
Statistical Machine Learning

Lecturers: Bert Kappen, Tom Claassen
Radboud University Nijmegen, Netherlands

December 19, 2017

Book:

Pattern Recognition and Machine Learning
C.M. Bishop
http://research.microsoft.com/~cmbishop/PRML/

Figures from http://research.microsoft.com/~cmbishop/PRML/webfigs.htm

Bert Kappen, Tom Claassen

Statistical Machine Learning

• Course setup

– Lectures (incl. guest lecture), Wed 10:45-12:30, HG00.308 (until 25/10)
from 14/11: Tue 13:45-15:30, HG00.310

– Tutorials, Fri 13:45-15:30, HG00.310 (until 27/10),
from 16/11: Thu 08:45-10:30, HG00.310

– Instructors: Gabriel Bucur, Jordi Riemens
– Textbook ”Pattern Recognition and Machine Learning” (C.M Bishop, 2006)
– All other course materials (slides, exercises, sample exams) via Blackboard
– Homework assignments (4 in total, starting week 3)
– Mini seminar (mandatory)
– Written exam Thu. 25 Jan. 2018, 13:30-15:30, HG00.068

(open book, one ‘cheat sheet’; no other notes/slides/laptops/etc.)

• Grading

– 2/3 final exam (≥ 5.0) + 1/3 avg. assignments

Bert Kappen, Tom Claassen course SML 1

Course contents

Chapter 1 Introduction

• Probability theory

• Model selection

• Curse of dimensionality

• Decision theory

• information theory

Chapter 2: Probability distributions

Chapter 3: Linear models for regression

Chapter 4: Linear models for classification

Chapter 5: Neural networks

Chapter 6: Kernel methods

Chapter 9: Mixture models and EM

Bert Kappen, Tom Claassen course SML 2

Chapter 1: Introduction

Introduction ML

• General introduction

• Polynomial curve fitting, regression, overfitting, regularization

• Probability theory, decision theory

• Information theory

• Math tools recap

Bert Kappen, Tom Claassen course SML 3

1: p.1-4

Recognition of digits

Image is array of pixels xi, each between 0 and 1.
x = (x1, . . . , xd)

T, vector with length d (the total number of pixels, e.g. d = 28× 28).

• Goal = input: pixels → output: correct category 0, . . . , 9

• wide variability

• brute force / hand-made rules infeasible

Bert Kappen, Tom Claassen course SML 4

1: p.1-4

Machine Learning

• Training set: large set of (pixel array, category) pairs

– input data x, target data t(x)
– category = class

• Machine learning algorithm

– adaptive model
– learning = tuning model parameters on training set

• Result: function y(x)

– Fitted to target data
– New input x → output y(x)
– Hopefully: y(x) ≈ t(x)
– Goal: generalization to new examples (use test set)

Bert Kappen, Tom Claassen course SML 5

1: p.1-4

Preprocessing

• transformation of inputs x→ x′

– easier to handle
– speed up computation
– training/test set + new instances

• by hand or rule based

– scaling, centering
– aspect ratio, greyscale

• feature extraction

– dimension reduction
– reduces variability within class (noise reduction) → easier to learn
– reduces variability between classes (information loss) → more difficult to learn
– trade-off

Bert Kappen, Tom Claassen course SML 6

1: p.1-4

Types of machine learning tasks

• Supervised learning: known targets

– Classification: targets are classes
– Regression: target is continuous

• Unsupervised learning: unknown targets

– clustering (similarity between input data)
– density estimation (distribution of input data)
– dimension reduction (to 2/3D for visualization)

• Reinforcement learning: find optimal target / strategy

– actions leading to maximal reward
– exploration vs. exploitation

Bert Kappen, Tom Claassen course SML 7

1.1: p.4-6

1.1. Polynomial curve fitting

x

t

0 1

−1

0

1

• Regression problem

• Given training set of N = 10 data points

– generated by tn = sin(2πx) + noise

• Goal: predict value t for new x (without knowing the curve)

– function t̂ = y(x)

Bert Kappen, Tom Claassen course SML 8

1.1: p.4-6

We will fit the data using M -th order polynomial

y(x,w) = w0 + w1x+ w2x
2 + . . .+ wMx

M =

M∑
j=0

wjx
j

y(x,w) is nonlinear in x, but linear in coefficients w, ”Linear model”

Training set: (xn, tn), n = 1, . . . , N . Objective: find parameters w, such that

y(xn,w) ≈ tn, for all n

This is done by minimizing the Error function

E(w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

E(w) ≥ 0 and E(w) = 0 ⇔ y(xn,w) = tn

t

x

y(xn,w)

tn

xn

Bert Kappen, Tom Claassen course SML 9

math recap for 1.1: p.4-6

Finding the minimum: partial derivatives and gradient

Let f(x1, . . . , xn) = f(x) be a function of several variables. The gradient of f , denoted
as ∇f (the symbol “ ∇” is called ‘nabla’) , is the vector of all partial derivatives:

∇f(x) =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)T
NB, the partial derivative ∂f(x1, . . . , xi, . . . , xn)/∂xi is computed by taking the derivative
with respect to xi while keeping all other variables constant.

Example:
f(x, y, z) = xy2 + 3.1yz

Then

∇f(x, y, z) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)T
=

(
y2, 2xy + 3.1z, 3.1y

)T

Bert Kappen, Tom Claassen course SML 10

math recap for 1.1: p.4-6

At local minima (and maxima, and so-called saddle points) of a differentiable function f ,
the gradient is zero, i.e., ∇f = 0.

Example:
f(x, y) = x2 + y2 + (y + 1)x

So
∇f(x, y) = (2x+ y + 1, 2y + x)

T

Then we can compute the point (x∗, y∗) that minimizes f by setting ∇f = 0,

2x∗ + y∗ + 1 = 0
2y∗ + x∗ = 0

}
⇒ (x∗, y∗) = (−2

3
,
1

3
)

Bert Kappen, Tom Claassen course SML 11

math recap for 1.1: p.4-6

Chain rule

Suppose f is a function of y1, y2, ..., yk and each yj is a function of x, then we can
compute the derivative of f with respect to x by the chain rule

df

dx
=

k∑
j=1

∂f

∂yj

dyj
dx

Example:
f(y(x), z(x)) = y(x)/z(x)

with y(x) = x4 and z = x2.

Then y′(x) = 4x3 and z′(x) = 2x, and so

df

dx
=

1

z(x)
y′(x)− y(x)

z(x)2
z′(x)

=
1

x2
4x3 − x4

(x2)2
2x

= 2x

Bert Kappen, Tom Claassen course SML 12

math recap for 1.1: p.4-6

Chain rule (2)

Suppose E is a function of y1, y2, ..., yN and each yj is a function of w0, . . . , wM , then
we can compute the derivative of E with respect to wi by the chain rule

∂E

∂wi
=

N∑
j=1

∂E

∂yj

∂yj
∂wi

Example:

E(w) =
1

2

N∑
j=1

(yj(w)− tj)2 ⇒ ∂E

∂yj
= yj − tj

and

yj(w) =

M∑
i=0

xijwi ⇒
∂yj
∂wi

= xij

So
∂E

∂wi
=

N∑
j=1

(yj(w)− tj)xij

tj and xjj are parameters in this example.

Bert Kappen, Tom Claassen course SML 13

math recap for 1.1: p.4-6

Minimization of the error function

E(w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

In minimum: gradient ∇wE = 0

Note: y linear in w ⇒ E quadratic in w

⇒ ∇wE is linear in w

⇒ ∇wE = 0: coupled set of linear equations (exercise)

Bert Kappen, Tom Claassen course SML 14

math recap, see also app. C

Matrix multiplications as summations

If A is a N ×M matrix with entries Aij and v an M -dimensional vector with entries vi,
then w = Av is a N -dimensional vector with components

wi =

M∑
j=1

Aijvj

In general, if B is a M ×K matrix with entries Bij, then C = AB is a N ×K matrix
with entries

Cik =

M∑
j=1

AijBjk

Bert Kappen, Tom Claassen course SML 15

math recap, see also app. C

Dummy indices

The indices that are summed over are ‘dummy’ indices, they are just a label, so e.g.,

M∑
k=1

AikBkj =

M∑
l=1

AilBlj

furthermore, the entries of the vectors and matrices are just ordinary numbers, so you
don’t have to worry about multiplication order. In addition, if the summation of indices
is over a range that does not depend on other indices, you may interchance the order of
summation,

N∑
i=1

M∑
j=1

. . . =

M∑
j=1

N∑
i=1

. . .

So e.g, by changing summation order and renaming dummy indices,

wk =

M∑
j=1

N∑
i=1

AijBjk =

N∑
l=1

M∑
i=1

BikAli

Bert Kappen, Tom Claassen course SML 16

math recap, see also app. C

Kronecker delta

The notation δij denotes usually the Kronecker delta symbol, i.e.,{
δij = 1 if i = j
δij = 0 otherwise

It has the nice property that it ‘eats’ dummy indices in summations:

M∑
j=1

δijvj = vi for all 1 ≤ i ≤M (1)

The Kronecker delta can be viewed as the entries of the identity matrix I. In vector
notation, (??) is equivalent to the statement Iv = v. In other words, δij = Iij

1

1Bishop used δ in his previous book, and I in the current book

Bert Kappen, Tom Claassen course SML 17

math recap, needed later

Taylor series, 1-d

Assuming that f(x) has derivatives of all orders in x = a, then the Taylor expansion of
f around a is

f(a+ ε) =

∞∑
k=0

f (k)(a)

k!
εk = f(a) + εf

′
(a) +

ε2

2
f
′′
(a) + . . .

The prefactors in the Taylor series can be checked by computing the Taylor expansion of
a polynomial.

Linearization of a function around a is taking the Taylor expansion up to first order:

f(a+ x) = f(a) + xf ′(a)

Bert Kappen, Tom Claassen course SML 18

math recap

Taylor series, examples

Examples: check that for small x the following expansions are correct up to second
order:

sin(x) = sin(0) + x cos(0) +
1

2
x2(− sin(0)) + ...

= 0 + x− 0 + ...

= x

cos(x) = 1− 1

2
x2

exp(x) = 1 + x+
1

2
x2

(1 + x)c = 1 + cx+
c(c− 1)

2
x2

ln(1 + x) = x− 1

2
x2

Bert Kappen, Tom Claassen course SML 19

math recap, needed later

Taylor expansion in several dimensions

The Taylor expansion of a function of several variables, f(x1, . . . , xn) = f(x) is (up to
second order)

f(x) = f(a) +
∑
i

(xi − ai)
∂

∂xi
f(a) +

1

2

∑
ij

(xi − ai)(xj − aj)
∂

∂xi

∂

∂xj
f(a)

or in vector notation, with ε = x− a

f(a+ ε) = f(a) + εT∇f(a) +
1

2
εTHε

with H the Hessian, which is the symmetric matrix of partial derivatives

Hij =
∂2

∂xi∂xj
f(x)

∣∣∣∣
x=a

Bert Kappen, Tom Claassen course SML 20

This is not in ch 1, but is an important concept in SML - ch 5.2.1

Error landscape

Polynomial curve fitting has a quadratic error function. In general the error function
E(w) may be a non-quadratic in the parameters w.

w1

w2

E(w)

wA wB wC

∇E

Gradient descent: walk downwards with small steps in the direction of the negative
gradient.

E is minimal when ∇E(w) = 0, but not vice versa!

⇒ gradient based methods find a local minimum, not necessary the global minimum.

Bert Kappen, Tom Claassen course SML 21

This is not in ch 1, but is an important concept in SML - ch 5.2.4

Application: Optimization by gradient descent

Gradient descent algorithm for finding w in y(x,w):

1. Start with an initial value of w and ε small.

2. While ”change in w large”: Compute w := w − ε∇E

Stop criterion is ∇E ≈ 0, which means that we stop in a local minimum of E.

Does this algorithm converge? Yes, if ε is ”sufficiently small” and E bounded from below.

Proof: Denote ∆w = −ε∇E.

E(w + ∆w) ≈ E(w) + (∆w)T∇E = E(w)− ε
∑
i

(∂E
∂wi

)2 ≤ E(w)

In each gradient descent step the value of E is lowered. Since E bounded from below,
the procedure must converge asymptotically.

Note: if w has a closed-form solution then gradient descent not necessary!

Bert Kappen, Tom Claassen course SML 22

This is not in ch 1, but is an important concept in SML - ch 5.2.2

Newtons method

One can also use Hessian information for optimization. As an example, consider a
quadratic approximation to E around w0 (Taylor expansion up to 2nd order):

E(w) = E(w0) + bT (w −w0) +
1

2
(w −w0)H(w −w0)

bi =
∂E(w0)

∂wi
Hij =

∂2E(w0)

∂wi∂wj

∇E(w) = b+H(w −w0)

We can solve ∇E(w) = 0 and obtain

w = w0 −H−1∇E(w0)

This is called Newtons method. Inversion of the Hessian may be computational costly.
A number of methods, known as quasi-newton methods, are based on approximations of
this procedure.

Bert Kappen, Tom Claassen course SML 23

1.1: p 6-11

Model comparison, model selection

Back to polynomial curve fitting: how to choose M?

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Which of these models is the best one?

Bert Kappen, Tom Claassen course SML 24

1.1: p 6-11

Define root-mean-square error on training set and on test set {(x̃n, t̃n)}Ñn=1, respectively:

ERMS =
√

2E(w∗)/N, ERMS =

√√√√ 1

Ñ

Ñ∑
n=1

(
y(x̃n,w∗)− t̃n

)2

M

E
R
M
S

0 3 6 9
0

0.5

1
Training
Test

Too simple (small M) → poor fit
Too complex (large M) → overfitting (fits the noise)
Q : Taylor expansion of sin(x) contains all odd order terms ... shouldn’t M = 9 be better?

Bert Kappen, Tom Claassen course SML 25

1.1: p 6-11

M=0 M=1 M=3 M=9
w∗0 0.19 0.82 0.31 0.35
w∗1 -1.27 8 232
w∗2 -25 5321
w∗3 -17 48568
w∗4 -231639
w∗5 640042
w∗6 -10618000
w∗7 10424000
w∗8 -557683
w∗9 -125201

Bert Kappen, Tom Claassen course SML 26

1.1: p 6-11

Model comparison, model selection

x

t

N = 15

0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

Overfitting is not due to noise, but more due to sparseness of data.

Same model complexity: more data ⇒ less overfitting
With more data, more complex (i.e. more flexible) models can be used

Bert Kappen, Tom Claassen course SML 27

1.1: p 6-11

Regularization

Change the cost function E by adding regularization term Ω(w) to penalize complexity.

Ẽ(w) = E(w) + λΩ(w)

For example,

Ẽ(w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

+
λ

2
||w||2

(here, ||w||2 :=
∑M
m=0w

2
m)

Weight decay = shrinkage = ridge regression

Penalty term independent of number of training data

• small data sets: penalty term relatively large

• large data sets: penalty term relatively small

• → effective complexity depends on #training data

Bert Kappen, Tom Claassen course SML 28

1.1: p 6-11

x

t

M = 9

0 1

−1

0

1

x

t

ln λ = −18

0 1

−1

0

1

x

t

ln λ = 0

0 1

−1

0

1

lnλ = −∞ lnλ = −18 lnλ = 0

w∗0 0.35 0.35 0.13

w∗1 232 4.74 -0.05

w∗2 5321 - 0.77 -0.06

w∗3 48568 -31.97 -0.05

w∗4 -231639 - 3.89 -0.03

w∗5 640042 55.28 -0.02

w∗6 -10618000 41.32 -0.01

w∗7 10424000 -45.95 -0.00

w∗8 -557683 -91.53 0.00

w∗9 -125201 72.68 0.01

E
R
M
S

ln λ−35 −30 −25 −20
0

0.5

1
Training
Test

• Training set to optimize (typically many) parameters w

• Validation set to optimize (typically a few) hyperparameters λ, M

• used in e.g. cross-validation (§1.3) ... but even better: Bayesian approach!

Bert Kappen, Tom Claassen course SML 29

1.2: p 12-17

§1.2 Probability theory

• Consistent framework for quantification and
manipulation of uncertainty
→ Foundation for Bayesian machine learning

• random variable = stochastic variable

Example:
boxes (B = {r, b}) and fruit (F = {a, o}).

