . ...
φ0(xN) φ1(xN) . . . φM−1(xN)


Maximizing p(t|X,w, β) w.r.t. β gives:

β−1
ML =

1

N

N∑
n=1

(
tn −wT

MLφ(xn)
)2
.
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3.1.4

Regularized least squares

To avoid overfitting, we can add a regularization term to the log-likelihood, e.g. weight
decay :

ln p(t|X,w, β) + λEW (w) =
N

2
lnβ − 1

2
β

N∑
i=1

(
tn −wTφ(xn)

)2
︸ ︷︷ ︸

sum-of-squares error function

+
1

2
λwTw︸ ︷︷ ︸

regularizer

−C

Maximizing with respect to w now gives the following optimum:

w = (λI + ΦTΦ)−1ΦT t

Other regularizers also possible, e.g. a more general error term would be

1

2

N∑
i=1

(
tn −wTφ(xn)

)2
+
λ

2

M∑
j=1

∣∣wj∣∣q
.
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3.1.4

Regularized least squares

For example q = 1 gives the famous LASSO with regularizer λ
M∑
j=1

|wj|.

q = 0.5 q = 1 q = 2 q = 4

Q: Why does the LASSO result in a sparse solution (wj 6= 0 for only a few j’s)?
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3.1.4

Regularized least squares

A: The solution w to the general regularized error term

1

2

N∑
i=1

(
tn −wTφ(xn)

)2
+
λ

2

M∑
j=1

∣∣wj∣∣q
can be viewed as the unregularized solution under constraint

∑M
j=1

∣∣wj∣∣q ≤ η.

w1

w2

w?

w1

w2

w?
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1.5.5

Bias-Variance Decomposition

Complex models tend to overfit. Simple models tend to be too rigid. Number of terms
in polynomial, weight decay constant λ.

(Treatment of 1.5.5). Consider a regression problem with squared loss function

E(L) =

∫∫ (
y(x)− t

)2
p(x, t)dxdt

p(x, t) is the true underlying model, y(x) is our estimate of t at x.

The optimal y minimizes E(L):

δE(L)

δy(x)
= 2

∫ (
y(x)− t

)
p(x, t)dt = 0

y(x) =

∫
tp(x, t)dt

p(x)
=

∫
tp(t|x)dt = IE(t|x)
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1.5.5

Bias-Variance Decomposition

The expected squared loss can also be written as

E(L) =

∫∫ (
y(x)− t

)2
p(x, t)dxdt

=

∫∫ (
y(x)− IE(t|x) + IE(t|x)− t

)2
p(x, t)dxdt

=

∫∫ ((
y(x)− IE(t|x)

)2
+
(
IE(t|x)− t

)2
+2
(
y(x)− IE(t|x)

)(
IE(t|x)− t

))
p(x, t)dxdt

=

∫ (
y(x)− IE(t|x)

)2
p(x)dx+

∫∫ (
IE(t|x)− t

)2
p(x, t)dxdt︸ ︷︷ ︸

intrinsic noise

First term depends on y(x) and is minimized when y(x) = IE(t|x). The second term, the
variance in the conditional distribution of t given x, averaged over x:

∫
var(t|x)p(x)dx

is independent of the solution y(x). The cross-term vanishes on integration over t (odd
function around IE(t|x)).
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3.2

Bias-Variance Decomposition

In the case of a finite data set D, our learning algorithm will give a solution y(x;D) that
will not minimize the exact expected square loss (but an empirical square loss): different
data sets will give different solutions y(x;D).

Consider the thought experiment that a large number of data sets D are given. Then we
can construct the average solution IED(y(x;D)), and

(
y(x;D)− IE(t|x)

)2
=

(
y(x;D)− IED(y) + IED(y)− IE(t|x)

)2
=

(
y(x;D)− IED(y)

)2
+
(
IED(y)− IE(t|x)

)2
+ 2

(
y − IED(y)

)(
IED(y)− IE(t|x)

)
So for a given x the average of this quantity over many data sets

IED

[(
y(x;D)− IE(t|x)

)2]
=
(
IED(y)− IE(t|x)

)2︸ ︷︷ ︸
(bias)2

+ IED
[
{y(x;D)− IED(y)}2

]︸ ︷︷ ︸
variance

as the cross term vanishes on averaging.
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3.2

Bias-Variance Decomposition

Substitution of the previous expression in the expected square loss:

E(L) =

∫ (
IED(y)− IE(t|x)

)2
p(x)dx︸ ︷︷ ︸

(bias)2

+

∫
IED
[
{y(x;D)− IED(y)}2

]
p(x)dx︸ ︷︷ ︸

variance

+

∫∫ (
IE(t|x)− t

)2
p(x, t)dxdt︸ ︷︷ ︸

noise

Expected square loss = bias2 + variance + noise

Bias2: difference between average solution IED(y(x;D)) and true solution IE(t|x).
Variance: scatter of individual solutions y(x,D) around their mean IED(y(x;D)).
Noise: (true) scatter of the data points t around their mean IE(t|x).
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3.2

Bias-Variance Decomposition

x

t
ln λ = 2.6

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t
ln λ = −0.31

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t
ln λ = −2.4

0 1

−1

0

1

x

t

0 1

−1

0

1

100 data sets, each with 25 data points from t = sin(2πx) + noise. y(x) as in Eq. 3.3-4. Parameters

optimized using Eq. 3.27 for different λ. Left shows variance, right shows bias.
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3.2

Bias-Variance Decomposition

ln λ

 

 

−3 −2 −1 0 1 2
0

0.03

0.06

0.09

0.12

0.15

(bias)2

variance

(bias)2 + variance
test error

Sum of bias, variance and noise yields expected error on test set. Optimal λ is trade-off between bias and

variance.

True bias is usually not known, because IE(t|x) is not known.
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3.3

Bayesian linear regression

Let’s go back to the linear basis function model:

t = y(x,w) + ε, y(x,w) = wTφ(x), ε ∼ N (0, β−1)

p(t|x,w, β) = N (t|wTφ(x), β−1)

Training data: X = (x1, . . . ,xN) and t = (t1, . . . , tN).

Likelihood:

p(t|x,w, β) =

N∏
n=1

N (tn|wTφ(xn), β−1) = N (t|Φw, β−1I).