• Consider an experiment of (infinitely) many (mentally) repeated trials
(randomly pick a box, then randomly select an item of fruit from that box)

under the same macroscopic conditions
(number of red/blue boxes and apples/oranges balls in the boxes)

but each time with different microscopic details
(arrangements of boxes and fruits in boxes).

Probability of an event (e.g. selecting a orange) is fraction of times that event
occurs in the experiment.

• Notation: p(F = o) = 9/20, etc (or P (. . .), IP(. . .), Prob(. . .), etc.)

Bert Kappen, Tom Claassen course SML 30

1.2: p 12-17

Experiment with a drawing pin

(a)

(b)

Q: What is the probability of getting ‘pin up’?

Bert Kappen, Tom Claassen course SML 31

1.2: p 12-17

Outcome as a function of speed vs. pin length

(10x)

(100x)

(1000x)

(10,000x)

(100,000x)

• ‘Randomness’ in deterministic systems is due to uncertainty about initial states.

• More information does not imply gradual convergence to true value.

Bert Kappen, Tom Claassen course SML 32

1.2: p 12-17

Drawing pin outcomes: sliding averages

0 1.0 2.0 3.0 4.0
0

10

20

30

40

50

60

70

80

90

→ Pin length (cm)

→
 O

ut
co

m
e:

 p
in
−u

p
(%

)

top →
mid →
bottom →
left (h=0cm)
mid ↓
right ↓

16 17 18 19 20
→ Rotational speed at t=0 (rad/sec)

A: For typical drawing pin: p(Outcome = ‘pin up’) ≈ 66%
... but depends on what you know about the experiment (no unique, objective value!)

Bert Kappen, Tom Claassen course SML 33

1.2: p 12-17

Joint, marginal, and conditional probabilities

X can take the values xi, i = 1, . . . ,M .
Y can take the values yj, j = 1, . . . , L.

N : total number of trials (N →∞).
nij: number of trials with X = xi and Y = yj
ci: number of trials with X = xi
rj: number of trials with Y = yj

}

}ci

rjyj

xi

nij

Joint probability of X = xi and Y = yj:

p(X = xi, Y = yj) =
nij
N

= p(Y = yj, X = xi)

Bert Kappen, Tom Claassen course SML 34

1.2: p 12-17

Joint, marginal, and conditional probabilities

X can take the values xi, i = 1, . . . ,M .
Y can take the values yj, j = 1, . . . , L.

N : total number of trials (N →∞).
nij: number of trials with X = xi and Y = yj
ci: number of trials with X = xi
rj: number of trials with Y = yj

}

}ci

rjyj

xi

nij

Marginal probability of X = xi:

p(X = xi) =
ci
N

=

∑
j nij

N
=
∑
j

p(X = xi, Y = yj)

Conditional probability of Y = yj given X = xi

p(Y = yj|X = xi) =
nij
ci

=
p(X = xi, Y = yj)

p(X = xi)

Bert Kappen, Tom Claassen course SML 35

1.2: p 12-17

p(X,Y)

X

Y = 2

Y = 1

p(Y)

p(X)

X X

p(X |Y = 1)

Bert Kappen, Tom Claassen course SML 36

1.2: p 12-17

• Explicit, unambiguous notation: p(X = xi)
• Short-hand notation: p(xi)
• p(X): “distribution“ over the random variable X
• NB: {xi} is assumed to be mutually exclusive and complete

The Rules of Probability

Sum rule p(X) =
∑
Y

p(X,Y)

Product rule p(X,Y) = p(Y |X)p(X)

Positivity p(X) ≥ 0

Normalization
∑
X

p(X) = 1

Bert Kappen, Tom Claassen course SML 37

1.2: p 12-17

p(X,Y) = p(Y |X)p(X) = P (X|Y)p(Y) ⇒

Bayes’ theorem

p(Y |X) =
p(X|Y)p(Y)

p(X)

(
=

p(X|Y)p(Y)∑
Y p(X|Y)p(Y)

)

Bayes’ theorem = Bayes’ rule

Bert Kappen, Tom Claassen course SML 38

1.2: p 12-17

Fruits again

Model

p(B = r) = 4/10

p(B = b) = 6/10

p(F = a|B = r) = 1/4

p(F = o|B = r) = 3/4

p(F = a|B = b) = 3/4

p(F = o|B = b) = 1/4

Note that the (conditional) probabilities are normalized:

p(B = r) + p(B = b) = 1

p(F = a|B = r) + p(F = o|B = r) = 1

p(F = a|B = b) + p(F = o|B = b) = 1

Bert Kappen, Tom Claassen course SML 39

1.2: p 12-17

• Marginal probability

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1

4
× 4

10
+

3

4
× 6

10
=

11

20

and from normalization,

p(F = o) = 1− p(F = a) =
9

20

• Conditional probability (reversing probabilities):

p(B = r|F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

3

4
× 4

10
× 20

9
=

2

3

• Terminology:
p(B): prior probability (before observing the fruit)
p(B|F): posterior probability (after observing F)

Bert Kappen, Tom Claassen course SML 40

1.2: p 12-17

(Conditionally) independent variables

• X and Y are called (marginally) independent if

P (X,Y) = P (X)P (Y)

This is equivalent to
P (X|Y) = P (X)

and also to
P (Y |X) = P (Y)

• X and Y are called conditionally independent given Z if

P (X,Y |Z) = P (X|Z)P (Y |Z)

This is equivalent to
P (X|Y,Z) = P (X|Z)

and also to
P (Y |X,Z) = P (Y |Z)

Bert Kappen, Tom Claassen course SML 41

1.2.1

Probability densities

• to deal with continuous variables (rather than discrete ones)

When x takes values from a continuous domain, the probability of any value of x is zero!
Instead, we must talk of the probability that x takes a value in a certain interval

Prob(x ∈ [a, b]) =

∫ b

a

p(x) dx

with p(x) the probability density over x.

p(x) ≥ 0∫ ∞
−∞

p(x) dx = 1 (normalization)

• NB: that p(x) may be bigger than one.

Probability of x falling in interval (x, x+ δx) is p(x)δx for δx→ 0

Bert Kappen, Tom Claassen course SML 42

1.2.1

xδx

p(x) P (x)

Cumulative distribution function F (z) =

∫ z

−∞
p(x)dx (not often used in ML).

Note that:

• Prob(x ∈ [a, b]) = F (b)− F (a).

• F ′(z) = p(z)

Bert Kappen, Tom Claassen course SML 43

1.2.1

Multivariate densities

• Several continuous variables, denoted by the d dimensional vector x = (x1, . . . , xd).
• Probability density p(x): probability of x falling in an infinitesimal volume δx around
x is given by p(x)δx.

Prob(x ∈ R) =

∫
R
p(x) dx =

∫
R
p(x1, . . . , xd)dx1dx2 . . . dxd

and

p(x) ≥ 0∫
p(x)dx = 1

• Rules of probability apply to multivariate continuous variables as well,

p(x) =

∫
p(x,y) dy

p(x,y) = p(y|x)p(x)

Bert Kappen, Tom Claassen course SML 44

math recap for 1.2.1

Integration

The integral of a function of several variables x = (x1, x2, . . . , xn)∫
R
f(x)dx ≡

∫
R
f(x1, x2, . . . , xn)dx1dx2 . . . dxn

is the volume of the n + 1 dimensional region lying ‘vertically above’ the domain of
integration R ⊂ IRn and ’below’ the function f(x).

Bert Kappen, Tom Claassen course SML 45

math recap for 1.2.1

Separable integrals

The most easy (but important) case is when we can separate the integration, e.g. in 2-d,

∫ b

x=a

∫ d

y=c

f(x)g(y) dxdy =

∫ b

x=a

f(x) dx

∫ d

y=c

g(y) dy

Example,

∫
exp

(n∑
i=1

fi(xi)
)

dx =

∫ n∏
i=1

exp(fi(xi)) dx =

n∏
i=1

∫
exp(fi(xi)) dxi

Bert Kappen, Tom Claassen course SML 46

math recap

Iterated integration

A little more complicated are the cases, in which integration can be done by iteration,
’from inside out’. Suppose we can write the 2-d region R as the set a < x < b and
c(x) < y < d(x) then we can write

∫
R
f(y, x) dydx =

∫ b

x=a

[∫ d(x)

y=c(x)

f(y, x) dy

]
dx

The first step is evaluate the inner integral, where we interpret f(y, x) as a function of y
with fixed parameter x. Suppose we can find F such that ∂F (y, x)/∂y = f(y, x), then
the result of the inner integral is

∫ d(x)

y=c(x)

f(y, x) dy = F (d(x), x)− F (c(x), x)

The result, which we call g(x) is obviously a function of x only,

g(x) ≡ F (d(x), x)− F (c(x), x)

Bert Kappen, Tom Claassen course SML 47

math recap

The next step is the outer integral, which is now just a one-dimensional integral of the
function g, ∫ b

x=a

[∫ d(x)

y=c(x)

f(y, x) dy

]
dx =

∫ b

x=a

g(x) dx

Now suppose that the same 2-d region R can also be written as the set s < y < t and
u(y) < x < v(y), then we can also choose to evaluate the integral as

∫
R
f(y, x) dxdy =

∫ t

y=s

[∫ v(y)

x=u(y)

f(y, x) dx

]
dy

following the same procedure as above. In most regular cases the result is the same (for
exceptions, see handout (*)).

Integration with more than two variables can be done with exactly the same procedure,
‘from inside out’.

In Machine Learning, integration is mostly over the whole of x space, or over a subspace.
Iterated integration is not often used.

Bert Kappen, Tom Claassen course SML 48

math recap

Transformation of variables (1-d)

Often it is easier to do the multidimensional integral in another coordinate frame. Suppose
we want to do the integration ∫ d

y=c

f(y) dy

but the function f(y) is easier expressed as a f(g(x)) which is a function of x. So we
want to use x as integration variable. If y and x are related via invertible differentiable
mappings y = g(x) and x = g−1(y) and the end points of the interval (y = c, y = d) are
mapped to (x = a, x = b), (so a = g−1(c), etc) then we have the equality∫ d

y=c

f(y) dy =

∫ d

g(x)=c

f(g(x)) dg(x)

=

∫ b

x=a

f(g(x))g′(x) dx

The derivative g′(x) comes in as the ratio between the lengths of the differentials dy and
dx,

dy = g′(x) dx

Bert Kappen, Tom Claassen course SML 49

math recap

Several variables

With several variables, the substitution rule is generalized as follows. We have the
invertible mapping y = y(x). Let us also assume that the region of integration of R is
mapped by to S, (so S = y(R)), then we have the equality

∫
y∈S

f(y) dy =

∫
y(x)∈S

f(y) dy(x)

=

∫
x∈R

f(y(x))

∣∣∣∣det

(
∂y(x)

∂x

)∣∣∣∣ dx

The factor det
(
∂y(x)
∂x

)
is called the Jacobian of the coordinate transformation. Written

out in more detail

det

(
∂y(x)

∂x

)
=

∣∣∣∣∣∣∣∣∣∣

∂y1(x)
∂x1

∂y1(x)
∂x2

. . . ∂y1(x)
∂xn

∂y2(x)
∂x1

∂y2(x)
∂x2

. . . ∂y2(x)
∂xn

.
∂yn(x)
∂x1

∂yn(x)
∂x2

. . . ∂yn(x)
∂xn

∣∣∣∣∣∣∣∣∣∣
Bert Kappen, Tom Claassen course SML 50

math recap

The absolute value 2 of the Jacobian comes in as the ratio between that the volume
represented by the differential dy and the volume represented by the differential dx, i.e.,

dy =

∣∣∣∣det

(
∂y(x)

∂x

)∣∣∣∣ dx

As a last remark, it is good to know that

det

(
∂x(y)

∂y

)
= det

((
∂y(x)

∂x

)−1
)

=
1

det
(
∂y(x)
∂x

)

2In the single-variable case, we took the orientation of the integration interval into account (
∫ b
a f(x) dx = −

∫ a
b f(x) dx).

With several variables, this is awkward. Fortunately, it turns out that the orientation of the mapping of the domain always
cancels to the ’orientation’ of the Jacobian (= sign of the determinant). Therefore we take a positive orientation and the
absolute value of the Jacobian

Bert Kappen, Tom Claassen course SML 51

math recap

Polar coordinates

Example: compute the area of a disc.

Consider a two-dimensional disc with radius R

D = {(x, y)|x2 + y2 < R2}

Its area is ∫
D

dxdy

This integral is easiest evaluated by going to ‘polar-coordinates’. The mapping from polar
coordinates (r, θ) to Cartesian coordinates (x, y) is

x = r cos θ (2)

y = r sin θ (3)

Since In polar coordinates, the disc is described by 0 ≤ r < R (since x2 + y2 = r2) and
0 ≤ θ < 2π.

Bert Kappen, Tom Claassen course SML 52

math recap

The Jacobian is

J =

∣∣∣∣ ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ + sin2 θ) = r

In other words,
dxdy = rdrdθ

The area of the disc is now easily evaluated.

∫
D

dxdy =

∫ 2π

θ=0

∫ R

r=0

rdrdθ = πR2

Bert Kappen, Tom Claassen course SML 53

math recap

Gaussian integral

How to compute ∫ ∞
−∞

exp(−x2)dx

(∫ ∞
−∞

exp(−x2)dx
)2

=

∫ ∞
−∞

exp(−x2)dx

∫ ∞
−∞

exp(−y2)dy

=

∫ ∞
−∞

∫ ∞
−∞

exp(−x2) exp(−y2)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

exp(−(x2 + y2))dxdy

Bert Kappen, Tom Claassen course SML 54

math recap

The latter is easily evaluated by going to polar-coordinates,

∫ ∞
−∞

∫ ∞
−∞

exp(−(x2 + y2))dxdy =

∫ 2π

θ=0

∫ ∞
r=0

exp(−r2)rdrdθ

= 2π

∫ ∞
r=0

exp(−r2)rdr

= 2π ×
(
− 1

2
exp(−r2)

)∣∣∣∞
0

= π

So ∫ ∞
−∞

exp(−x2)dx =
√
π

Bert Kappen, Tom Claassen course SML 55

1.2.1: p.18

Transformation of densities

Under nonlinear change of variables, a probability transforms p(x) transforms differently
from an ordinary function, due to “conservation of probability” p(x)δx.

Consider x = g(y) then an ordinary function f(x) becomes f̃(y) = f(g(y)) by
straightforward substitution.

However for probability densities:
• px(x)δx: probability that point falls in volume element δx around x
• py(y)δy: same probability, now in terms of y

py(y)δy = px(x)δx ⇒ py(y) =
∣∣∣ det

(∂g
∂y

)∣∣∣px(g(y))

• Values p(x) of a probability density depends on choice of variable (p(x)δx is invariant)
• Maximum of a probability density depends on choice of variable (see exercise 1.4).

Bert Kappen, Tom Claassen course SML 56

math recap

Dirac’s delta-function

Dirac’s delta function δ(x) is defined such that

δ(x) = 0 if x 6= 0 and

∫ ∞
−∞

δ(x)dx = 1

It can be viewed as the limit ∆→ 0 of the function

f(x,∆) =
1

∆
if |x| ≤ ∆

2
and f(x,∆) = 0 elsewhere

Bert Kappen, Tom Claassen course SML 57

math recap

The Dirac delta δ(x) is a spike (a peak, a point mass) at x = 0. The function δ(x− x0)
as a function of x is a spike at x0. As a consequence of the definition, the delta function
has the important property ∫ ∞

−∞
f(x)δ(x− x0)dx = f(x0)

(cf. Kronecker delta
∑
j δijvj = vi).

The multivariate deltafunction factorizes over the dimensions

δ(x−m) =

n∏
i=1

δ(xi −mi)

Bert Kappen, Tom Claassen course SML 58

math recap

Dirac’s delta-function / delta-distribution

The Dirac delta is actually a distribution rather than a function:

δ(αx) =
1

α
δ(x)

This is true since

• if x 6= 0 left and right-handside are both zero.

• after transformation of variables x′ = αx, dx′ = αdx we have∫
δ(αx)dx =

1

α

∫
δ(x′)dx′ =

1

α

Bert Kappen, Tom Claassen course SML 59

math recap for 1.2.2

Functionals vs functions

Function y: for any input value x, returns output value f(y).

Functional F : for any function y, returns an output value F [y].

Example (linear functional):

F [y] =

∫
p(x)y(x) dx

(Compare with f(y) =
∑
i piyi).

Other (nonlinear) example:

F [y] =

∫
1

2
(y′(x) + V (x))2 dx

Bert Kappen, Tom Claassen course SML 60

1.2.2

Expectations and variances

Expectation is a weighted average of a function f(x) under probability distribution p(x):

IE[f] =
〈
f
〉

=
∑
x

p(x)f(x) discrete var’s

IE[f] =

∫
x

p(x)f(x) dx continuous var’s

Variance measures variability around expectation value (mean):

var[f] =
〈
f(x)2

〉
−
〈
f(x)

〉2
var[x] =

〈
x2
〉
−
〈
x
〉2

Bert Kappen, Tom Claassen course SML 61

1.2.2

Covariance

Covariance measures how much two random variables vary together (’synchronised
variability’):

cov[x, y] = 〈xy〉 − 〈x〉 〈y〉

Covariance matrix of the components of a vector variable

cov[x] ≡ cov[x,x] =
〈
xxT

〉
−
〈
x
〉〈
xT
〉

with components

(cov[x])ij = cov[xi, xj] =
〈
xixj

〉
−
〈
xi
〉〈
xj
〉

Bert Kappen, Tom Claassen course SML 62

1.2.3

Bayesian probabilities

• Classical or frequentists interpretation: probabilities in terms of frequencies of random
repeatable events

• Bayesian view: probabilities as subjective beliefs about uncertain event

– event not neccessarily repeatable
– event may yield only indirect observations
– Bayesian inference to update belief given observations

Why probability theory?

• Cox: common sense axioms for degree of uncertainty → probability theory

Bert Kappen, Tom Claassen course SML 63

1.2.3

Bert Kappen, Tom Claassen course SML 64

1.2.3

Maximum likelihood estimation

Given a data set

Data = {x1, . . . ,xN}

and a parametrized distribution

p(x|w), w = (w1, . . . , wM),

find the value of w that best describes the data.

The common approach is to assume that the data that we observe are drawn independently
from p(x|w) (independent and identical distributed = i.i.d.) for some unknown value of
w:

p(Data|w) = p({x1, . . . ,xN}|w) =

N∏
i=1

p(xi|w)

Bert Kappen, Tom Claassen course SML 65

1.2.3

Then, the most likely w is obtained by maximizing p(Data|w) wrt w:

wML = argmaxwp(Data|w) = argmaxw

N∏
i=1

p(xi|w)

= argmaxw

N∑
i=1

log p(xi|w)

since log is a monotonically increasing function.

wML is a function of the data. This is called an estimator.

Frequentists methods consider a single true w and data generation mechanism p(Data|w
provided by ’Nature’ and study expected value:

EwML =
∑
Data

p(Data|w)wML(Data)

For instance, µ̂ = 1
N

∑
i xi is estimator for the mean of a distribution. If data are

xi ∼ N (µ, σ2) then Eµ̂ = µ.

Bert Kappen, Tom Claassen course SML 66

1.2.3

Bayesian machine learning

Model parameters w: uncertain

• Prior assumptions and beliefs about model parameters: the prior distribution p(w)
• Observed data = {x1, . . . ,xN} = Data
• Probability of data given w (the likelihood): p(Data|w)

Apply Bayes’ rule to obtain the posterior distribution

p(w|Data) =
p(Data|w)p(w)

p(Data)
∝ p(Data|w)p(w)

p(w) : prior

p(Data|w) : likelihood

p(Data) =

∫
p(Data|w)p(w) dw : evidence

→ p(w|Data) : posterior

Bert Kappen, Tom Claassen course SML 67

1.2.3

Predictive distribution

Prior to ’learning’, the predictive distribution for new observation x is

p(x) =

∫
p(x|w)p(w) dw

After ’learning’, i.e., after observation of Data, the predictive distribution for new
observation x becomes

p(x|Data) =

∫
p(x|w,Data)p(w|Data) dw

=

∫
p(x|w)p(w|Data) dw

Bert Kappen, Tom Claassen course SML 68

1.2.3

Bayesian vs frequentists view point

• Bayesians: there is a single fixed dataset (the one observed), and a probability
distribution of model parameters w which expresses a subjective belief including
uncertainty about the ‘true’ model parameters.

- They need a prior belief p(w), and apply Bayes rule to compute p(w|Data).

- Bayesians can talk about the belief that w has a certain value given the particular
data set.

• Frequentists assume a single (unknown) fixed model parameter vector w.

- construct an estimator ŵ that is a function of the data. For instance, the maximum
likelihood estimator

- study statistical properties of estimators in similar experiments, each time with
different datasets drawn from p(Data|w), such as bias and variance.

-They cannot make a claim for this particular data set. This is the price for not having
a ‘prior’.

Bert Kappen, Tom Claassen course SML 69

1.2.3

Toy example

w is the probability that a coin comes up ’head’. Toss N times with NH outcomes ’head’.

The likelihood of the data p(NH|w,N) =

(
N
NH

)
wNH(1− w)N−NH .

The (frequentist) maximum likelihood estimator:

ŵ = argmaxwp(NH|w,N) = argmaxw [NH logw + (N −NH) log(1− w)] =
NH
N

ŵ is stochastic variable, because it depends on the data set.

But it has ’nice’ statistical property that on average (over many data sets) ŵ gives the
correct value:

Eŵ =
∑
NH

p(NH|w,N)
NH
N

= w

3

3Use
∑N
NH=0 p(NH|w,N) = 1.

Bert Kappen, Tom Claassen course SML 70

1.2.3

The Bayesian approach considers one data set and assumes a prior p(w) and compute
the posterior

p(w|NH, N) =
p(w)p(NH|w,N)

p(NH, N)

Bert Kappen, Tom Claassen course SML 71

1.2.3

Bayesian vs frequentists

• Prior: inclusion of prior knowledge may be useful. True reflection of knowledge, or
convenient construct? Bad prior choice can overconfidently lead to poor result.

• Bayesian integrals cannot be calculated in general. Only approximate results possible,
requiring intensive numerical computations.

• Frequentists methods of ‘resampling the data’, (crossvalidation, bootstrapping) are
appealing

• Bayesian framework transparent and consistent. Assumptions are explicit, inference is
a mechanstic procedure (Bayesian machinery) and results have a clear interpretation.

This course place emphasis on Bayesian approach.

Bert Kappen, Tom Claassen course SML 72

1.2.3

Medical example

Suppose w = {0, 1} is a disease state (absent/present). The disease is rare, say
P (w = 1) = 0.01. There is a test x = 0, 1 that measures whether the patient has the
disease.

p(x = 1|w = 1) = p(x = 0|w = 0) = 0.9

The test is performed and is positive: x = 1. What is the probability that the patient
has the disease?

Bert Kappen, Tom Claassen course SML 73

1.2.3

p(w = 1|x = 1) = 0.9∗0.01
0.9∗0.01+0.1∗0.99 = 1

1+0.1∗0.99
0.9∗0.01

= 1
12 = 0.0825

Bert Kappen, Tom Claassen course SML 74

1.2.4: p.24-25

Gaussian distribution

Normal distribution = Gaussian distribution

N (x|µ, σ2) =
1√

2πσ2
exp

{
− (x− µ)2

2σ2

}
Specified by µ and σ2

N (x|µ, σ2)

x

2σ

µ

Bert Kappen, Tom Claassen course SML 75

1.2.4: p.24-25

Gaussian is normalized, ∫ ∞
−∞
N (x|µ, σ2) dx = 1

The mean (= first moment), second moment, and variance are:

IE[x] = 〈x〉 =

∫ ∞
−∞

xN (x|µ, σ2) dx = µ

〈
x2
〉

=

∫ ∞
−∞

x2N (x|µ, σ2) dx = µ2 + σ2

var[x] =
〈
x2
〉
− 〈x〉2 = σ2

Bert Kappen, Tom Claassen course SML 76

1.2.4: p.24-25

Multivariate Gaussian

In D dimensions

N (x|µ,Σ) =
1

(2π)D/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
x,µ are D-dimensional vectors.

Σ is a D ×D covariance matrix, |Σ| is its determinant.

Bert Kappen, Tom Claassen course SML 77

1.2.4: p.24-25

Mean vector and covariance matrix

IE[x] = 〈x〉 =

∫
xN (x|µ,Σ) dx = µ

cov[x] =
〈
(x− µ)(x− µ)T

〉
=

∫
(x− µ)(x− µ)TN (x|µ,Σ) dx = Σ

We can also write this in component notation:

µi = 〈xi〉 =

∫
xiN (x|µ,Σ) dx

Σij = 〈(xi − µi)(xj − µj)〉 =

∫
(xi − µi)(xj − µj)N (x|µ,Σ) dx

N (x|µ,Σ) is specified by its mean and covariance, in total D(D+1)/2+D parameters.

Bert Kappen, Tom Claassen course SML 78

1.2.4: p.26-28

The likelihood for the 1-d Gaussian

Consider 1-d data Data = x = {x1, . . . , xN}. The likelihood of the data under a Gaussian
model is the probability of the data, assuming each data point is independently drawn
from the Gaussian distribution:

p(x|µ, σ) =

N∏
n=1

N (xn|µ, σ2) =

(
1√
2πσ

)N
exp

(
− 1

2σ2

N∑
n=1

(xn − µ)2

)

x

p(x)

xn

N (xn|µ, σ2)

Bert Kappen, Tom Claassen course SML 79

1.2.4: p.26-28

Maximum likelihood

Consider the log of the likelihood:

ln p(x|µ, σ) = ln

((
1√
2πσ

)N
exp

(
− 1

2σ2

N∑
n=1

(xn − µ)2

))

= − 1

2σ2

N∑
n=1

(xn − µ)2 − N
2

lnσ2 − N
2

ln 2π

The values of µ and σ that maximize the likelihood are given by

µML =
1

N

N∑
n=1

xn σ2
ML =

1

N

N∑
n=1

(xn − µML)2

Bert Kappen, Tom Claassen course SML 80

1.2.4: p.26-28

Bias in the ML estimates

Note that µML, σ
2
ML are functions of the data. We can take their expectation value,

assuming that xn is from a N (x|µ, σ).

〈µML〉 =
1

N

N∑
n=1

〈xn〉 = µ
〈
σ2
ML

〉
=

1

N

N∑
n=1

〈
(xn − µML)2

〉
= . . . =

N − 1

N
σ2

(a)

(b)

(c)

The variance is estimated too low. This is called a biased estimator. Bias disappears
when N →∞. In complex models with many parameters, the bias is more severe.

(Bayesian approach gives correct expected values)

Bert Kappen, Tom Claassen course SML 81

1.2.5: p.28-29

Curve fitting re-visited

Now from a probabilistic perspective.

Target t is Gaussian distributed around mean y(x,w) =
∑M
j=0wjx

j,

p(t|x,w, β) = N (t|y(x,w), β−1)

β = 1/σ2 is the precision.

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)

Bert Kappen, Tom Claassen course SML 82

1.2.5: p.28-29

Curve fitting re-visited: ML

Training data: inputs x = (x1, . . . , xn), targets t = (t1, . . . , tn). (Assume β is known.)

Likelihood function,

p(t|x,w) =

N∏
n=1

N (tn|y(xn,w), β−1)

Log-likelihood

ln p(t|x,w) = −β
2

N∑
n=1

(y(xn,w)− tn)2 + const

With wML one can make predictions for a new input values x. The predictive distribution
over the output t is:

p(t|x,wML) = N (t|y(x,wML), β−1)

Bert Kappen, Tom Claassen course SML 83

1.2.5: p.30

Curve fitting re-visited MAP

More Bayesian approach.
Prior:

p(w|α) = N (w|α−1I) =
(α

2π

)(M+1)/2

exp
(
−α

2
wTw

)
M is the dimension of w. Variables such as α, controling the distribution of parameters,
are called ‘hyperparameters’.

Posterior using Bayes rule:

p(w|t, x, α, β) ∝ p(w|α)

N∏
n=1

N (tn|y(xn,w), β−1)

− ln p(w|x, t, α, β) =
β

2

N∑
n=1

(y(xn,w)− tn)2 +
α

2
wTw + const

Maximizing the posterior wrt w yields wMAP . Similar as Eq. 1.4. with λ = α/β

Bert Kappen, Tom Claassen course SML 84

1.2.5: p.30

Bayesian curve fitting

Given the training data x, t we are not so much interested in w, but rather in the
prediction of t for a new x: p(t|x, x, t). This is given by

p(t|x, x, t) =

∫
p(t|x,w)p(w|x, t)dw

It is the average prediction of an ensemble of models p(t|x,w) parametrized by w and
averaged wrt to the posterior distribution p(w|x, t).

All quantities depend on α and β. (How?)

Bert Kappen, Tom Claassen course SML 85

1.2.6

Bayesian curve fitting

Generalized linear model with ‘basis functions’ e.g., φi(x) = xi,

y(x,w) =
∑
i

φi(x)wi = φ(x)Tw

So: assuming Gaussian noise, prediction given w is

p(t|x,w) = N (t|y(x,w), β−1) = N (t|φ(x)Tw, β−1)

Bert Kappen, Tom Claassen course SML 86

1.2.6

Result Bayesian curve fitting

Predictive distribution

p(t|x, x, t) = N (t|m(x), s2(x))

m(x) = βφ(x)TS

N∑
n=1

φ(xn)tn = φ(x)TwMAP

s2(x) = β−1 + φ(x)TSφ(x)

S−1 = αI + β

N∑
n=1

φ(xn)φ(xn)T

Note, s2 depend on x. First term as in ML estimate describes noise in target for fixed w.
Second term describes noise due to uncertainty in w.

Bert Kappen, Tom Claassen course SML 87

1.2.6

Example

x

t

0 1

−1

0

1

Polynomial curve fitting with M = 9, α = 5× 10−3, β = 11.1. Red: m(x)± s(x). Note√
β−1 = 0.3

Bert Kappen, Tom Claassen course SML 88

1.3

Model selection

Q: If we have different models to describe the data, which one should we choose?

Bert Kappen, Tom Claassen course SML 89

1.3

Model selection/Cross validation

Q: If we have different models to describe the data, which one should we choose?

A1: If data is plenty, use separate validation set to select model with best generalization
performance, and a third independent test set for final evaluation.

A2: Small validation set: use S-fold cross validation.

run 1

run 2

run 3

run 4

A3: Information criteria: penalty for complex models
• Akaike IC (AIC): ln p(D|wML)−M
• Bayesian IC (BIC): ln p(D|wMAP)− 1

2M lnN (Bayesian + crude approximation)
• Full Bayesian → penalties arises automatically

Bert Kappen, Tom Claassen course SML 90

1.4: pp. 34–35

High-dimensional data/Binning

Sofar, we considered x one-dimensional. How does pattern recognition work higher
dimensions?

x6

x7

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

x6

x7

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

Two components of 12-dimensional data that describe gamma ray measurements of a mixture of oil, water

and gas. The mixture can be in three states: homogenous (red), annular (green) and laminar (blue).

Classification of the ’x’ can be done by making a putting a grid on the space and assigning
the class that is most numerous in the particular box.

Bert Kappen, Tom Claassen course SML 91

1.4: p. 35

High-dimensional data/Binning

Q: What is the disadvantage of this approach?

Bert Kappen, Tom Claassen course SML 92

1.4: p. 35

Curse of dimensionality/Binning

Q: What is the disadvantage of this approach?
A: This approach scales exponentially with dimensions.

x1

D = 1
x1

x2

D = 2

x1

x2

x3

D = 3

In D dimensions: grid with length n consists of nD hypercubes.

Bert Kappen, Tom Claassen course SML 93

1.4: p. 36

Curse of dimensionality/Polynomials

The polynomial function considered previously becomes in D dimensions:

y(x,w) = w0 +

D∑
i=1

wixi +

D∑
i=1

D∑
j=1

wijxixj +

D∑
i=1

D∑
j=1

D∑
k=1

wijkxixjxk

(here up to order M = 3).