Q: what prior p(w) can we choose?
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3.3

Bayesian linear regression

Let’s go back to the linear basis function model:

t = y(x,w) + ε, y(x,w) = wTφ(x), ε ∼ N (0, β−1)

p(t|x,w, β) = N (t|wTφ(x), β−1)

Training data: X = (x1, . . . ,xN) and t = (t1, . . . , tN).

Likelihood:

p(t|x,w, β) =

N∏
n=1

N (tn|wTφ(xn), β−1) = N (t|Φw, β−1I).

Q: what prior p(w) can we choose?
A: We make life easy by choosing a conjugate prior, which is a Gaussian

p(w) = N (w|m0, S0)
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3.3

Bayesian linear regression

Then, the posterior will also be Gaussian. Prior and likelihood:

p(w) = N (w|m0,S0)

p(t|w) = N (t|Φw, β−1I)

Then, by applying 2.113 + 2.114⇒ 2.116, we get the posterior p(w|t).
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3.3

Bayesian linear regression

Then, the posterior will also be Gaussian. Prior and likelihood:

p(w) = N (w|m0,S0)

p(t|w) = N (t|Φw, β−1I)

Then, by applying 2.113 + 2.114⇒ 2.116, we get the posterior p(w|t).

p(w) = N (w|m0,S0) ↔ p(x) = N (x|µ,Λ−1)

p(t|w) = N (t|Φw, β−1I) ↔ p(y|x) = N (x|Ax+ b,L−1)

p(w|t) = N (w|mN ,SN) ↔ p(x|y) = N (x|Σ
{
ATL(y − b) + Λµ

}
,Σ)

with Σ = (Λ +ATLA)−1

So p(w|t) = N (w|mN ,SN) , with mN = SN(S−1
0 m0 + βΦT t)

S−1
N = S−1

0 + βΦTΦ

Note behaviour when S−1
0 → 0 (broad prior), when N = 0, and when N →∞.

Bert Kappen, Tom Claassen course SML 217



3.3

Bayesian linear regression

Data: t = a0 + a1x + noise. Model: y(x,w) = w0 + w1x; p(t|x,w, β) = N (t|y(x,w), β−1),

β−1 = (0.2)2; p(w|α) = N (w|0, α−1I), α = 2.
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3.3

Predictive distribution

What is the predictive distribution p(t∗|x∗) for new data point x∗? We know:

p(t∗|w, x∗) = N (t∗|φT (x∗)w, β−1)

p(w|t,x) = N (w|mN , SN)

p(t∗|x∗, t,x) =

∫
dwp(t∗|w, x∗)p(w|t,x)

Write t∗ = φT (x∗)w + ε with Vε = β−1:

Et∗ = φT (x∗)mN , Vt∗ = V
(
φT (x∗)w

)
+ Vε = φT (x∗)V (w)φ(x∗) + β−1

p(t∗|x∗, t,x) = N (t∗|φT (x∗)mN , σ
2
N(x∗))

where
σ2
N(x∗) = β−1 + φ(x∗)TSNφ(x∗)

When N →∞ SN → 0 and σ2
N(x∗)→ β−1
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3.3

Bayesian linear regression: Example

x
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Data points from t = sin(2πx) + noise. y(x) as in Eq. 3.3-4. Data set size N = 1, 2, 4, 25.
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3.3

Bayesian linear regression: Example
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t
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Same data and model. Curves y(x,w) with w from posterior.
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3.4

Bayesian model comparison

Maximum likelihood suffers from overfitting, which requires testing models of different
complexity on separate data.

Bayesian approach allows to compare different models directly on the training data, but
requires integration over model parameters.

Consider L probability models and a set of data generated from one of these models. We
define a prior over models p(Mi), i = 1, . . . , L to express our prior uncertainty.

Given the training data D, we wish to compute the posterior probability

p(Mi|D) ∝ p(D|Mi)p(Mi)

p(D|Mi) is called model evidence, also marginal likelihood, since it integrates over model
parameters:

p(D|Mi) =

∫
p(D|w,Mi)p(w|Mi)dw
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3.4

Bayesian model comparison

Flat prior over models p(Mi) =⇒ model evidence is proportional to marginal likelihood:

p(D|Mi) =

∫
p(D|w,Mi)p(w|Mi)dw

We use a very crude estimate of this integral to understand the mechanism of Bayesian
model selection.

Consider a one dimensional case (one parameter). Assume
roughly block-shaped prior p(w) and posterior p(w|D) as
in the figure. Then the prior is p(w) = 1/∆wprior on
an interval of width ∆wprior, and zero elsewhere. The
marginal likelihood is then approximately given by:

∆wposterior

∆wprior

wMAP w

p(D|Mi) ≈
∫
p(D|wMAP,Mi)

1

∆wprior
dw

≈ p(D|wMAP,Mi)
∆wposterior

∆wprior
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3.4

Bert Kappen, Tom Claassen course SML 224



3.4

Bayesian model comparison

As ∆wposterior < ∆wprior, the Bayesian approach gives a negative correction to the ML
estimate.

ln p(D|Mi) ≈ ln p(D|wMAP,Mi) + ln

(
∆wposterior

∆wprior

)

With Mi parameters in model Mi, the same argument gives

ln p(D|Mi) ≈ ln p(D|wMAP,Mi) +Mi ln

(
∆wposterior

∆wprior

)
With increasing model complexity the first term increases (better fit), but the second
term decreases.
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3.4

Bayesian model comparison

Consider three models of increasing complexity M1,M2,M3. Consider drawing data
sets from these models: we first sample a parameter vector w from the prior p(w|Mi)
and then generate iid data points according to p(x|w,Mi). The resulting distribution is
p(D|Mi).

A simple model has less variability in the resulting data sets than a complex model. Thus,
p(D|M1) is more peaked than p(D|M3). Due to normalization, p(D|M1) is necessarily
higher than p(D|M3).

p(D)

DD0

M1

M2

M3

For the data set D0 the Bayesian approach will select model M2 because model M1 is
too simple (too low likelihood) and model M3 is too complex (too large penalty term).
This is known as Bayesian model selection.
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3.5.1

The evidence framework for Bayesian linear regression

The Bayesian linear regression approach assume a prior (3.48)

p(w|α,M) =
( α

2π

)M/2

exp
(
−α

2
wTw

)
and a likelihood (3.10)

p(t|w, β,M) =

(
β

2π

)N/2
exp

(
−β

2
‖t− Φw‖2

)
.