The number of coefficients scales as . . . ?

Bert Kappen, Tom Claassen course SML 94

1.4: p. 36

Curse of dimensionality/Polynomials

The polynomial function considered previously becomes in D dimensions:

y(x,w) = w0 +

D∑
i=1

wixi +

D∑
i=1

D∑
j=1

wijxixj +

D∑
i=1

D∑
j=1

D∑
k=1

wijkxixjxk

(here up to order M = 3).

The number of coefficients scales as DM (unpractically large).

Bert Kappen, Tom Claassen course SML 95

1.4: p. 37

Curse of dimensionality/Spheres

Q: In a 10-dimensional hypersphere with radius R = 1: what is the volume fraction lying
in the outer “shell” between r = 0.5 and r = 1?

Bert Kappen, Tom Claassen course SML 96

1.4: p. 37

Curse of dimensionality/Spheres

Q: In a 10-dimensional hypersphere with radius R = 1: what is the volume fraction lying
in the outer “shell” between r = 0.5 and r = 1?
A: More than 0.999!

So in high dimensions, almost all data points are at more or less the same distance!

ε

vo
lu

m
e

fr
ac

tio
n

D = 1

D = 2

D = 5

D = 20

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

VD(r) = KDr
D VD(1)− VD(1− ε)

VD(1)
= 1− (1− ε)D

Spheres in high dimension have most of their volume on the boundary.

Bert Kappen, Tom Claassen course SML 97

1.4: p. 37

Curse of dimensionality/Gaussians

D = 1

D = 2

D = 20

r

p(
r)

0 2 4
0

1

2

In high dimensions, the distribution of the radius of a Gaussian with variance σ is
concentrated around a thin shell r ≈ σ

√
D.

Intuition developed in low dimensional space may be wrong in high dimensions!

Bert Kappen, Tom Claassen course SML 98

1.4: p. 38

Curse of dimensionality

Is machine learning even possible in high dimensions?

• Data often in low dimensional subspace: only a few dimensions are relevant.

– Object located in 3-D→ images of objects are N -D→ there should be 3-D manifold
(curved subspace)

• Smoothness, local interpolation (note: this is also needed in low dimensions).

Bert Kappen, Tom Claassen course SML 99

1.5

Decision theory

Inference: given pairs (x, t), learn p(x, t) and estimate p(x, t) for new value of x (and
possibly all t).

Decision: for new value of x estimate ’best’ t.

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

Bert Kappen, Tom Claassen course SML 100

1.5

Decision theory

Inference: given pairs (x, t), learn p(x, t) and estimate p(x, t) for new value of x (and
possibly all t).

Decision: for new value of x estimate ’best’ t.

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

Bayes’ theorem:

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)

p(Ck) is the prior probability of class Ck. p(Ck|x) is the posterior probability of class Ck
after seeing the image x.

Q: So, how to use this model to decide on the best action?

Bert Kappen, Tom Claassen course SML 101

1.5.1

Decision theory

A classifier is specified by defining regions Rk, such that all x ∈ Rk are assigned to class
Ck. In the case of two classes, the probability that this classifier gives the correct answer
is

p(correct) = p(x ∈ R1, C1) + p(x ∈ R2, C2) =

∫
R1

p(x, C1)dx+

∫
R2

p(x, C2)dx

R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x

p(correct) is maximized when the regions Rk are chosen such that

k = argmaxkp(x, Ck) = argmaxkp(Ck|x)

Bert Kappen, Tom Claassen course SML 102

1.5.1

Decision theory/Example

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

Q: Suppose p(C1) = 0.01 and p(C1|x) = 0.3 according to our model. Do we decide that
the patient has cancer and therefore start treatment?

Bert Kappen, Tom Claassen course SML 103

1.5.1

Decision theory/Example

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

Q: Suppose p(C1) = 0.01 and p(C1|x) = 0.3 according to our model. Do we decide that
the patient has cancer and therefore start treatment?

A: If we want to maximize the chance of making the correct decision, we have to pick k
such that p(Ck|x) is maximal.
Because p(C1|x) = 0.3 and p(C2|x) = 0.7, the answer is no: we decide that the patient
does not have cancer.

Bert Kappen, Tom Claassen course SML 104

1.5.2

Decision theory/Expected loss

Typically, not all classification errors are equally bad: classifying a healthy patient as sick,
is not as bad as classifying a sick patient as healthy.

L =

(
0 1000
1 0

)
Loss function. Rows are true classes (cancer, normal), columns are assigned classes (cancer, normal).

The probability to assign an x to class j while to belongs to class k is p(x ∈ Rj, Ck).
Thus the total expected loss is

〈L〉 =
∑
k

∑
j

Lkjp(x ∈ Rj, Ck) =
∑
j

∫
Rj

p(x)
∑
k

Lkjp(Ck|x)dx

〈L〉 is minimized if each x is assigned to class j such that
∑
k Lkjp(Ck|x) is minimal.

Bert Kappen, Tom Claassen course SML 105

1.5.2

Decision theory/Example

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

C1 C2

C1 0 1000
C2 1 0

Loss function. Rows are true classes (cancer, normal), columns are assigned classes (cancer, normal).

Q: Suppose p(C1) = 0.01 and p(C1|x) = 0.3 according to our model. Do we decide that
the patient has cancer and therefore start treatment?

Bert Kappen, Tom Claassen course SML 106

1.5.2

Decision theory/Example

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

C1 C2

C1 0 1000
C2 1 0

Loss function. Rows are true classes (cancer, normal), columns are assigned classes (cancer, normal).

Q: Suppose p(C1) = 0.01 and p(C1|x) = 0.3 according to our model. Do we decide that
the patient has cancer and therefore start treatment?

A: If we want to minimize the expected loss, we have to pick j such that
∑
k Lkjp(Ck|x)

is minimal.
For j = 1, this yields 0× 0.3 + 1× 0.7 = 0.7,
for j = 2, this yields 1000× 0.3 + 0× 0.7 = 300.
Therefore, we now decide j = 1 that the patient has cancer (better safe than sorry).

Bert Kappen, Tom Claassen course SML 107

1.5.3

Decision theory/Reject option

It may be that maxj p(Cj|x) is small, indicating that it is unclear to which class x
belongs.

In that case, a different decision can be taken: the “reject” or “don’t know” option.

x

p(C1|x) p(C2|x)

0.0

1.0
θ

reject region

This can be done by introducing a threshold θ ∈ [0, 1] and only classify those x for which
maxj p(Cj|x) > θ (and answer “don’t know” otherwise).

Bert Kappen, Tom Claassen course SML 108

1.5.4

Decision theory/Discriminant functions

Instead of first learning a probability model and then making a decision, one can also
directly learn a decision rule (a classifier) without the intermediate step of a probability
model.

A set of approaches:

• Learn a model for the class conditional probabilities p(x|Ck). Use Bayes’ rule to
compute p(Ck|x) and construct a classifier using decision theory. This approach is the
most complex, but has the advantage of yielding a model of p(x) that can be used to
reject unlikely inputs x.

• Learn the inference problem p(Ck|x) directly and construct a classifier using decision
theory. This approach is simpler, since no input model p(x) is learned (see figure).

• Learn f(x), called a discriminant function, that maps x directly onto a class label
0, 1, 2, Even simpler, only decision boundary is learned. But information on the
expected classification error is lost.

Bert Kappen, Tom Claassen course SML 109

1.5.4

Decision theory/Discriminant functions

p(x|C1)

p(x|C2)

x

cl
as

s
de

ns
iti

es

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

x

p(C1|x) p(C2|x)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Example that shows that detailed structure in the joint model need not affect class conditional probabilities.

Learning only the decision boundary is the simplest approach.

Approaches that model the distribution of both inputs and outputs are called generative
models, approaches that only model the conditional distribution of the output given the
input are called discriminative models.

Bert Kappen, Tom Claassen course SML 110

1.5.4

Decision theory/Discriminant functions

Advantages of learning a class conditional probability instead of discriminant function:

Minimizing risk When minimizing expected loss, the loss matrix may change over time
whereas the class probabilities may not (for instance, in a financial application).

Reject option One can reject uncertain class assignments

Unbalanced data One can compensate for unbalanced data sets. For instance, in the
cancer example, there may be 1000 times more healthy patients than cancer patients.
Very good classification (99.9 % correct) is obtained by classifying everyone as healthy.
Using the posterior probability one can compute p(Ck = cancer|x). Although this
probability may be low, it may be significantly higher than p(Ck = cancer), indicating
a risk of cancer.

Bert Kappen, Tom Claassen course SML 111

1.5.4

Decision theory/Discriminant functions

Combining models Given models for p(Ck|x) and p(Ck|y) one has a principled approach
to classify on both x and y. Naive Bayes assumption:

p(x,y|Ck) = p(x|Ck)p(y|Ck)

(given the disease state of the patient the blood and X-ray test results are independent).
Then

p(Ck|x,y) ∝ p(x,y|Ck)p(Ck) ∝ p(x|Ck)p(y|Ck)p(Ck) ∝
p(Ck|x)p(Ck|y)

p(Ck)

Bert Kappen, Tom Claassen course SML 112

1.5.5

Loss functions for regression

Decision theory generalizes straightforwardly to continuous variables: the loss matrix Ljk
becomes a loss function L(t, y(x)).

Examples:

y − t

|y
−
t|q

q = 0.3

−2 −1 0 1 2
0

1

2

y − t

|y
−
t|q

q = 1

−2 −1 0 1 2
0

1

2

y − t

|y
−
t|q

q = 2

−2 −1 0 1 2
0

1

2

y − t

|y
−
t|q

q = 10

−2 −1 0 1 2
0

1

2

Minkowski loss function Lq = |y − t|q for various values of q.

Bert Kappen, Tom Claassen course SML 113

1.5.5

Loss functions for regression/Quadratic loss

The average/expected loss is:

〈L〉 =

∫∫
L
(
t, y(x)

)
p(x, t) dx dt

For the quadratic loss function L2

(
t, y(x)

)
=
(
t−y(x)

)2
one can derive that the expected

loss is minimized by taking
y(x) = Et[t|x]

i.e., by the mean of the conditional distribution p(t|x). (The minimum of 〈L1〉 is obtained
by the conditional median.)

t

xx0

y(x0)

y(x)

p(t|x0)

Bert Kappen, Tom Claassen course SML 114

1.6: pp. 48–49

Information theory

Information is a measure of the ’degree of surprise’ that a certain value gives us.
Unlikely events are informative, likely events less so. Certain events give us no additional
information. Thus, information decreases with the probability of the event.

Let us denote h(x) the information of x. Then if x, y are two independent events:
h(x, y) = h(x) + h(y). Since p(x, y) = p(x)p(y) we see that

h(x) = − log2 p(x)

is a good candidate to quantify the information in x.

If x is observed repeatedly then the expected information is

H[x] := 〈− log2 p〉 = −
∑
x

p(x) log2 p(x)

is the entropy of the distribution p.

Bert Kappen, Tom Claassen course SML 115

1.6: p. 50

Information theory

Example 1: x can have 8 values with equal probability, then H(x) = −8 × 1
8 log 1

8 = 3
bits.

Example 2: x can have 8 values with probabilities (1
2,

1
4,

1
8,

1
16,

1
64,

1
64,

1
64,

1
64). Then

H(x) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

16
log

1

16
− 4

64
log

1

64
= 2bits

which is smaller than for the uniform distribution.

Noiseless coding theorem: Entropy is a lower bound on the average number of bits needed
to transmit a random variable (Shannon 1948).

Q: How can we transmit x in example 2 most efficiently?

Bert Kappen, Tom Claassen course SML 116

1.6: p. 50

Information theory

Example 1: x can have 8 values with equal probability, then H(x) = −8 × 1
8 log 1

8 = 3
bits.

Example 2: x can have 8 values with probabilities (1
2,

1
4,

1
8,

1
16,

1
64,

1
64,

1
64,

1
64). Then

H(x) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

16
log

1

16
− 4

64
log

1

64
= 2bits

which is smaller than for the uniform distribution.

Noiseless coding theorem: Entropy is a lower bound on the average number of bits needed
to transmit a random variable (Shannon 1948).

A: We can encode x as a 3 bit binary number, in which case the expected code length is
3 bits. We can do better, by coding likely x smaller and unlikely x larger, for instance 0,
10, 110, 1110, 111100, 111101, 111110, 111111. Then

Av.codelength =
1

2
× 1 +

1

4
× 2 +

1

8
× 3 +

1

16
× 4 +

4

64
× 6 = 2bits

Bert Kappen, Tom Claassen course SML 117

1.6: p. 52

Information theory

pr
ob

ab
ili

tie
s

H = 1.77

0

0.25

0.5

pr
ob

ab
ili

tie
s

H = 3.09

0

0.25

0.5

When x has values xi, i = 1, . . . ,M , then

H[x] = −
∑
i

p(xi) log p(xi)

When p is sharply peaked (p(x1) = 1, p(x2) = . . . = p(xM) = 0) then the entropy is

H[x] = −1 log 1− (M − 1)0 log 0 = 0

When p is flat (p(xi) = 1/M) the entropy is maximal

H[x] = −M 1

M
log

1

M
= logM

Bert Kappen, Tom Claassen course SML 118

1.6: p. 52

Bert Kappen, Tom Claassen course SML 119

1.6: pp. 53–54

Information theory/Maximum entropy

For p(x) a distribution density over a continuous value x we define the (differential)
entropy as

H[x] = −
∫
p(x) log p(x)dx

Suppose that all we know about p is its mean µ and its variance σ2.

Q: What is the distribution p with mean µ and variance σ2 that is as uninformative as
possible, i.e., which maximizes the entropy?

Bert Kappen, Tom Claassen course SML 120

1.6: pp. 53–54

Information theory/Maximum entropy

For p(x) a distribution density over a continuous value x we define the (differential)
entropy as

H[x] = −
∫
p(x) log p(x)dx

Suppose that all we know about p is its mean µ and its variance σ2.

Q: What is the distribution p with mean µ and variance σ2 that is as uninformative as
possible, i.e., which maximizes the entropy?

A: The Gaussian distribution N (x|µ, σ2) (exercise 1.34 and 1.35).

Bert Kappen, Tom Claassen course SML 121

1.6.1

Information theory/KL-divergence

Relative entropy or Kullback-Leibler divergence or KL-divergence:

KL(p||q) = −
∑
i

pi ln qi −
(
−
∑
i

pi ln pi
)

= −
∑
i

pi ln
{qi
pi

}
• Additional amount of information required to specify i when q is used for coding rather

than the true distribution p.

• Divergence between ‘true’ distribution p and ‘approximate’ distribution q.

• KL(p||q) 6= KL(q||p)

• KL(p||q) ≥ 0, KL(p||q) = 0⇔ p = q (use convex functions)

• with continuous variables: KL(p||q) = −
∫
p(x) ln

{q(x)
p(x)

}
dx

Bert Kappen, Tom Claassen course SML 122

1.6.1: p. 56

Convex functions

xa bxλ

chord

xλ

f(x)

Convex function: every chord lies on or above the function.

f is convex ⇐⇒ f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b) ∀λ ∈ [0, 1],∀a, b

• Examples: f(x) = ax+ b, f(x) = x2, f(x) = − ln(x) and f(x) = x ln(x) (exercise).

• Convex: ∪ shaped. Concave: ∩ shaped.

• Convex ⇔ second derivative non-negative.

Bert Kappen, Tom Claassen course SML 123

1.6.1: p. 56

Convex functions/Jensen’s inequality

Convex functions satisfy Jensen’s inequality

f

(
M∑
i=1

λixi

)
≤

M∑
i=1

λif(xi)

where λi ≥ 0,
∑
i λi = 1, for any set points xi.

In other words:
f(〈x〉) ≤ 〈f(x)〉

Example: to show that KL(p||q), we apply Jensen’s inequality with λi = pi, making use
of the fact that − ln(x) is convex:

KL(p||q) = −
∑
i

pi ln

(
qi
pi

)
≥ − ln

(∑
i

pi
qi
pi

)
= − ln

(∑
i

qi

)
= 0

Bert Kappen, Tom Claassen course SML 124

1.6.1: p. 57

Information theory and density estimation

Relation with maximum likelihood:

Empirical distribution :

p(x) =
1

N

N∑
n=1

δ(x− xn)

Approximating distribution (model) : q(x|θ)

KL(p||q) = −
∫
p(x) ln q(x|θ)dx−

∫
p(x) ln p(x)dx

= − 1

N

N∑
n=1

ln q(xn|θ) + const.

Thus, minimizing the KL-divergence between the empirical distribution p(x) and the
model distribution q(x|θ) is equivalent to maximum likelihood (i.e., maximizing the
likelihood of i.i.d. data with respect to the the model parameters θ).

Bert Kappen, Tom Claassen course SML 125

1.6.1: pp. 57–58

Information theory/mutual information

Mutual information between x and y: KL divergence between joint distribution p(x,y)
and product of marginals p(x)p(y),

I[x,y] ≡ KL(p(x,y)||p(x)p(y))

= −
∫ ∫

p(x,y) ln
(p(x)p(y)

p(x,y)

)
dxdy

• I(x,y) ≥ 0, equality iff x and y independent

Relation with conditional entropy

I[x,y] = H[x]−H[x|y] = H[y]−H[y|x]

Bert Kappen, Tom Claassen course SML 126

Appendix E

Lagrange multipliers

Minimize f(x) under constraint: g(x) = 0.

Fancy formulation: define Lagrangian,

L(x, λ) = f(x) + λg(x)

λ is called a Lagrange multiplier.

The constraint minimization of f w.r.t x equivalent to unconstraint minimization of
maxλL(x, λ) w.r.t x. The maximization w.r.t to λ yields the following function of x

max
λ

L(x, λ) = f(x) if g(x) = 0

max
λ

L(x, λ) =∞ otherwise

Bert Kappen, Tom Claassen course SML 127

Appendix E

Lagrange multipliers

Under certain conditions, in particular f(x) convex (i.e. the matrix of second derivatives
positive definite) and g(x) linear,

min
x

max
λ

L(x, λ) = max
λ

min
x
L(x, λ)

Procedure:

1. Minimize L(x, λ) w.r.t x, e.g. by taking the gradient and set to zero. This yields a
(parametrized) solution x(λ).

2. Maximize L(x(λ), λ) w.r.t. λ. The solution λ∗ is precisely such that g(x(λ∗)) = 0.

3. The solution of the constraint optimization problem is

x∗ = x(λ∗)

Bert Kappen, Tom Claassen course SML 128

Appendix E

Example

g(x1, x2) = 0

x1

x2

(x?
1, x

?
2)

f(x1, x2) = 1− x2
1 − x2

2 and constraint g(x1, x2) = x1 + x2 − 1 = 0

Lagrangian:
L(x1, x2, λ) = 1− x2

1 − x2
2 + λ(x1 + x2 − 1)

Minimize L w.r.t. xi gives xi(λ) = 1
2λ.

Plug into constraint: x1(λ) + x2(λ)− 1 = λ− 1 = 0.

So λ = 1 and x∗i = 1
2

Bert Kappen, Tom Claassen course SML 129

Appendix E

Some remarks

• Works as well for maximization (of concave functions) under constraints. The
procedure is essentially the same.

• The sign in front of the λ can be chosen as you want:

L(x, λ) = f(x) + λg(x) or L(x, λ) = f(x)− λg(x)

work equally well.

• More constraints? For each constraint gi(x) = 0 a Lagrange multiplier λi, so

L(x, λ) = f(x) +
∑
i

λigi(x)

• Similar methods apply for inequality constraints g(x) ≥ 0 (restricts λ).

Bert Kappen, Tom Claassen course SML 130

2

Chapter 2

Probability distributions

• Density estimation

• Parametric distributions

• Maximum likelihood, Bayesian inference, conjugate priors

• Bernoulli (binary), Beta, Gaussian, ..., exponential family

• Nonparametric distribution

Bert Kappen, Tom Claassen course SML 131

2.1

Binary variables / Bernoulli distribution

x ∈ {0, 1}

p(x = 1|µ) = µ,

p(x = 0|µ) = 1− µ

Bernoulli distribution:
Bern(x|µ) = µx(1− µ)1−x

Mean and variance:

IE[x] = µ

var[x] = µ(1− µ)

Bert Kappen, Tom Claassen course SML 132

2.1

Binary variables / Bernoulli distribution

Data set (i.i.d) D = {x1, . . . , xn}, with xi ∈ {0, 1}.

Likelihood:
p(D|µ) =

∏
n

p(xn|µ) =
∏
n

µxn(1− µ)1−xn

Log likelihood

ln p(D|µ) =
∑
n

ln p(xn|µ) =
∑
n

xn lnµ+ (1− xn) ln(1− µ)

= m lnµ+ (N −m) ln(1− µ)

where m =
∑
n xn, the total number of xn = 1.

Maximization w.r.t µ gives maximum likelihood solution:

µML =
m

N

Bert Kappen, Tom Claassen course SML 133

2.1.1

The beta distribution

Distribution for parameters µ. Conjugate prior for Bayesian treatment for problem.

Beta(µ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µa−1(1− µ)b−1, 0 ≤ µ ≤ 1

µ

a = 0.1

b = 0.1

0 0.5 1
0

1

2

3

µ

a = 1

b = 1

0 0.5 1
0

1

2

3

µ

a = 2

b = 3

0 0.5 1
0

1

2

3

µ

a = 8

b = 4

0 0.5 1
0

1

2

3

Bert Kappen, Tom Claassen course SML 134

2.1.1

The beta distribution

Beta(µ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µa−1(1− µ)b−1

∝ µa−1(1− µ)b−1 0 ≤ µ ≤ 1

Normalisation ∫ 1

0

Beta(µ|a, b) = 1

Mean and variance

IE[µ] =
a

a+ b

var[µ] =
ab

(a+ b)2(a+ b+ 1)

Bert Kappen, Tom Claassen course SML 135

2.1.1

Bayesian inference with binary variables

Prior:
p(µ) = Beta(µ|a, b) ∝ µa−1(1− µ)b−1

Likelihood – Data set (i.i.d) D = {x1, . . . , xN}, with xi ∈ {0, 1}.
Assume m ones and l zeros, (m+ l = N)

p(D|µ) =
∏
n

p(xn|µ) =
∏
n

µxn(1− µ)1−xn

= µm(1− µ)l

Posterior

p(µ|D) ∝ p(D|µ)p(µ)

= µm(1− µ)l × µa−1(1− µ)b−1

= µm+a−1(1− µ)l+b−1 ∝ Beta(µ|a+m, b+ l)

Bert Kappen, Tom Claassen course SML 136

2.1.1

Bayesian inference with binary variables

Interpretation: Hyperparameters a and b effective number of ones and zeros.

Data: increments of these parameters.

Conjugacy:
(1) prior has the same form as likelihood function.
(2) this form is preserved in the product (the posterior)

µ

prior

0 0.5 1
0

1

2

µ

likelihood function

0 0.5 1
0

1

2

µ

posterior

0 0.5 1
0

1

2

Posterior interpreted as updated prior: sequential learning

Bert Kappen, Tom Claassen course SML 137

2.1.1

Bayesian inference with binary variables

Prediction of next data point given data D:

p(x = 1|D) =

∫ 1

0

p(x = 1|µ)p(µ|D)dµ =

∫ 1

0

µp(µ|D)dµ = IE[µ|D]

with posterior is Beta(µ|a+m, b+ l), and IE[µ|a, b] = a/(a+ b) we find

p(x = 1|D) =
m+ a

m+ a+ l + b

Bert Kappen, Tom Claassen course SML 138

2.2

Multinomial variables

Alternative representation for Bernoulli distribution: x ∈ {v1, v2}, parameter vector:
µ = (µ1, µ2), with µ1 + µ2 = 1.

p(x = vk|µ) = µk

In fancy notation:

p(x|µ) =
∏
k

µ
δxvk
k

Generalizes to multinomial variables: x ∈ {v1, . . . , vK},

µ = (µ1, . . . , µK)
∑
k

µk = 1

Bert Kappen, Tom Claassen course SML 139

2.2

Multinomial variables: Maximum likelihood

Likelihood:

p(D|µ) =
∏
n

p(xn|µ) =
∏
n

∏
k

µ
δxnvk
k

=
∏
k

µ
∑
n δxnvk

k

=
∏
k

µ
mk
k

with mk =
∑
n δxnvk, the total number of datapoints with value vk. Log likelihood

ln p(D|µ) =
∑
k

mk lnµk

Maximize with constraints using Lagrange multipliers.

Bert Kappen, Tom Claassen course SML 140

2.2.1

Dirichlet distribution

Dir(µ|α) ∝
∏
k

µ
αk
k

Probability distribution on the simplex:

SK = {(µ1, . . . , µK)|0 ≤ µk ≤ 1,

K∑
k=1

µk = 1}

µ1

µ2

µ3

αk = 0.1, 1, 10

Bert Kappen, Tom Claassen course SML 141

2.2.1

Dirichlet distribution

Dir(µ|α) ∝
∏
k

µ
αk
k

Probability distribution on the simplex:

SK = {(µ1, . . . , µK)|0 ≤ µk ≤ 1,

K∑
k=1

µk = 1}

Bayesian inference: Prior Dir(µ|α) + data counts m

→ Posterior Dir(µ|α+m)

Parameters α: ‘pseudocounts’.

Bert Kappen, Tom Claassen course SML 142

2.3

Gaussian

Gaussian distribution

N (x|µ, σ2) =
1√

2πσ2
exp

{
− (x− µ)2

2σ2

}
Specified by µ and σ2

In d dimensions

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

Bert Kappen, Tom Claassen course SML 143

2.3

Central limit theorem

Sum of large set of random variables is approximately Gaussian distributed.

Let Xi set of random variables (not Gaussian!) with mean µ and variance σ2.

The sum of first n variables is Sn = X1 + ...+Xn. Now if n→∞

Law of large numbers: The mean of the sum Yn =
Sn
n

converges to µ

Central limit theorem: Distribution of

Zn =
Sn − nµ
σ
√
n

converges to Gaussian N (Zn|0, 1)

N = 1

0 0.5 1
0

1

2

3
N = 2

0 0.5 1
0

1

2

3
N = 10

0 0.5 1
0

1

2

3

Bert Kappen, Tom Claassen course SML 144

Appendix C

Understanding the Gaussian through the covariance matrix Σ

Dependence on x only through the quadratic form

∆2 = (x− µ)TΣ−1(x− µ)

Properties of symmetric matrices

Aij = Aji, AT = A

Inverse of a matrix A is a matrix A−1 such that A−1A = AA−1 = I, where I is the
identity matrix.

The inverse of a symmetric matrix A−1 is also symmetric:

I = IT = (A−1A)T = AT (A−1)T = A(A−1)T

Thus, (A−1)T = A−1. (So precision matrix and covariance matrix are both symmetric.)

Bert Kappen, Tom Claassen course SML 145

Appendix C

Eigenvalues

A symmetric real-valued d× d matrix has d real eigenvalues λk and d eigenvectors uk:

Auk = λkuk, k = 1, . . . , d

or
(A− λkI)uk = 0

Solution of this equation for non-zero uk requires λk to satisfy the characteristic equation:

det(A− λI) = 0

This is a polynomial equation in λ of degree d and has thus d solutions 4 λ1, . . . , λd.

4In general, the solutions are complex. It can be shown that with symmetric matrices, the solutions are in fact real.

Bert Kappen, Tom Claassen course SML 146

Appendix C

Eigenvectors

Consider two different eigenvectors k and j. Multiply the k-th eigenvalue equation by uj
from the left:

uTj Auk = λku
T
j uk

Multiply the j-th eigenvalue equation by uk from the left:

uTkAuj = λju
T
kuj = λju

T
j uk

Subtract
(λk − λj)uTj uk = 0

Thus, eigenvectors with different eigenvalues are orthogonal

Bert Kappen, Tom Claassen course SML 147

Appendix C

If λk = λj then any linear combination is also an eigenvector:

A(αuk + βuj) = λk(αuk + βuj)

This can be used to choose eigenvectors with identical eigenvalues orthogonal.

If uk is an eigenvector of A, then αuk is also an eigenvector of A. Thus, we can make
all eigenvectors the same length one: uTkuk = 1.

In summary,
uTj uk = δjk

with δjk the Kronecker delta, is equal to 1 if j=k and zero otherwise.

The eigenvectors span the d-dimensional space as an orthonormal basis.

Bert Kappen, Tom Claassen course SML 148

Appendix C

Orthogonal matrices

Write U = (u1, . . . ,ud).

U is an orthogonal matrix 5 , i.e.

UTU = I

For orthogonal matrices,

UT = UTUU−1 = U−1

So UUT = I, i.e. the transposed is orthogonal as well (note that U is in general not
symmetric).

Furthermore,

det(UUT) = 1⇒ det(U) det(UT) = 1

⇒ det(U) = ±1

5

Uij = (uj)i, (U
T
U)ij =

∑
k

(U
T

)ikUkj =
∑
k

UkiUkj =
∑
k

(ui)k(uj)k = u
T
i · uj = δij

Bert Kappen, Tom Claassen course SML 149

Appendix C

Orthogonal matrices implement rigid rotations, i.e. length and angle preserving.

x̄1 = Ux1 x̄2 = Ux2

then
x̄T1 x̄2 = xT1 U

TUx2 = xT1 x2

Bert Kappen, Tom Claassen course SML 150

Appendix C

Diagonalization

The eigenvector equation can be written as

AU = A(u1, . . . ,ud) = (Au1, . . . , Aud) = (λ1u1, . . . , λdud)

= (u1, . . . ,ud)

 λ1 . . . 0
... ...
0 . . . λd


= UΛ

By right-multiplying by UT we obtain the important result

A = UΛUT

which can also be written as ’expansion in eigenvectors’

A =

d∑
k=1

λkuku
T
k

Bert Kappen, Tom Claassen course SML 151

Appendix C

Applications

A = UΛUT ⇒ A2 = UΛUTUΛUT = UΛ2UT

An = UΛnUT A−n = UΛ−nUT

Determinant is product of eigenvalues:

det(A) = det(UΛUT) = det(U) det(Λ) det(UT) =
∏
k

λk

Bert Kappen, Tom Claassen course SML 152

Appendix C

Basis transformation

We can represent an arbitrary vector x in d dimensions on a new orthonormal basis U as

x = UUTx =

d∑
k=1

uk(u
T
kx)

6 The numbers x̄k = (uTkx) are the components of x on the basis uk, k = 1, . . . , d, i.e.
on the new basis, the vector has components (UTx). If the matrix A is the representation
of a linear transformation on the old basis, the matrix with components

A′ = UTAU

is the representation on the new basis.

6

xi = (UU
T
x)i =

∑
kj

Uik(U
T

)kjxj =
∑
kj

(uk)i(uk)jxj =
∑
k

(uk)i(u
T
k · x) =

∑
k

uk(u
T
k · x)


i

Bert Kappen, Tom Claassen course SML 153

Appendix C

For instance if y = Ax, x̄ = UTx, ȳ = UTy, then

A′x̄ = UTAUx̄ = UTAUUTx = UTAx = UTy = ȳ

As a result, a matrix is diagonal on a basis of its eigenvectors:

A′ = UTAU = UTUΛUTU = Λ

Bert Kappen, Tom Claassen course SML 154

2.3

Multivariate Gaussian

In d dimensions

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
µ = 〈x〉 =

∫
xN (x|µ,Σ) dx

Σ =
〈
(x− µ)(x− µ)T

〉
=

∫
(x− µ)T (x− µ)N (x|µ,Σ) dx

We can also write this in component notation:

µi = 〈xi〉 =

∫
xiN (x|µ,Σ) dx

Σij = 〈(xi − µi)(xj − µj)〉 =

∫
(xi − µi)(xj − µj)N (x|µ,Σ) dx

Bert Kappen, Tom Claassen course SML 155

2.3, p. 80

Multivariate Gaussian

Spectral (eigenvalue) representation of Σ:

Σ = UΛUT =
∑
k

λkuku
T
k

Σ−1 = UΛ−1UT =
∑
k

λ−1
k uku

T
k

(x− µ)TΣ−1(x− µ) = (x− µ)TUΛ−1UT (x− µ)

= yTΛ−1y

x1

x2

λ
1/2
1

λ
1/2
2

y1

y2

u1

u2

µ

Bert Kappen, Tom Claassen course SML 156

2.3, p. 81

Multivariate Gaussian

Explain the normalization: use transformation7 y = UT (x− µ) = UTz∫
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
dx

=

∫
exp

(
−1

2
zTΣ−1z

)
dz =

∫ ∣∣∣∣det

(
∂z

∂y

)∣∣∣∣ exp

(
−1

2
yTΛ−1y

)
dy

=

∫
exp

(
− 1

2λ1
y2

1

)
dy1 . . .