The marginal likelihood is

p(t|α, β,M) =

∫
dwp(w|α,M)p(t|w, β,M)

=
( α

2π

)M/2
(
β

2π

)N/2 ∫
dw exp(−E(w))
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3.5.1

Evidence framework

E(w) =
β

2
(t− Φw)T (t− Φw) +

α

2
wTw =

β

2

(
tT t− 2wTΦT t+wTΦTΦw

)
+
α

2
wTw

=
1

2
wTAw +

β

2
tT t− βwTΦT t =

1

2
wTAw +

β

2
tT t−wTAm

with A = αI + βΦTΦ and Am = βΦT t. Thus,

E(w) =
1

2
(w −m)TA(w −m)− 1

2
mTAm+

β

2
tT t

=
1

2
(w −m)TA(w −m) + E(m)

With
∫
dw exp(−E(w)) = exp(−E(m))(2π)−M/2|A|−1/2:

log p(t|α, β,M) =
M

2
logα+

N

2
log β − E(m)− 1

2
log |A| −M

2
log 2π

8. Note that |A| = ∏(α+ λi), thus log |A| = O(M).
8NB typo Eq. 3.86 −N2 log 2π
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3.5.1

Evidence framework

M
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Evidence framework comparing different M for fixed α, β. M = 1 improves over M = 0. M = 2 does

not improve over M = 1. M = 3 improves over M = 2. Models M = 3− 8 have different likelihood

but increasing complexity.
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4

Chapter 4

Linear models for classification

• Discriminant function

• Conditional probabilities P (Ck|x)

• Generative models P (x|Ck)

Generalized linear models for classification

y(x) = f(wTx+ w0)

with f(·) nonlinear.
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4

4.1 Discriminant functions

Two category classification problem:

y(x) > 0⇔ x ∈ C1 y(x) < 0⇔ x ∈ C2

with
y(x) = wTx+ w0

x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1

If x1,x2 on the line y(x) = 0 then wT (x1 − x2) = 0. Line is orthogonal to w.

Notation: w̃ = (w0,w) and x̃ = (1,x), then

y(x) = w̃T x̃
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4

Multiple classes

yk(x) = wT
k x+ wk0 =

k∑
i=1

wkixi + wk0 =

k∑
i=0

wkixi

Naive approach is to let each boundary separate class k from the rest. This does not
work.

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

One-versus-the-rest classifier.
Use K − 1 classifiers, each
classifying one versus the rest.

One-versus-one classifier.
Use K(K − 1)/2 classifiers, each
classifying one pair k, k′.
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4

Multiple classes

Instead, define decision boundaries as: yk(x) = yj(x).

Ri

Rj

Rk

xA

xB

x̂

If yk(x) = wT
kx+ w0k, k = 1, 2 then decision boundary is (w1 −w2)

Tx+ w01 − w02 = 0.

For K = 3, we get three lines: y1(x) = y2(x), y1(x) = y3(x), y2(x) = y3(x), that cross in a

common point y1(x) = y2(x) = y2(x), and which defines the tesselation.

The class regions Rk are convex. If x,y ∈ Rk

yk(x) > yj(x), yk(y) > yj(y)⇒ yk(αx+ (1− α)y) > yj(αx+ (1− α)y)
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4

Learning vector quantization

Here is a way to get a nice Voneroi Tesselation, known as learning vector quantization
(LVQ) by Kohonen (1988).

Consider labeled data {(~xµ, cµ), µ = 1, . . . , P} with ~xµ ∈ Rn and cµ = 1, . . . ,K the
class label.

Initialize cluster vectors ~mk, k = 1, . . . ,K1. The simplest choice is K1 = K, ie. one
vector per class, but one can also consider K1 > K.

The algorithm iterates over the data:

• Choose data sample ~xµ and compute the nearest cluster vector: c = argmink‖~xµ −
~mk‖.

• If cµ = c (the nearest cluster vector has the correct class), then ∆~mc = η(~xµ − ~mc).

• If cµ 6= c (the nearest cluster vector has another class), then ∆~mc = −η(~xµ − ~mc).

• All other cluster vectors are unaltered.
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4

Least-squares technique

Learning the parameters is done by minimizing a cost function, for instance the minus
log likelihood or the quadratic cost:

E =
1

2

∑
n

∑
k

(
∑
i

x̃niw̃ik − tnk)2

∂E

∂w̃jk
=

∑
n

(
∑
i

x̃niw̃ik − tnk)x̃nj = 0

∑
i

(∑
n

x̃njx̃ni

)
w̃ik =

∑
n

tnkxnj

w̃k = C−1µk Cij =
∑
n

x̃njx̃ni µkj =
∑
n

tnkxnj
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4

Least-squares technique
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Two class classification problem solved with least square (magenta) and logistic regression (green)

Least square solution sensitive to outliers: far away data contribute too much to the
error.
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4

Least-squares technique
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Three class classification problem solved with least square (left) and logistic regression (right)

Least square solution poor in multi-class case.
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4.1.4

Fisher’s linear discriminant

Consider two classes. Take an x and project it down to one dimension using

y = wTx

Let the two classes have two means:

m1 =
1

N1

∑
n∈C1

xn m2 =
1

N2

∑
n∈C2

xn

−2 2 6

−2

0

2

4

We can choose w to maximize wT (m1 −m2), subject to
∑
iw

2
i = 1 yields w ∝

(m1 −m2). (exercise 4.4).
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4.1.4

Fisher’s linear discriminant

Fisher discriminant analysis: Better separation when simultaneously minimize within class
variance.

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Within class variance after transformation:

s2
k =

∑
n∈Ck

(yn −mk)
2, mk = wTmk, yn = wTxn k = 1, 2

Total within class variance is s2
1 + s2

2.
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4.1.4

The Fisher method minimizes witin class variance and maximizes mean separation by
maximizing

J(w) =
(m2 −m1)2

s2
1 + s2

2

=
wTSBw

wTSWw

SB = (m2 −m1)(m2 −m1)T

SW =
∑
n∈C1

(xn −m1)(xn −m1)T +
∑
n∈C2

(xn −m2)(xn −m2)T

(Exercise 4.5)

Differentiation wrt w yields (exercise)

(wTSBw)SWw = (wTSWw)SBw

Drop scalar factors, and SBw ∝m2 −m1:

w ∝ S−1
W (m2 −m1)
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4.1.4

Fisher’s linear discriminant

When SW ∝ the unit matrix (isotropic within-class covariance), we recover the naive
solution w ∝ (m2 −m1).