∫
exp

(
− 1

2λd
y2
d

)
dyd

=
√

2πλ1 . . .
√

2πλd = (2π)d/2
(∏

i

λi
)1/2

= (2π)d/2 det(Σ)1/2

The multivariate Gaussian becomes a product of independent factors on the basis of
eigenvectors.

7Bishop alternates between defining matrix U as rows of eigenvectors uTi (2.52), and U as columns of eigenvectors ui
(C.37). In the slides we always use the more conventional column representation.

Bert Kappen, Tom Claassen course SML 157

2.3, p. 82

Multivariate Gaussian

Compute the expectation value : use shift-transformation z = x− µ
Take Z as normalisation constant.

Use symmetry f(z) = −f(−z)⇒
∫
f(z)dz = 0

IE[x] =
1

Z

∫
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
xdx

=
1

Z

∫
exp

(
−1

2
zTΣ−1z

)
(z + µ)dz

= µ

Bert Kappen, Tom Claassen course SML 158

2.3, p. 82

Multivariate Gaussian

Second order moment: use transformation y = UT (x− µ) = UTz

First, shift by z = x− µ

IE[xxT] =

∫
N (x|µ,Σ)xxTdx

=

∫
N (z|0,Σ)(z + µ)(z + µ)Tdz

=

∫
N (z|0,Σ)(zzT + zµT + µzT + µµT)dz

=

∫
N (z|0,Σ)zzTdz + µµT

Bert Kappen, Tom Claassen course SML 159

2.3, p. 82

Multivariate Gaussian

Now use transformation y = UTz, and use Σ = UΛUT∫
N (z|0,Σ)zzTdz =

∫
N (y|0,Λ)UyyTUTdy

= U

∫
N (y|0,Λ)yyTdyUT

Component-wise computation shows
∫
N (y|0,Λ)yyTdy = Λ:

i 6= j →
∫
N (y|0,Λ)yiyjdy =

∫
N (yi|0, λi)yidyi

∫
N (yj|0, λj)yjdyj = 0

i = j →
∫
N (y|0,Λ)y2

i dy =

∫
N (yi|0, λi)y2

i dyi = λi

So ∫
N (z|0,Σ)zzTdz = UΛUT = Σ

Bert Kappen, Tom Claassen course SML 160

2.3, p. 82

Multivariate Gaussian

So, second moment is
IE[xxT] = Σ + µµT

Covariance
cov[x] = IE[xxT]− IE[x]IE[x]T = Σ

Bert Kappen, Tom Claassen course SML 161

2.3, p. 84

Multivariate Gaussian

Gaussian covariance has d(d+ 1) parameters, mean has d parameters.

Number of parameters quadratic in d which may be too large for high dimensional
applications.

x1

x2

(a)

x1

x2

(b)

x1

x2

(c)

Common simplifications: Σij = Σiiδij (2d parameters) or Σij = σ2δij (d + 1
parameters).

Bert Kappen, Tom Claassen course SML 162

2.3.2

Marginal and conditional Gaussians

Marginal and conditional of Gaussians are also Gaussian

xa

xb = 0.7

xb

p(xa, xb)

0 0.5 1
0

0.5

1

xa

p(xa)

p(xa|xb = 0.7)

0 0.5 1
0

5

10

1.

p(xa|xb) = N (xa|µa|b,Σa|b)
Σa|b = Σaa − ΣabΣ

−1
bb Σba µa|b = µa + ΣabΣ

−1
bb (xb − µb)

2.

p(xa) = N (xa|µa,Σaa)

Bert Kappen, Tom Claassen course SML 163

2.3.1

Conditional of Gaussian is Gaussian

Exponent in Gaussian N (x|µ,Σ): quadratic form

−1

2
(x− µ)TΣ−1(x− µ) = −1

2
xTΣ−1x+ xTΣ−1µ+ c = −1

2
xTKx+ xTKµ+ c

Precision matrix K = Σ−1.

Write x = (xa,xb). We wish to compute the conditional

p(xa|xb) =
p(xa,xb)

p(xb)
∝ p(xa,xb)

Exponent of conditional: collect all terms with xa, ignore constants, regard xb as
constant, and write in quadratic form as above

−
1

2
x
T
Kx+ x

T
Kµ = −

1

2
x
T
aKaaxa + x

T
aKaaµa − xTaKab(xb − µb)

= −
1

2
x
T
aKaaxa + x

T
aKaa(µa −K−1

aaKab(xb − µb)) = −
1

2
x
T
aΣ
−1
a|bxa + x

T
aΣ
−1
a|bµa|b

= −
1

2
(xa − µa|b)TΣ

−1
a|b(xa − µa|b) Σa|b = K

−1
aa µa|b = µa −K−1

aaKab(xb − µb)

Bert Kappen, Tom Claassen course SML 164

2.3.1

Bert Kappen, Tom Claassen course SML 165

2.3.1

Some matrix identities

We now need to relate K−1
aa to the components Σ.

(
A B
C D

)−1

=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)
with M =

(
A−BD−1C

)−1
.

(
Kaa Kab

Kba Kbb

)
=

(
Σaa Σab
Σba Σbb

)−1

=

(
M −MΣabΣ

−1
bb

−Σ−1
bb ΣbaM Σ−1

bb + Σ−1
bb ΣbaMΣabΣ

−1
bb

)

with M =
(
Σaa − ΣabΣ

−1
bb Σba

)−1
. Thus, Kaa = M and

Σa|b = K−1
aa = Σaa − ΣabΣ

−1
bb Σba

µa|b = µa −K−1
aaKab(xb − µb) = µa +M−1MΣabΣ

−1
bb (xb − µb)

= µa + ΣabΣ
−1
bb (xb − µb)

Bert Kappen, Tom Claassen course SML 166

2.3.3, p. 93

Bayes’ theorem for linear Gaussian model

Given marginal Gaussian on x and linear relation y = Ax + b + ξ:

p(x) = N (x|µ,Λ−1)

p(y|x) = N (y|Ax+ b,L−1)

Then (see next slide):

p(y) = N (y|Aµ+ b,L−1 +AΛ−1AT)

p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ)

Σ = (Λ +ATLA)−1

We will use these relations for Bayesian linear regression in section 3.3.

Bert Kappen, Tom Claassen course SML 167

2.3.3, p. 93

Details computation p(y)

p(x) = N (x|µ,Λ−1) IE[x] = µ cov[x] = Λ−1

p(y|x) = N (y|Ax+ b,L−1)

We write y = Ax+ b+ ε with IE[ε] = 0, cov[ε] = L−1.

x,y is jointly Gaussian (product of Gaussians). y is Gaussian (marginal of Gaussian).

IE[y] = IE[Ax+ b+ ε] = Aµ+ b

cov[y] = cov[Ax+ b+ ε] = cov[Ax] + cov[ε] = cov[Ax] +L−1

cov[Ax] = IE[(Ax−Aµ) (Ax−Aµ)
T

] = AIE[(x− µ) (x− µ)
T

]AT = AΛ−1AT

Thus,

p(y) = N
(
y|Aµ+ b,AΛ−1AT +L−1

)

Bert Kappen, Tom Claassen course SML 168

2.3.3, p. 93

Details computation p(x|y)

Write all relevant terms that occur in exponential of the joint Gaussian p(x,y):

−1

2
(x− µ)TΛ(x− µ)− 1

2
(y −Ax− b)TL(y −Ax− b)

Collect all quadratic and linear terms in x:

−1

2
xT
(
Λ +ATLA

)
x+ xT

(
Λµ+ATL(y − b)

)
Define Σ−1 = Λ +ATLA and m through Σ−1m = Λµ+ATL(y − b), then

−1

2
xTΣ−1x+ xTΣ−1m ∝ −1

2
(x−m)TΣ−1(x−m)

Thus

p(x|y) = N
(
x|Σ

(
Λµ+ATL(y − b)

)
,Σ
)

Bert Kappen, Tom Claassen course SML 169

2.3.6

Bayesian inference for the Gaussian

Aim: inference of unknown parameter µ. Assume σ given.

Likelihood of µ with one data point:

p(x|µ) = N (x|µ, σ) =
1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)

Likelihood of µ with the data set:

p({x1, . . . , xN}|µ) =

N∏
n=1

p(xn|µ) =

(
1√
2πσ

)N
exp

(
− 1

2σ2

∑
n

(xn − µ)2

)

= exp

(
−Nµ

2

2σ2
+
µ

σ2

∑
n

xn + const.

)
= exp

(
− N

2σ2
µ2 +

Nx̄

σ2
µ+ const.

)
= exp

(
− N

2σ2
(µ− x̄)2 + const.

)
with x̄ =

1

N

∑
n

xn

Bert Kappen, Tom Claassen course SML 170

2.3.6, pp. 98-99

Bayesian inference for the Gaussian

Likelihood:

p(Data|µ) = exp

(
− N

2σ2
µ2 +

Nx̄

σ2
µ+ const.

)
Prior:

p(µ) = N (µ|µ0, σ0) =
1√

2πσ0

exp

(
− 1

2σ2
0

(µ− µ0)2

)
= exp

(
− 1

2σ2
0

µ2 +
µ0

σ2
0

µ+ const.

)

µ0, σ0 hyperparameters. Large σ0 = large prior uncertainty in µ.

p(µ|Data) ∝ p(Data|µ)p(µ)

∝ exp

(
−1

2

(
N

σ2
+

1

σ2
0

)
µ2 +

(
Nx̄

σ2
+
µ0

σ2
0

)
µ+ const.

)
= exp

(
− 1

2σ2
N

µ2 +
1

σ2
N

µNµ+ const.

)
∝ exp

(
− 1

2σ2
N

(µ− µN)2 + const.

)
Bert Kappen, Tom Claassen course SML 171

2.3.6, pp. 98-99

1
σ2
N

= N
σ2 + 1

σ2
0

and µN = σ2
N

(
Nx̄
σ2 + µ0

σ2
0

)
.

N = 0

N = 1

N = 2

N = 10

−1 0 1
0

5

Posterior p(µ|D) for different number of training points. Prior mean is µ = 0. Likelihood mean is

µ = 0.8.

For N →∞: µN → x̄, σ2
N → 0

i.e., posterior distribution is a peak around ML solution
so Bayesian inference and ML coincides.

Bert Kappen, Tom Claassen course SML 172

2.3.9

Mixtures of Gaussians

Model for multimodal distribution

1 2 3 4 5 6
40

60

80

100

Bert Kappen, Tom Claassen course SML 173

2.3.9

Mixtures of Gaussians

Model for multimodal distribution

1 2 3 4 5 6
40

60

80

100

1 2 3 4 5 6
40

60

80

100

x

p(x)

p(x) =

K∑
k=1

πkN (x|µk,Σk)

Each Gaussian is called a component of the mixture. The factors πk are the mixing
coefficients.

Bert Kappen, Tom Claassen course SML 174

2.3.9

Mixtures of Gaussians

0.5 0.3

0.2

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1

p(x) =

K∑
k=1

πkN (x|µk,Σk)

• Mixing coefficients satisfy

πk ≥ 0 and
∑
k

πk = 1

this implies p(x) ≥ 0 and
∫
p(x)dx = 1.

Bert Kappen, Tom Claassen course SML 175

2.3.9

Mixtures of Gaussians

0.5 0.3

0.2

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1

p(x) =

K∑
k=1

πkN (x|µk,Σk)

• k: label of the mixture. Joint distribution p(x, k) = πkp(x|k). Since data is not
labeled: marginal distribution p(x) =

∑
k πkp(x|k). p(x, k) in exponential family.

However, mixture model p(x) not in the exponential family, no simple relation between
data and parameters

• One can also consider mixtures of other distributions (mixtures of Bernoulli 9.3.3)

Bert Kappen, Tom Claassen course SML 176

2.3.9

Mixtures of Gaussians

ML: by gradient ascent (numerical function maximization).

Learning with hidden variables is generally difficult (slow).

Instead, EM (Expectation Maximization) algorithm to deal with hidden variables.

For instance using Bayes’ rule compute the ”soft assignment’ of data xn to each of the
clusters:

γk(xn) ≡ p(k|xn) =
πkN (xn|µk,Σk)∑
k′ πk′N (xn|µk′,Σk′)

update according to

µk =

∑N
n=1 γk(xn)xn∑N
n=1 γk(xn)

See Chapter 9 for more details.

Bert Kappen, Tom Claassen course SML 177

2.4

The exponential family

Examples: Gaussian, Bernouilli, Beta, multinomial, Poisson distribution

p(x|η) = h(x)g(η) exp(ηTu(x))

η: ”natural parameters”
u(x): (vector) function of x, ”sufficient statistic”
g(η) to ensure normalization

Bert Kappen, Tom Claassen course SML 178

2.4

The exponential family

Examples: Gaussian, Bernouilli, Beta, multinomial, Poisson distribution

p(x|η) = h(x)g(η) exp(ηTu(x))

η: ”natural parameters”
u(x): (vector) function of x, ”sufficient statistic”
g(η) to ensure normalization

Example: Bernoulli distribution

p(x|µ) = Bern(x|µ) = µx(1− µ)(1−x)

= exp
(
x lnµ+ (1− x) ln(1− µ)

)
= (1− µ) exp

(
ln

(
µ

1− µ

)
x

)

Natural parameters: η = ln
(µ

1− µ
)
, sufficient statistic u(x) = x.

Bert Kappen, Tom Claassen course SML 179

2.4

The exponential family

p(x|η) = h(x)g(η) exp(ηTu(x))

Example: Gaussian distribution

p(x|µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
=

1√
2πσ2

exp
(µ
σ2
x− 1

2σ2
x2 − µ2

2σ2

)
=

(1√
2π

)(1√
σ2

exp(− µ2

2σ2
)
)

exp
(

[
µ

σ2
,− 1

2σ2
] · [x, x2]T

)

Natural parameters η = (
µ

σ2
,− 1

2σ2
)T , sufficient statistic u(x) = (x, x2)T , h(x) =

1√
2π

.

Rewrite − µ2

2σ2
=

η2
1

4η2
, and

1√
σ2

=
√
−2η2, then g(η) =

√
−2η2 exp

(
η2

1

4η2

)
.

Bert Kappen, Tom Claassen course SML 180

2.4.1

The exponential family / Maximum likelihood and sufficient
statistics

In the ML solution η = ηML, the likelihood is stationary:

∇η
∑
n

log p(xn|η) = 0

Since

∇η log p(xn|η) = ∇η log
(
h(xn)g(η) exp(ηTu(xn))

)
= ∇η log g(η) + u(xn)

this implies that in ML solution η = ηML

−∇η log g(η) =
1

N

∑
n

u(xn)

Bert Kappen, Tom Claassen course SML 181

2.4.1

Now, g(η) is the normalization factor, i.e.,

g(η)−1 =

∫
h(x) exp(ηTu(x))dx

So

−∇η log g(η) = ∇η log g(η)−1 = g(η)∇η
∫
h(x) exp(ηTu(x))

= g(η)

∫
h(x)u(x) exp(ηTu(x))

=

∫
u(x)p(x|η)dx = 〈u(x)〉η

and we have that in the ML solution:

1

N

∑
n

u(xn) = 〈u(x)〉ηML

ML estimator depends on data only through sufficient statistics
∑
nu(xn)

Bert Kappen, Tom Claassen course SML 182

2.4.2

Conjugate priors

Likelihood:

N∏
n=1

p(xn|η) = [
∏
n

h(xn)]g(η)N exp(ηT
∑
n

u(xn))

= [
∏
n

h(xn)]g(η)N exp(NηT [
1

N

∑
n

u(xn)])

= [
∏
n

h(xn)]g(η)N exp(NηT 〈u〉Data)

Conjugate prior
p(η|χ, ν) = f(χ, ν)g(η)ν exp(νηTχ)

in which ν: effective number of pseudo data and χ: sufficient statistic.

Posterior ∼ likelihood × prior:

P (η|X,χ, ν) ∝ g(η)N+ν exp(ηT (N〈u〉Data + νχ))

Bert Kappen, Tom Claassen course SML 183

2.5

Nonparametric methods/histograms

”Histograms”: p(x) = pi in bin i with width ∆i, then ML:

pi =
ni
N∆i

N∑
i=1

pi∆i = 1

∆ = 0.04

0 0.5 1
0

5

∆ = 0.08

0 0.5 1
0

5

∆ = 0.25

0 0.5 1
0

5

• number of bins exponential in dimension D

• validity requires ∆i large to estimate pi, and ∆i small to have pi constant.

Bert Kappen, Tom Claassen course SML 184

2.5.1

Nonparametric methods

pi =
ni
N∆i

i = x

• Fix ∆i, determine ni by data: kernel approach/Parzen window

• Fix ni = K, determine ∆i by data: K-nearest neighbour

Terminology:

• Parametric distribution: model given by a number of parameters p(x|θ)

• Nonparametric distribution: number of parameters grows with the data.

Bert Kappen, Tom Claassen course SML 185

2.5.1, p. 123

Kernel method

Kernel function:

k(u) =

{
1, |ui| ≤ 1/2
0, otherwise

k((x − xn)/h): one if xn in cube of side h centered around x. Total number of data
points lying in this cube:

nx =

N∑
n=1

k
(x− xn

h

)
Volume is V = hD, so

p(x) =
nx
NV

=
1

N

N∑
n=1

1

hD
k
(x− xn

h

)

Generalize to any k(u) with
∫
k(u)du = 1.

For example, Gaussian kernel k(u/h) = 1√
2πh2

exp(−||u||2/2h2).

Bert Kappen, Tom Claassen course SML 186

2.5.1, p. 123

Kernel methods

h = 0.005

0 0.5 1
0

5

h = 0.07

0 0.5 1
0

5

h = 0.2

0 0.5 1
0

5

h is smoothing parameter. Trade-off between bias (large h) and variance (small h).

Bert Kappen, Tom Claassen course SML 187

2.5.2

Nearest neighbour methods

p(x) =
K

NV (x)

V (x)=Volume of smallest ball centered on x that contains K data points.

For instance with K = 1 and one data point at y in one dimension, we obtain
p(x) = 1

2N |y−x|.

K = 1

0 0.5 1
0

5

K = 5

0 0.5 1
0

5

K = 30

0 0.5 1
0

5

NB: not a true density model (integral over x diverges)

Bert Kappen, Tom Claassen course SML 188

2.5.2

Nearest Neighbor classification

Training set Nk points in class Ck,
∑
kNk = N

Consider test point x and its K nearest neighbours in volume V . Then

p(Ck|x) =
Kk

K

K (number of neighbours) is smoothing parameter.

x1

x2

(a)
x1

x2

(b)

Bert Kappen, Tom Claassen course SML 189

2.5.2

Nearest neighbour methods

x6

x7

K = 1

0 1 2
0

1

2

x6

x7

K = 3

0 1 2
0

1

2

x6

x7

K = 31

0 1 2
0

1

2

Bert Kappen, Tom Claassen course SML 190

3

Chapter 3

Linear Models for Regression
Regression: predicting the value of continuous target/output variables given values of the
input variables.

In other words: given a training set of input/output pairs, constructing a function that
maps input values to continuous output values, like the polynomial curve fitting in §1.1.

Bert Kappen, Tom Claassen course SML 191

3

Chapter 3

Linear Models for Regression
Regression: predicting the value of continuous target/output variables given values of the
input variables.

In other words: given a training set of input/output pairs, constructing a function that
maps input values to continuous output values, like the polynomial curve fitting in §1.1.

This chapter: generalized approach to linear models for regression

• more flexible models

• exploit probabilistic noise models (chapter 2!)

• fully Bayesian predictive distributions

• connection to model selection

Bert Kappen, Tom Claassen course SML 192

3.1

Linear Basis Function Models

’Very’ linear regression:

y(x,w) = w0 + w1x1 + w2x2 + · · ·+ wDxD = w0 +

D∑
j=1

wjxj

Linear in parameters w, and “almost” linear (affine) in input x.

Most functions are not linear in input x ... can we generalize our model to that?

Bert Kappen, Tom Claassen course SML 193

3.1

Linear Basis Function Models

’Very’ linear regression:

y(x,w) = w0 + w1x1 + w2x2 + · · ·+ wDxD = w0 +

D∑
j=1

wjxj

Linear in parameters w, and “almost” linear (affine) in input x.

Most functions are not linear in input x ... can we generalize our model to that?

y(x,w) = w0 +

M−1∑
j=1

wjφj(x)

where φ1(x), . . . , φM−1(x) are basis functions or feature functions. Defining φ0(x) = 1,
we can write it more compactly:

y(x,w) =

M−1∑
j=0

wjφj(x) = wTφ(x)

Note: still linear in parameters w! Examples of basis functions?

Bert Kappen, Tom Claassen course SML 194

3.1

Linear Basis Function Models

Gaussians: φj(x) = exp(−β(x− µj)2)
Polynomials: φj(x) = xj

Sigmoids: φj(x) = σ(β(x− µj))
Fourier: φj(x) = exp(ijx)
Wavelets: ...

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
0

0.25

0.5

0.75

1

−1 0 1
0

0.25

0.5

0.75

1

Bert Kappen, Tom Claassen course SML 195

3.1.1

Adding some noise

Let’s introduce some noise . . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).

Bert Kappen, Tom Claassen course SML 196

3.1.1

Adding some noise

Let’s introduce some noise . . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).

Some typical exam questions:

Q: what is the distribution of t, given x,w, β?

Bert Kappen, Tom Claassen course SML 197

3.1.1

Adding some noise

Let’s introduce some noise . . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).

Q: what is the distribution of t, given x,w, β?

p(t|x,w, β) = N (t|y(x,w), β−1)

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)

Bert Kappen, Tom Claassen course SML 198

3.1.1

Adding some noise

Let’s introduce some noise . . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).

Q: what is the conditional mean IE(t|x)?

Bert Kappen, Tom Claassen course SML 199

3.1.1

Adding some noise

Let’s introduce some noise . . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).

Q: what is the conditional mean IE(t|x)?

IE(t|x) =

∫
tp(t|x) dt = y(x,w)

Bert Kappen, Tom Claassen course SML 200

3.1.1

Maximum likelihood: least squares

Q: What is the log-likelihood of a data set {X, t} = {(xi, ti)}Ni=1 in this model?

Bert Kappen, Tom Claassen course SML 201

3.1.1

Maximum likelihood: least squares

Q: What is the log-likelihood of a data set {X, t} = {(xi, ti)}Ni=1 in this model?

ln p(t|X,w, β) = ln

N∏
i=1

N
(
tn|wTφ(xn), β−1

)
=

N∑
i=1

lnN
(
tn|wTφ(xn), β−1

)
=

N

2
lnβ − 1

2
β

N∑
i=1

(
tn −wTφ(xn)

)2
︸ ︷︷ ︸

sum-of-squares error function

−C

Q: How to find the maximum likelihood solution for the parameters w?

Bert Kappen, Tom Claassen course SML 202

3.1.1

Maximum likelihood: least squares

Q: What is the log-likelihood of a data set {X, t} = {(xi, ti)}Ni=1 in this model?

ln p(t|X,w, β) = ln

N∏
i=1

N
(
tn|wTφ(xn), β−1

)
=

N∑
i=1

lnN
(
tn|wTφ(xn), β−1

)
=

N

2
lnβ − 1

2
β

N∑
i=1

(
tn −wTφ(xn)

)2
︸ ︷︷ ︸

sum-of-squares error function

−C

Q: How to find the maximum likelihood solution for the parameters w?
A: Differentiate with respect to w, set to zero, and solve equations to find wML:

∇w ln p(t|X,w, β) = −β
N∑
i=1

(
tn −wTφ(xn)

)
φ(xn)T = 0

Bert Kappen, Tom Claassen course SML 203

3.1.1

Maximum likelihood: least squares

Rewriting:

0 =

N∑
n=1

tnφ(xn)T −wT

(
N∑
n=1

φ(xn)φ(xn)T

)
Solving for w:

wML = (ΦTΦ)−1ΦT︸ ︷︷ ︸
Moore-Penrose pseudo-inverse

t

where Φ is an N ×M matrix, the design matrix, with elements Φnj = φj(xn):

Φ =


φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

...
φ0(xN) φ1(xN) . . . φM−1(xN)


Maximizing p(t|X,w, β) w.r.t. β gives:

β−1
ML =

1

N

N∑
n=1

(
tn −wT

MLφ(xn)
)2
.

Bert Kappen, Tom Claassen course SML 204

3.1.4

Regularized least squares

To avoid overfitting, we can add a regularization term to the log-likelihood, e.g. weight
decay :

ln p(t|X,w, β) + λEW (w) =
N

2
lnβ − 1

2
β

N∑
i=1

(
tn −wTφ(xn)

)2
︸ ︷︷ ︸

sum-of-squares error function

+
1

2
λwTw︸ ︷︷ ︸

regularizer

−C

Maximizing with respect to w now gives the following optimum:

w = (λI + ΦTΦ)−1ΦT t

Other regularizers also possible, e.g. a more general error term would be

1

2

N∑
i=1

(
tn −wTφ(xn)

)2
+
λ

2

M∑
j=1

∣∣wj∣∣q
.

Bert Kappen, Tom Claassen course SML 205

3.1.4

Regularized least squares

For example q = 1 gives the famous LASSO with regularizer λ
M∑
j=1

|wj|.

q = 0.5 q = 1 q = 2 q = 4

Q: Why does the LASSO result in a sparse solution (wj 6= 0 for only a few j’s)?

Bert Kappen, Tom Claassen course SML 206

3.1.4

Regularized least squares

A: The solution w to the general regularized error term

1

2

N∑
i=1

(
tn −wTφ(xn)

)2
+
λ

2

M∑
j=1

∣∣wj∣∣q
can be viewed as the unregularized solution under constraint

∑M
j=1

∣∣wj∣∣q ≤ η.

w1

w2

w?

w1

w2

w?

Bert Kappen, Tom Claassen course SML 207

1.5.5

Bias-Variance Decomposition

Complex models tend to overfit. Simple models tend to be too rigid. Number of terms
in polynomial, weight decay constant λ.

(Treatment of 1.5.5). Consider a regression problem with squared loss function

E(L) =

∫∫ (
y(x)− t

)2
p(x, t)dxdt

p(x, t) is the true underlying model, y(x) is our estimate of t at x.

The optimal y minimizes E(L):

δE(L)

δy(x)
= 2

∫ (
y(x)− t

)
p(x, t)dt = 0

y(x) =

∫
tp(x, t)dt

p(x)
=

∫
tp(t|x)dt = IE(t|x)

Bert Kappen, Tom Claassen course SML 208

1.5.5

Bias-Variance Decomposition

The expected squared loss can also be written as

E(L) =

∫∫ (
y(x)− t

)2
p(x, t)dxdt

=

∫∫ (
y(x)− IE(t|x) + IE(t|x)− t

)2
p(x, t)dxdt

=

∫∫ ((
y(x)− IE(t|x)

)2
+
(
IE(t|x)− t

)2
+2
(
y(x)− IE(t|x)

)(
IE(t|x)− t

))
p(x, t)dxdt

=

∫ (
y(x)− IE(t|x)

)2
p(x)dx+

∫∫ (
IE(t|x)− t

)2
p(x, t)dxdt︸ ︷︷ ︸

intrinsic noise

First term depends on y(x) and is minimized when y(x) = IE(t|x). The second term, the
variance in the conditional distribution of t given x, averaged over x:

∫
var(t|x)p(x)dx

is independent of the solution y(x). The cross-term vanishes on integration over t (odd
function around IE(t|x)).

Bert Kappen, Tom Claassen course SML 209

3.2

Bias-Variance Decomposition

In the case of a finite data set D, our learning algorithm will give a solution y(x;D) that
will not minimize the exact expected square loss (but an empirical square loss): different
data sets will give different solutions y(x;D).

Consider the thought experiment that a large number of data sets D are given. Then we
can construct the average solution IED(y(x;D)), and

(
y(x;D)− IE(t|x)

)2
=

(
y(x;D)− IED(y) + IED(y)− IE(t|x)

)2
=

(
y(x;D)− IED(y)

)2
+
(
IED(y)− IE(t|x)

)2
+ 2

(
y − IED(y)

)(
IED(y)− IE(t|x)

)
So for a given x the average of this quantity over many data sets

IED

[(
y(x;D)− IE(t|x)

)2]
=
(
IED(y)− IE(t|x)

)2︸ ︷︷ ︸
(bias)2

+ IED
[
{y(x;D)− IED(y)}2

]︸ ︷︷ ︸
variance

as the cross term vanishes on averaging.

Bert Kappen, Tom Claassen course SML 210

3.2

Bias-Variance Decomposition

Substitution of the previous expression in the expected square loss:

E(L) =

∫ (
IED(y)− IE(t|x)

)2
p(x)dx︸ ︷︷ ︸

(bias)2

+

∫
IED
[
{y(x;D)− IED(y)}2

]
p(x)dx︸ ︷︷ ︸

variance

+

∫∫ (
IE(t|x)− t

)2
p(x, t)dxdt︸ ︷︷ ︸

noise

Expected square loss = bias2 + variance + noise

Bias2: difference between average solution IED(y(x;D)) and true solution IE(t|x).
Variance: scatter of individual solutions y(x,D) around their mean IED(y(x;D)).
Noise: (true) scatter of the data points t around their mean IE(t|x).

Bert Kappen, Tom Claassen course SML 211

3.2

Bias-Variance Decomposition

x

t
ln λ = 2.6

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t
ln λ = −0.31

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t
ln λ = −2.4

0 1

−1

0

1

x

t

0 1

−1

0

1

100 data sets, each with 25 data points from t = sin(2πx) + noise. y(x) as in Eq. 3.3-4. Parameters

optimized using Eq. 3.27 for different λ. Left shows variance, right shows bias.

Bert Kappen, Tom Claassen course SML 212

3.2

Bias-Variance Decomposition

ln λ

−3 −2 −1 0 1 2
0

0.03

0.06

0.09

0.12

0.15

(bias)2

variance

(bias)2 + variance
test error

Sum of bias, variance and noise yields expected error on test set. Optimal λ is trade-off between bias and

variance.

True bias is usually not known, because IE(t|x) is not known.

Bert Kappen, Tom Claassen course SML 213

3.3

Bayesian linear regression

Let’s go back to the linear basis function model:

t = y(x,w) + ε, y(x,w) = wTφ(x), ε ∼ N (0, β−1)

p(t|x,w, β) = N (t|wTφ(x), β−1)

Training data: X = (x1, . . . ,xN) and t = (t1, . . . , tN).

Likelihood:

p(t|x,w, β) =

N∏
n=1

N (tn|wTφ(xn), β−1) = N (t|Φw, β−1I).

Q: what prior p(w) can we choose?

Bert Kappen, Tom Claassen course SML 214

3.3

Bayesian linear regression

Let’s go back to the linear basis function model:

t = y(x,w) + ε, y(x,w) = wTφ(x), ε ∼ N (0, β−1)

p(t|x,w, β) = N (t|wTφ(x), β−1)

Training data: X = (x1, . . . ,xN) and t = (t1, . . . , tN).

Likelihood:

p(t|x,w, β) =

N∏
n=1

N (tn|wTφ(xn), β−1) = N (t|Φw, β−1I).