A classifier is built by thresholding y = wTx.

The Fisher discriminant method is best viewed as a dimension reduction method, in this
case from d dimensions to 1 dimension, such that optimal classification is obtained in the
linear sense.

It can be shown that the least square method with two classes and target values
tn1 = N/N1 and tn2 = −N/N2 is equivalent to the two class Fisher discriminant solution
(section 4.1.5).
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4

Several classes

Class means mk = 1
Nk

∑
n∈Ck x

n and covariance Sk =
∑
n∈Ck(x

n −mk)(x
n −mk)

T .

Relate total within class covariance SW =
∑
kSk to total covariance:

SW =
∑
k

∑
n∈Ck

(x
n −mk)(x

n −mk)
T

=
∑
k

∑
n∈Ck

(x
n −m+m−mk)(x

n −m+m−mk)
T

=
∑
k

∑
n∈Ck

(x
n −m)(x−m)

T
+ (x

n −m)(m−mk)
T

+ (m−mk)(x
n −m)

T

+ (m−mk)(m−mk)
T

= ST −
∑
k

Nk(mk −m)(mk −m)
T

= ST − SB

with total covariance ST =
∑
n(xn − m)(xn − m)T and SB =

∑K
k=1Nk(mk −

m)(mk −m)T .
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4

Assume input dimension D > K, the number of classes.

We introduce D′ > 1 features yd′ = wT
d′x, d

′ = 1, . . . D′ or

y = W Tx, W = (w1, . . . ,wD′)

W TSWW and W TSBW are the D′-dimensional projection of the within class and
between class covariance matrices. Maximize

J(W ) = Tr
(
(W TSWW )−1(W TSBW )

)
The solution W = (w1, . . . ,wD′) consists of the largest D′ eigenvectors of the matrix
S−1
W SB.

Note, SB is sum of K rank one matrices and is of rank K − 1. S−1
W SB has (K − 1)

non-zero eigenvalues.

Thus, D′ ≤ K − 1, because otherwise W contains any of the zero eigenvectors.
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Extra material

The Perceptron

Relevant in history of pattern recognition and neural networks.

• Perceptron learning rule + convergence, Rosenblatt (1962)

• Perceptron critique (Minsky and Papert, 1969) → ”Dark ages of neural networks”

• Revival in the 80’s: Backpropagation
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Extra material

The Perceptron

y(x) = sign(wTφ(x))

where

sign(a) =

{
+1, a ≥ 0
−1, a < 0.

and φ(x) is a feature vector (e.g. hard wired neural network).
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Extra material

The Perceptron

Ignore φ, ie. consider inputs xµ and outputs tµ = ±1
Define wTx =

∑n
j=1wjxj + w0. Then, the learning condition becomes

sign(wTxµ) = tµ, µ = 1, . . . , P

We have
sign(wTxµtµ) = 1 or wTzµ > 0

with zµj = xµj t
µ.
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Extra material

Linear separation

Classification depends on sign of wTx. Thus, decision boundary is hyper plane:

0 = wTx =

n∑
j=1

wjxj + w0

Perceptron can solve linearly separable problems.

AND problem is linearly separable.

XOR problem and linearly dependent inputs not linearly separable.
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Extra material

Perceptron learning rule

Learning succesful when
wTzµ > 0, all patterns

Learning rule is ’Hebbian’:

wnew
j = wold

j + ∆wj

∆wj = ηΘ(−wTzµ)xµj t
µ = ηΘ(−wTzµ)zµj

η is the learning rate.

Depending on the data, there may be many or few solutions to the learning problem (or
non at all)
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Extra material

The quality of the solution is determined by the worst pattern. Since the solution does
not depend on the size of w:

D(w) =
1

|w|min
µ
wTzµ

Acceptable solutions have D(w) > 0.

The best solution is given by Dmax = maxwD(w).
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Extra material

Dmax > 0 iff the problem is linearly separable.
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Extra material

Convergence of Perceptron rule

Assume that the problem is linearly separable, so that there is a solution w∗ with
D(w∗) > 0.

At each iteration, w is updated only if w · zµ < 0. Let Mµ denote the number of times
pattern µ has been used to update w. Thus,

w = η
∑
µ

Mµzµ

Consider the quanty

−1 <
w · w∗
|w||w∗| < 1

We will show that
w · w∗
|w||w∗| ≥ O(

√
M),

with M =
∑
µM

µ the total number of iterations.

Therefore, M can not grow indefinitely. Thus, the perceptron learning rule converges in
a finite number of steps when the problem is linearly separable.
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Extra material

Proof:

w · w∗ = η
∑
µ

Mµzµ · w∗ ≥ ηM min
µ
zµ · w∗

= ηMD(w∗)|w∗|
∆|w|2 = |w + ηzµ|2 − |w|2 = 2ηw · zµ + η2|zµ|2

≤ η2|zµ|2 = η2N

|w| ≤ η
√
NM

Thus,

1 ≥ w · w∗
|w||w∗| ≥

√
M
D(w∗)√

N

Number of weight updates:

M ≤ N

D2(w∗)
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Extra material

Capacity of the Perceptron

Consider P patterns in N dimensions in general position:
- no subset of size less than N is linearly dependent.

- general position is necessary for linear separability

Question: What is the probability that a problem of P samples in N dimensions is linearly
separable?
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Extra material

Define C(P,N) the number of linearly separable colorings on P points in N dimensions,
with separability plane through the origin. Then (Cover 1966):

C(P,N) = 2

N−1∑
i=0

(
P − 1
i

)

9 When P ≤ N , then C(P,N) = 2
∑P−1
i=0

(
P − 1
i

)
= 2(1 + 1)P−1 = 2P

When P = 2N , then C(P,N) = 2
∑N−1
i=0

(
2N − 1

i

)
=
∑2N−1
i=0

(
2N − 1

i

)
=

22N−1 = 2P−1

9Conventions:

(
n
0

)
= 1;

(
n
k

)
= 0 when n < k.
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Extra material

Proof by induction.

Add one point X. The set C(P,N) consists of
- colorings with separator through X (A)

- rest (B)

Thus,

C(P + 1, N) = 2A+B = C(P,N) +A

= C(P,N) + C(P,N − 1)

Yields

C(P,N) = 2

N−1∑
i=0

(
P − 1
i

)
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4.1.7

The Perceptron algorithm

Perceptron approach: seek w such that wTφ(xn) > 0 for xn ∈ C1 and wTφ(xn) < 0
for xn ∈ C2. Target coding: t = +1,−1 for x ∈ {C1, C2}. Then we want all patterns:

tnw
Tφ(xn) > 0

Perceptron criterion: minimize error from misclassified patterns

C(w) = − 1

‖w‖
∑
n∈M

tnw
Tφ(xn)

Learning rule: choose pattern n. If misclassified, update according to

wτ+1 = wτ + ηφntn

It can be shown that this algorithm converges in a finite number of steps, if the data is
linearly separable.
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4.1.7

Convergence of perceptron learning
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4.1.7

Perceptron critique

Minsky and Papert: perceptron can only learn linearly separable problems:

Most functions are not linearly separable: e.g. the problem of determining whether
objects are singly connected, using local receptive fields
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4.2

Probabilistic generative models

Probabilistic models for classification

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a)

where a is the ”log odds”

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)

and σ the logistic sigmoid function (i.e. S-shaped function)

σ(a) =
1

1 + exp(−a)
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4.2

Sigmoid function

−5 0 5
0

0.5

1

Properties:
σ(−a) = 1− σ(a)

inverse:
a = ln

σ

1− σ
10

10

1 + e
−a

= 1 +
1− σ
σ

=
1

σ
→ σ =

1

1 + e−a
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4.2

Sigmoid/softmax function

Softmax: generalization to K classes

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

where
ak = ln (p(x|Ck)p(Ck))

Note that softmax is invariant under ak → ak + const
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4.2

Continuous inputs

The discriminant function for a Gaussian distribution is

ak(x) = log p(x|Ck) + log p(Ck)

= −1

2
(x− µk)TΣ−1

k (x− µk)−
1

2
log |Σk|+ log p(Ck)

The decision boundaries ak(x) = al(x) are quadratic functions in d dimensions.

If Σ−1
k = Σ−1, then

ak(x) = −1

2
xΣ−1x+

1

2
µTkΣ−1x+

1

2
xΣ−1µk −

1

2
µTkΣ−1µk −

1

2
log |Σ|+ log p(Ck)

= wT
k x+ wk0 + const

with

wT
k = µTkΣ−1, wk0 = −1

2
µTkΣ−1µk + log p(Ck)

The discriminant function is linear, and the decision boundary is a straight line (or
hyper-plane in d dimensions).
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4.2

When class conditional covariances are equal, decision boundary is straight line.
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When class conditional covariances are unequal decision boundary is quadratic.
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4.2.2

Maximum likelihood solution

Once we have specified a parametric functional form for p(x|Ck) and p(Ck) we can
determine parameters using maximum (joint!) likelihood (as usual !).

Actually, for classification, we should aim for the conditional likelihood, but the joint
likelihood is in general easier. In a perfect model, it makes no difference, but with
imperfect models, it certainly does!

Example of joint ML: a binary problem with Gaussian class-conditionals, with a shared
covariance matrix. Data is {xn, tn}n with labels coded as t = {1, 0} for classes C1, C2.

Class probabilities are parametrized as

p(C1) = π, p(C2) = 1− π

and class-conditional densities as

p(xn|C1) = N (xn|µ1,Σ), p(xn|C2) = N (xn|µ2,Σ)
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4.2.2

Then the likelihood is given by

L = p(t1,x1, . . . , tN ,xn|π,µ1,µ2,Σ) =
∏
n

p(tn,xn|π,µ1,µ2,Σ)

=
∏
n

[πN (xn|µ1,Σ)]tn[(1− π)N (xn|µ2,Σ)]1−tn

logL =
∑
n

tn log[πN (xn|µ1,Σ)] + (1− tn) log[(1− π)N (xn|µ2,Σ)]

The maximum likelihood solution for π and µ1,2:

∂ logL

∂π
=

1

π

∑
n

tn −
1

1− π
∑
n

(1− tn) π =
N1

N
N1 =

∑
n

tn

∂ logL

∂µ1
=

∑
n

tn
∂ logN (xn|µ1,Σ)

∂µ1
= Σ−1

∑
n

tn(xn − µ1) µ1 =
1

N1

∑
n

tnxn

∂ logL

∂µ2
= . . . µ2 =

1

N2

∑
n

(1− tn)xn

The maximum likelihood solution for Σ given by Eqs. 4.78-80 (exercise).
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4.2.2

Probabilistic discriminative models

Discriminative versus generative models

Discriminative models:

• no spoiled effort in modeling joint probabilities. Aims directly at the conditional
probabilities of interest

• usually fewer parameters

• improved performance when class-conditional p(x|C) assumptions are poor (with joint
ML).

• basis functions can be employed
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4.2.2

Fixed basis functions

x1

x2
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• Basis functions φ(x). Denote φn = φ(xn)

• Problems that are not linearly separable in x might be linearly separable in φ(x).

• Note: use of basis functions φ in place of variables x is not obvious in generative
models: N (x, x2, x3|µ,Σ)??.
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4.2.2

Logistic regression

Two class classification
p(C1|φ) = σ(wTφ)

M dimensional feature space: M parameters, while Gaussian class conditional densities
would require 2M (two means) and M(M+1)/2 (common covariance matrix) parameters.

Maximum likelihood to determine parameters w, (nb. tn ∈ {0, 1})

p(t1, . . . , tN |w, x1, . . . , xN) =
∏
n

σ(wTφn)tn[1− σ(wTφn)]1−tn =
∏
n

ytnn (1− yn)1−tn

with φn = φ(xn) and yn = σ(wTφn) i.e.,

E(w) = − ln p = −
∑
n

tn ln yn + (1− tn) ln(1− yn)

NB: entropic error function for classification, rather than squared error.
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4.2.2

Logistic regression

∇E(w) =
∑
n

(yn − tn)φn

11 No closed form solution. Optimization by gradient descent, (or e.g., Newton-Raphson).

Overfitting risk when data is linearly separable: w →∞ (i.e. σ → step function).

11Note, that when y = σ(x) then

dy

dx
= σ
′
(x) =

d

dx

1

1 + exp(−x)
=

exp(−x)

(1 + exp(−x))2
= σ(x)σ(−x) = σ(x)(1− σ(x))

Thus with y = σ(wTφ)

∂y

∂wi
= φiσ

′
(w

T
φ) = φiy(1− y)
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4.3.3

Iterative least squares

Minimize learning error by Newton-Raphson method

w(new) = w(old) −H−1∇E(w)

with

Hij =
∂2E

∂wi∂wj
=

∂

∂wj

∂E

∂wi
=

∂

∂wj

∑
n

(yn − tn)φi(xn)

=
∑
n

φj(xn)yn(1− yn)φi(xn) = ΦTRΦ

∇iE(w) =
∑
n

(yn − tn)φi(xn) = ΦT (y − t)

with Φnj = φj(xn) and Rn,n′ = yn(1− yn)δn,n′.

H(w) is positive definite for all w thus E(w) is convex, thus unique optimum (Ex. 4.15).

w(new) = w(old) −
(
ΦTRΦ

)−1
ΦT (y − t)

Bert Kappen, Tom Claassen course SML 270



4.4

Laplace approximation

Assume distribution p(z) is given up to normalization, i.e. in the form

p(z) =
1

Z
f(z) Z =

∫
f(z)dz

where f(z) is given, but Z is unknown (and the integral is infeasible).

Goal: approximate by a Gaussian q(z), centered around the mode of p(z).
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4.4

Laplace approximation

Mode z0 is maximum of p(z), i.e. dp(z)/dz|z0 = 0, or

df(z)

dz

∣∣∣
z0

= 0

The logarithm of a Gaussian is a quadratic function of the variables, so it makes sense to
make a second order Taylor expansion of ln f around the mode (this would be exact if p
was Gaussian).

ln f(z) ≈ ln f(z0)− 1

2
A(z − z0)2

where

A = −d
2 ln f(z)

dz2

∣∣∣
z0

Note that the first order term is absent since we expand around the maximum. Taking
the exponent we obtain,

f(z) ≈ f(z0) exp(−1

2
A(z − z0)2)
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4.4

and the Gaussian approximation is obtained by normalization

q(z) =
( A

2π

)1/2

exp(−1

2
A(z − z0)2)
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4.4

Laplace approximation in M dimensions

In M dimensions results are similar,

q(z) =

(
det (A)

(2π)M/2

)
exp(−1

2
(z − z0)TA(z − z0))

where

Aij = − ∂2

∂zi∂zj
ln f(z)

∣∣
z=z0

Usually z0 is found by numerical optimization.

A weakness of Laplace approximation is that it relies only on the local properties of the
mode. Other methods (e.g. sampling or variational methods) are based on more global
properties of p.
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4.4.1

Model comparison and BIC

Approximation of Z:

Z =

∫
f(z)dz (4)

≈ f(z0)

∫
exp(−1

2
(z − z0)TA(z − z0))dz (5)

= f(z0)
(2π)M/2

det(A)1/2
(6)
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4.4.1

Model comparison and BIC

Application: approximation of model evidence.

f(θ) = p(D|θ)p(θ) (7)

Z = P (D) =

∫
p(D|θ)p(θ)dθ (8)

Then applying Laplace approximation, we obtain (Ex. 4. 22)

lnP (D) ≈ ln p(D|θMAP) + ln p(θMAP) +
M

2
ln 2π − 1

2
ln det(A)︸ ︷︷ ︸

Occam factor

where
A = −∇∇ ln p(D|θ)p(θ)

∣∣∣
θMAP

= −∇∇p(θ|D)
∣∣∣
θMAP

which can be interpreted as the inverse width of the posterior.
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4.4.1

Model comparison and BIC

Under some assumptions, A =
∑
nAn ≈ NÂ, and full rank, then

ln det(A) ≈ ln det(NÂ) = ln(NM det(Â)) = M lnN +O(1)

leads to the Bayesian Information Criterion (BIC)

lnP (D) ≈ ln p(D|θMAP)− 1

2
M lnN (+const.)
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4.5 (not)

Bayesian logistic regression

Prior p(w) = N (w|m0,S0)

Log posterior = log prior + log likelihood + const

ln p(w|t) = −1

2
(w −m0)TS−1

0 (w −m0)

+
∑
n

{tn ln yn + (1− tn) ln(1− yn)}+ const

where yn = σ(wTφn).

Posterior distribution in p(w|t)?

Laplace approximation: find wMAP and compute second derivatives:

S−1
N = −∇∇ ln p(w|t) = S−1

0 +
∑
n

yn(1− yn)φnφ
T
n

and
q(w) = N (w|wMAP,SN)
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4.5 (not)

Predictive distribution

p(C1|φ, t) =

∫
σ(wTφ)p(w|t)dw ≈

∫
σ(wTφ)q(w)dw

The function σ(wTφ) depends only on w via its projection on φ. We can marginalize
out the other variables, since q is a Gaussian. The marginal is then again a Gaussian for
which we can compute its parameters∫

σ(wTφ)q(w)dw =

∫
σ(a)N (a|µa, σ2

a)da

where the parameters turn out to be µa = wT
MAPφ and σ2

a = φTSNφ.

Unfortunately, this integral cannot be expressed analytically. However σ(x) is well
approximated by the probit function, i.e., the cumulative Gaussian

Φ(x) =

∫ x

∞
N (u|0, 1)du

In particular σ(x) ≈ Φ(
√

π
8x). With additional manipulations the predictive distributions
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4.5 (not)

can be shown to be approximated by

p(C1|φ, t) ≈ σ((1 + πσ2
a/8)−1/2µa) = σ(κ(σ2

a)µa)

Note that the MAP predictive distribution is

p(C1|φ,wMAP ) = σ(µa).

The decision boundary p(C1|φ, . . .) = 0.5 is the same in both approximations, namely at
µa = 0. Since κ < 1, the Laplace approximation is less certain about the classifications.
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5

Chapter 5 Neural Networks
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5

Feed-forward neural networks

Non-linear methods using a fixed set of basis functions (polynomials) suffer from curse of
dimensionality.

A succesful alternative is to adapt the basis functions to the problem.
- SVMs: convex optimisation, number of SVs increases with data
- MLPs: aka feed-forward neural networks, non-convex optimisation
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5.1

Feed-forward Network functions

We extend the previous regression model with fixed basis functions

y(x,w) = f

 M∑
j=1

wjφj(x)


to a model where φj is adaptive:

φj(x) = h(

D∑
i=0

w
(1)
ji xi)
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5.1

Feed-forward Network functions

In the case of K outputs

yk(x,w) = h2

 M∑
j=1

w
(2)
kj h1

(
D∑
i=0

w
(1)
ji xi

)
h2(x) is σ(x) or x depending on the problem. h1(x) is σ(x) or tanh(x).

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

x1

x2

z1

z3

z2

y1

y2

inputs outputs

Left) Two layer architecture. Right) general feed-forward network with skip-layer connections.

If h1, h2 linear, the model is linear. If M < D,K it computes principle components
(Bishop section 12.4.2).
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5.1

Feed-forward Network functions

Two layer NN with 3 ’tanh’ hidden units and linear output can approximate many functions. x ∈ [−1, 1],

50 equally spaced points. From left to right: f(x) = x2, sin(x), |x|,Θ(x). Dashed lines are outputs of

the 3 hidden units.

−2 −1 0 1 2

−2

−1

0

1

2

3

Two layer NN with two inputs and 2 ’tanh’ hidden

units and sigmoid output for classification. Dashed

lines are hidden unit activities.

Feed-forward neural networks have good approximation properties.
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5.1.1

Weight space symmetries

For any solutions of the weights, there are many equivalent solutions due to symmetry:
- for any hidden unit j with tanh activation function, change wji → −wji and wkj →
−wkj: 2M solutions
- rename the hidden unit labels: M ! solutions

Thus a total of M !2M equivalent solutions, not only for tanh activation functions.
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5.2

Network training

Regression: tn continue valued, h2(x) = x and one usually minimizes the squared error
(one output)

E(w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

= − log

N∏
n=1

N (tn|y(xn,w), β−1) + . . .

Classification: tn = 0, 1 , h2(x) = σ(x), y(xn,w) is probability to belong to class 1.

E(w) = −
N∑
n=1

{tn log y(xn,w) + (1− tn) log(1− y(xn,w))}

= − log

N∏
n=1

y(xn,w)tn(1− y(xn,w))1−tn
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5.2

Network training

More than two classes: consider network with K outputs. tnk = 1 if xn belongs to class
k and zero otherwise. yk(xn,w) is the network output

E(w) = −
N∑
n=1

K∑
k=1

tnk log pk(xn,w)

pk(x,w) =
exp(yk(x,w))∑K
k′=1 exp(yk′(x,w))
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5.2

Parameter optimization

w1

w2

E(w)

wA wB wC

∇E

E is minimal when ∇E(w) = 0, but not vice versa!

As a consequence, gradient based methods find a local minimum, not necessary the global
minimum.
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5.2

Gradient descent optimization

The simplest procedure to optimize E is to start with a random w and iterate

wτ+1 = wτ − η∇E(wτ)

This is called batch learning, where all training data are included in the computation of
∇E.

Does this algorithm converge? Yes, if ε is ”sufficiently small” and E bounded from below.

Proof: Denote ∆w = −η∇E.

E(w + ∆w) ≈ E(w) + (∆w)T∇E = E(w)− η
∑
i

( ∂E
∂wi

)2 ≤ E(w)

In each gradient descent step the value of E is lowered. Since E bounded from below,
the procedure must converge asymptotically.
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Handouts Ch. Perceptrons

Convergence of gradient descent in a quadratic well

E(w) =
1

2

∑
i

λiw
2
i

∆wi = −η ∂E
∂wi

= −ηλiwi

wnew
i = wold

i + ∆wi = (1− ηλi)wi

Convergence when |1− ηλi| < 1. Oscillations when 1− ηλi < 0.

Optimal learning parameter depends on curvature of each dimension.
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Handouts Ch. Perceptrons

Learning with momentum

One solution is adding momentum term:

∆wt+1 = −η∇E(wt) + α∆wt

= −η∇E(wt) + α (−η∇E(wt−1) + α (−η∇E(wt−2) + . . .))

= −η
t∑

k=0

αk∇E(wt−k)

Consider two extremes:

No oscillations all derivative are equal:

∆wt+1 ≈ −η∇E
t∑

k=0

αk = − η

1− α
∂E

∂w

results in acceleration
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Handouts Ch. Perceptrons

Oscillations all derivatives are equal but have opposite sign:

∆w(t+ 1) ≈ −η∇E
t∑

k=0

(−α)k = − η

1 + α

∂E

∂w

results in decceleration
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Handouts Ch. Perceptrons

Newtons method

One can also use Hessian information for optimization. As an example, consider a
quadratic approximation to E around w0:

E(w) = E(w0) + bT (w −w0) +
1

2
(w −w0)H(w −w0)

bi =
∂E(w0)

∂wi
Hij =

∂2E(w0)

∂wi∂wj

∇E(w) = b+H(w −w0)

We can solve ∇E(w) = 0 and obtain

w = w0 −H−1∇E(w0)

This is called Newtons method.

Quadratic approximation is exact when E is quadratic, so convergence in one step.
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Handouts Ch. Perceptrons

Line search

Another solution is line optimisation:

w1 = w0 + λd0, d0 = ∇E(w0)

λ is found by a one dimensional optimisation

0 =
∂

∂λ
E(w0 + λd0) = d0 · ∇E(w1) = d0 · d1

Therefore, subsequent search directions are orthogonal.
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Handouts Ch. Perceptrons

Conjugate gradient descent

We choose as new direction a combination of the gradient and the old direction

d′1 = ∇E(w1) + βd0

Line optimisation w2 = w1 + λd′1 yields λ such that d′1 · ∇E(w2) = 0.

The direction d′1 is found by demanding that ∇E(w2) ≈ 0 also in the ’old’ direction d0:

0 = d0 · ∇E(w2) ≈ d0 · (∇E(w1) + λH(w1)d′1)

or
d0H(w1)d′1 = 0

d0, d
′
1 are said to be conjugate.
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Handouts Ch. Perceptrons

Polak-Ribiere rule

The conjugate directions can be computed without computing the Hessian matrix, for
instance using the Polak-Ribiere rule:12

β =
(∇E(w1)−∇E(w0)) · ∇E(w1)

‖∇E(w0)‖2

It can be proven that this rule keeps the last n directions all mutually conjugate [?].

12We need 0 = dT0H(w1)d′1. We use ∇E(w0) ≈ ∇E(w1) + (w0 − w1)TH(w1) = ∇E(w1)− dT0H(w1).
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Handouts Ch. Perceptrons

Stochastic gradient descent

One can also consider on-line learing, where only one or a subset of training patterns is
considered for computing ∇E.

E(w) =
∑
n

En(w) wt+1 = wt − αt∇En(wτ)

May be efficient for large data sets. This results in a stochastic dynamics in w that can
help to escape local minima.
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Handouts Ch. Perceptrons

Robbins Monro

Method of stochastic approximation originally due to Robbins and Monro 1951:
- Solve M(x) = a with M(x) = 〈N(x, ξ)〉.
- Iterate xt+1 = xt + αt(a−N(x, ξ))
- Convergence requires ∑

t

αt =∞
∑
t

α2
t <∞

For instance αt = 1/t.

Application to stochastic gradient descent:
- ∇E(w) = 0 with ∇E(w) =

∑
n∇En(w)

- Iterate wt+1 = wt − ηt∇En(w)

Extensions of SGD and comparisons see [?].
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5.3.1

Error backpropagation

Error is sum of error per pattern

E(w) =
∑
n

En(w) En(w) =
1

2
‖y(xn,w)− tn‖2

yk(x,w) = h2

wk0 +

M∑
j=1

wkjh1

(
wj0 +

D∑
i=1

wjixi

)
= h2(ak)

ak = wk0 +

M∑
j=1

wkjh1(aj) =

M∑
j=0

wkjh1(aj) h1(a0) = 1

aj = wj0 +

D∑
i=1

wjixi =

D∑
i=0

wjixi x0 = 1
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5.3.1

Error backpropagation

We do each pattern separately, so we consider En

yk(x
n,w) = h2(ank) = h2

 M∑
j=0

wkjh1(anj )

 = h2

 M∑
j=0

wkjh1

(
D∑
i=0

wjix
n
i

)
∂En

∂wkj
= (ynk − tnk)

∂ynk
∂wkj

= (ynk − tnk)h′2(ank)
∂ank
∂wkj

= (ynk − tnk)h′2(ank)h1(anj )

= δnkh1(anj ) δnk = (ynk − tnk)h′2(ank)

∂En

∂wji
=

K∑
k=1

(ynk − tnk)
∂ynk
∂wji

=

K∑
k=1

(ynk − tnk)h′2(ank)
∂ank
∂wji

=

K∑
k=1

δnkwkjh
′
1(anj )

∂anj
∂wji

=

K∑
k=1

δnkwkjh
′
1(anj )xni = δnj x

n
i

δnj = h′1(anj )

K∑
k=1

δnkwkj
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5.3.1

Error backpropagation

zi

zj

δj
δk

δ1

wji wkj

The back propagation extends to arbitrary layers:

1. zni = xni forward propagation all activations znj = h1(anj ) and znk = h2(ank), etc.

2. Compute the δnk for the output units, and back-propagate the δ to obtain δnj each
hidden unit j

3. ∂En/∂wkj = δnkz
n
j and ∂En/∂wji = δnj z

n
i

4. for batch mode, ∂E/∂wji =
∑
n ∂E

n/∂wji

E is a function of O(|w|) variables. In general, the computation of E requires O(|w|)
operations. The computation of ∇E would thus require O(|w|2) operations.

The backpropagation method allows to compute ∇E efficiently, in O(|w|) operations.
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5.5

Regularization

M = 1
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Complexity of neural network solution is controlled by number of hidden units
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sum squared test error for different number of hidden units and different weight initializations. Error is also

affected by local minima.
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5.5

Part of the cause of local minima is the saturation of the sigmoid functions tanh(
∑
wijxj).

When wij becomes large, any change in its value hardly affects the output, implying
∇ijE = 0.

One can partly prevent this from happening by

• chosing tanh instead of σ transfer functions

• scaling of inputs and outputs with mean zero and standard deviation one

• proper initialisation of wij with mean zero and standard deviation of order 1/
√
n1,

with n1 the number of inputs to neuron i.

• add regularizer such as
∑
iw

2
i to cost keeps weights small
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5.5

MLPs are universal approximators

Consider 2n binary patterns in n dimensions and two classes:

xµ → cµ = ±1, xµi = ±1

Use 2n hidden units, labeled j = 0, . . . , 2n − 1, k labels input. Set

wjk = b if kth digit in binary repr. of j is 1

wjk = −b else

j binary wj1 wj2
0 00 -b -b

1 01 -b b

2 10 b -b

3 11 b b

x1 x2 w0kxk w1kxk w2kxk w3kxk
-1 -1 2b 0 0 -2b

-1 1 0 2b -2b 0

1 -1 0 -2b 2b 0

1 1 -2b 0 0 2b

Use threshold of (n − 1)b at each hidden unit. The remaining problem has p = 2n

patterns in 2n dimensions and is linearly separable.
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5.5

MLPs are universal approximators

The combination of linear summation and non-linear functions can create many different
functions.
- The MLP with a single hidden layer can map any continuous function [?, ?]

- The MLP with multiple hidden layers may (or may not) be more efficient
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5.5

5.5.2 Early stopping
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wML

Early stopping is to stop training when error on test set starts increasing.

Early stopping with small initial weigths has the effect of weight decay:

E(w) =
1

2

(
λ1(w1 − w∗1)2 + λ2(w2 − w∗2)2 + λ(w2

1 + w2
2)
)

∂E

∂wi
= λi(wi − w∗i ) + λwi = 0, i = 1, 2

wi =
λi

λi + λ
w∗i

When λ1 � λ� λ2, w1 ≈ λ1/λw
∗
1 and w2 ≈ w∗2.
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5.5

Weights in ’flat’ directions are underspecified by the data and stay small.
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