Q: what prior p(w) can we choose?
A: We make life easy by choosing a conjugate prior, which is a Gaussian

p(w) = N (w|m0, S0)

Bert Kappen, Tom Claassen course SML 215

3.3

Bayesian linear regression

Then, the posterior will also be Gaussian. Prior and likelihood:

p(w) = N (w|m0,S0)

p(t|w) = N (t|Φw, β−1I)

Then, by applying 2.113 + 2.114⇒ 2.116, we get the posterior p(w|t).

Bert Kappen, Tom Claassen course SML 216

3.3

Bayesian linear regression

Then, the posterior will also be Gaussian. Prior and likelihood:

p(w) = N (w|m0,S0)

p(t|w) = N (t|Φw, β−1I)

Then, by applying 2.113 + 2.114⇒ 2.116, we get the posterior p(w|t).

p(w) = N (w|m0,S0) ↔ p(x) = N (x|µ,Λ−1)

p(t|w) = N (t|Φw, β−1I) ↔ p(y|x) = N (x|Ax+ b,L−1)

p(w|t) = N (w|mN ,SN) ↔ p(x|y) = N (x|Σ
{
ATL(y − b) + Λµ

}
,Σ)

with Σ = (Λ +ATLA)−1

So p(w|t) = N (w|mN ,SN) , with mN = SN(S−1
0 m0 + βΦT t)

S−1
N = S−1

0 + βΦTΦ

Note behaviour when S−1
0 → 0 (broad prior), when N = 0, and when N →∞.

Bert Kappen, Tom Claassen course SML 217

3.3

Bayesian linear regression

Data: t = a0 + a1x + noise. Model: y(x,w) = w0 + w1x; p(t|x,w, β) = N (t|y(x,w), β−1),

β−1 = (0.2)2; p(w|α) = N (w|0, α−1I), α = 2.

Bert Kappen, Tom Claassen course SML 218

3.3

Predictive distribution

What is the predictive distribution p(t∗|x∗) for new data point x∗? We know:

p(t∗|w, x∗) = N (t∗|φT (x∗)w, β−1)

p(w|t,x) = N (w|mN , SN)

p(t∗|x∗, t,x) =

∫
dwp(t∗|w, x∗)p(w|t,x)

Write t∗ = φT (x∗)w + ε with Vε = β−1:

Et∗ = φT (x∗)mN , Vt∗ = V
(
φT (x∗)w

)
+ Vε = φT (x∗)V (w)φ(x∗) + β−1

p(t∗|x∗, t,x) = N (t∗|φT (x∗)mN , σ
2
N(x∗))

where
σ2
N(x∗) = β−1 + φ(x∗)TSNφ(x∗)

When N →∞ SN → 0 and σ2
N(x∗)→ β−1

Bert Kappen, Tom Claassen course SML 219

3.3

Bayesian linear regression: Example

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

Data points from t = sin(2πx) + noise. y(x) as in Eq. 3.3-4. Data set size N = 1, 2, 4, 25.

Bert Kappen, Tom Claassen course SML 220

3.3

Bayesian linear regression: Example

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

Same data and model. Curves y(x,w) with w from posterior.

Bert Kappen, Tom Claassen course SML 221

3.4

Bayesian model comparison

Maximum likelihood suffers from overfitting, which requires testing models of different
complexity on separate data.

Bayesian approach allows to compare different models directly on the training data, but
requires integration over model parameters.

Consider L probability models and a set of data generated from one of these models. We
define a prior over models p(Mi), i = 1, . . . , L to express our prior uncertainty.

Given the training data D, we wish to compute the posterior probability

p(Mi|D) ∝ p(D|Mi)p(Mi)

p(D|Mi) is called model evidence, also marginal likelihood, since it integrates over model
parameters:

p(D|Mi) =

∫
p(D|w,Mi)p(w|Mi)dw

Bert Kappen, Tom Claassen course SML 222

3.4

Bayesian model comparison

Flat prior over models p(Mi) =⇒ model evidence is proportional to marginal likelihood:

p(D|Mi) =

∫
p(D|w,Mi)p(w|Mi)dw

We use a very crude estimate of this integral to understand the mechanism of Bayesian
model selection.

Consider a one dimensional case (one parameter). Assume
roughly block-shaped prior p(w) and posterior p(w|D) as
in the figure. Then the prior is p(w) = 1/∆wprior on
an interval of width ∆wprior, and zero elsewhere. The
marginal likelihood is then approximately given by:

∆wposterior

∆wprior

wMAP w

p(D|Mi) ≈
∫
p(D|wMAP,Mi)

1

∆wprior
dw

≈ p(D|wMAP,Mi)
∆wposterior

∆wprior

Bert Kappen, Tom Claassen course SML 223

3.4

Bert Kappen, Tom Claassen course SML 224

3.4

Bayesian model comparison

As ∆wposterior < ∆wprior, the Bayesian approach gives a negative correction to the ML
estimate.

ln p(D|Mi) ≈ ln p(D|wMAP,Mi) + ln

(
∆wposterior

∆wprior

)

With Mi parameters in model Mi, the same argument gives

ln p(D|Mi) ≈ ln p(D|wMAP,Mi) +Mi ln

(
∆wposterior

∆wprior

)
With increasing model complexity the first term increases (better fit), but the second
term decreases.

Bert Kappen, Tom Claassen course SML 225

3.4

Bayesian model comparison

Consider three models of increasing complexity M1,M2,M3. Consider drawing data
sets from these models: we first sample a parameter vector w from the prior p(w|Mi)
and then generate iid data points according to p(x|w,Mi). The resulting distribution is
p(D|Mi).

A simple model has less variability in the resulting data sets than a complex model. Thus,
p(D|M1) is more peaked than p(D|M3). Due to normalization, p(D|M1) is necessarily
higher than p(D|M3).

p(D)

DD0

M1

M2

M3

For the data set D0 the Bayesian approach will select model M2 because model M1 is
too simple (too low likelihood) and model M3 is too complex (too large penalty term).
This is known as Bayesian model selection.

Bert Kappen, Tom Claassen course SML 226

3.5.1

The evidence framework for Bayesian linear regression

The Bayesian linear regression approach assume a prior (3.48)

p(w|α,M) =
(α

2π

)M/2

exp
(
−α

2
wTw

)
and a likelihood (3.10)

p(t|w, β,M) =

(
β

2π

)N/2
exp

(
−β

2
‖t− Φw‖2

)
.

The marginal likelihood is

p(t|α, β,M) =

∫
dwp(w|α,M)p(t|w, β,M)

=
(α

2π

)M/2
(
β

2π

)N/2 ∫
dw exp(−E(w))

Bert Kappen, Tom Claassen course SML 227

3.5.1

Evidence framework

E(w) =
β

2
(t− Φw)T (t− Φw) +

α

2
wTw =

β

2

(
tT t− 2wTΦT t+wTΦTΦw

)
+
α

2
wTw

=
1

2
wTAw +

β

2
tT t− βwTΦT t =

1

2
wTAw +

β

2
tT t−wTAm

with A = αI + βΦTΦ and Am = βΦT t. Thus,

E(w) =
1

2
(w −m)TA(w −m)− 1

2
mTAm+

β

2
tT t

=
1

2
(w −m)TA(w −m) + E(m)

With
∫
dw exp(−E(w)) = exp(−E(m))(2π)−M/2|A|−1/2:

log p(t|α, β,M) =
M

2
logα+

N

2
log β − E(m)− 1

2
log |A| −M

2
log 2π

8. Note that |A| = ∏(α+ λi), thus log |A| = O(M).
8NB typo Eq. 3.86 −N2 log 2π

Bert Kappen, Tom Claassen course SML 228

3.5.1

Evidence framework

M

0 2 4 6 8
−26

−24

−22

−20

−18

M

E
R
M
S

0 3 6 9
0

0.5

1
Training
Test

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Evidence framework comparing different M for fixed α, β. M = 1 improves over M = 0. M = 2 does

not improve over M = 1. M = 3 improves over M = 2. Models M = 3− 8 have different likelihood

but increasing complexity.

Bert Kappen, Tom Claassen course SML 229

4

Chapter 4

Linear models for classification

• Discriminant function

• Conditional probabilities P (Ck|x)

• Generative models P (x|Ck)

Generalized linear models for classification

y(x) = f(wTx+ w0)

with f(·) nonlinear.

Bert Kappen, Tom Claassen course SML 230

4

4.1 Discriminant functions

Two category classification problem:

y(x) > 0⇔ x ∈ C1 y(x) < 0⇔ x ∈ C2

with
y(x) = wTx+ w0

x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1

If x1,x2 on the line y(x) = 0 then wT (x1 − x2) = 0. Line is orthogonal to w.

Notation: w̃ = (w0,w) and x̃ = (1,x), then

y(x) = w̃T x̃

Bert Kappen, Tom Claassen course SML 231

4

Multiple classes

yk(x) = wT
k x+ wk0 =

k∑
i=1

wkixi + wk0 =

k∑
i=0

wkixi

Naive approach is to let each boundary separate class k from the rest. This does not
work.

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

One-versus-the-rest classifier.
Use K − 1 classifiers, each
classifying one versus the rest.

One-versus-one classifier.
Use K(K − 1)/2 classifiers, each
classifying one pair k, k′.

Bert Kappen, Tom Claassen course SML 232

4

Multiple classes

Instead, define decision boundaries as: yk(x) = yj(x).

Ri

Rj

Rk

xA

xB

x̂

If yk(x) = wT
kx+ w0k, k = 1, 2 then decision boundary is (w1 −w2)

Tx+ w01 − w02 = 0.

For K = 3, we get three lines: y1(x) = y2(x), y1(x) = y3(x), y2(x) = y3(x), that cross in a

common point y1(x) = y2(x) = y2(x), and which defines the tesselation.

The class regions Rk are convex. If x,y ∈ Rk

yk(x) > yj(x), yk(y) > yj(y)⇒ yk(αx+ (1− α)y) > yj(αx+ (1− α)y)

Bert Kappen, Tom Claassen course SML 233

4

Learning vector quantization

Here is a way to get a nice Voneroi Tesselation, known as learning vector quantization
(LVQ) by Kohonen (1988).

Consider labeled data {(~xµ, cµ), µ = 1, . . . , P} with ~xµ ∈ Rn and cµ = 1, . . . ,K the
class label.

Initialize cluster vectors ~mk, k = 1, . . . ,K1. The simplest choice is K1 = K, ie. one
vector per class, but one can also consider K1 > K.

The algorithm iterates over the data:

• Choose data sample ~xµ and compute the nearest cluster vector: c = argmink‖~xµ −
~mk‖.

• If cµ = c (the nearest cluster vector has the correct class), then ∆~mc = η(~xµ − ~mc).

• If cµ 6= c (the nearest cluster vector has another class), then ∆~mc = −η(~xµ − ~mc).

• All other cluster vectors are unaltered.

Bert Kappen, Tom Claassen course SML 234

4

Least-squares technique

Learning the parameters is done by minimizing a cost function, for instance the minus
log likelihood or the quadratic cost:

E =
1

2

∑
n

∑
k

(
∑
i

x̃niw̃ik − tnk)2

∂E

∂w̃jk
=

∑
n

(
∑
i

x̃niw̃ik − tnk)x̃nj = 0

∑
i

(∑
n

x̃njx̃ni

)
w̃ik =

∑
n

tnkxnj

w̃k = C−1µk Cij =
∑
n

x̃njx̃ni µkj =
∑
n

tnkxnj

Bert Kappen, Tom Claassen course SML 235

4

Least-squares technique

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

Two class classification problem solved with least square (magenta) and logistic regression (green)

Least square solution sensitive to outliers: far away data contribute too much to the
error.

Bert Kappen, Tom Claassen course SML 236

4

Least-squares technique

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Three class classification problem solved with least square (left) and logistic regression (right)

Least square solution poor in multi-class case.

Bert Kappen, Tom Claassen course SML 237

4.1.4

Fisher’s linear discriminant

Consider two classes. Take an x and project it down to one dimension using

y = wTx

Let the two classes have two means:

m1 =
1

N1

∑
n∈C1

xn m2 =
1

N2

∑
n∈C2

xn

−2 2 6

−2

0

2

4

We can choose w to maximize wT (m1 −m2), subject to
∑
iw

2
i = 1 yields w ∝

(m1 −m2). (exercise 4.4).

Bert Kappen, Tom Claassen course SML 238

4.1.4

Fisher’s linear discriminant

Fisher discriminant analysis: Better separation when simultaneously minimize within class
variance.

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Within class variance after transformation:

s2
k =

∑
n∈Ck

(yn −mk)
2, mk = wTmk, yn = wTxn k = 1, 2

Total within class variance is s2
1 + s2

2.

Bert Kappen, Tom Claassen course SML 239

4.1.4

The Fisher method minimizes witin class variance and maximizes mean separation by
maximizing

J(w) =
(m2 −m1)2

s2
1 + s2

2

=
wTSBw

wTSWw

SB = (m2 −m1)(m2 −m1)T

SW =
∑
n∈C1

(xn −m1)(xn −m1)T +
∑
n∈C2

(xn −m2)(xn −m2)T

(Exercise 4.5)

Differentiation wrt w yields (exercise)

(wTSBw)SWw = (wTSWw)SBw

Drop scalar factors, and SBw ∝m2 −m1:

w ∝ S−1
W (m2 −m1)

Bert Kappen, Tom Claassen course SML 240

4.1.4

Fisher’s linear discriminant

When SW ∝ the unit matrix (isotropic within-class covariance), we recover the naive
solution w ∝ (m2 −m1).

A classifier is built by thresholding y = wTx.

The Fisher discriminant method is best viewed as a dimension reduction method, in this
case from d dimensions to 1 dimension, such that optimal classification is obtained in the
linear sense.

It can be shown that the least square method with two classes and target values
tn1 = N/N1 and tn2 = −N/N2 is equivalent to the two class Fisher discriminant solution
(section 4.1.5).

Bert Kappen, Tom Claassen course SML 241

4

Several classes

Class means mk = 1
Nk

∑
n∈Ck x

n and covariance Sk =
∑
n∈Ck(x

n −mk)(x
n −mk)

T .

Relate total within class covariance SW =
∑
kSk to total covariance:

SW =
∑
k

∑
n∈Ck

(x
n −mk)(x

n −mk)
T

=
∑
k

∑
n∈Ck

(x
n −m+m−mk)(x

n −m+m−mk)
T

=
∑
k

∑
n∈Ck

(x
n −m)(x−m)

T
+ (x

n −m)(m−mk)
T

+ (m−mk)(x
n −m)

T

+ (m−mk)(m−mk)
T

= ST −
∑
k

Nk(mk −m)(mk −m)
T

= ST − SB

with total covariance ST =
∑
n(xn − m)(xn − m)T and SB =

∑K
k=1Nk(mk −

m)(mk −m)T .

Bert Kappen, Tom Claassen course SML 242

4

Assume input dimension D > K, the number of classes.

We introduce D′ > 1 features yd′ = wT
d′x, d

′ = 1, . . . D′ or

y = W Tx, W = (w1, . . . ,wD′)

W TSWW and W TSBW are the D′-dimensional projection of the within class and
between class covariance matrices. Maximize

J(W) = Tr
(
(W TSWW)−1(W TSBW)

)
The solution W = (w1, . . . ,wD′) consists of the largest D′ eigenvectors of the matrix
S−1
W SB.

Note, SB is sum of K rank one matrices and is of rank K − 1. S−1
W SB has (K − 1)

non-zero eigenvalues.

Thus, D′ ≤ K − 1, because otherwise W contains any of the zero eigenvectors.

Bert Kappen, Tom Claassen course SML 243

Extra material

The Perceptron

Relevant in history of pattern recognition and neural networks.

• Perceptron learning rule + convergence, Rosenblatt (1962)

• Perceptron critique (Minsky and Papert, 1969) → ”Dark ages of neural networks”

• Revival in the 80’s: Backpropagation

Bert Kappen, Tom Claassen course SML 244

Extra material

The Perceptron

y(x) = sign(wTφ(x))

where

sign(a) =

{
+1, a ≥ 0
−1, a < 0.

and φ(x) is a feature vector (e.g. hard wired neural network).

Bert Kappen, Tom Claassen course SML 245

Extra material

The Perceptron

Ignore φ, ie. consider inputs xµ and outputs tµ = ±1
Define wTx =

∑n
j=1wjxj + w0. Then, the learning condition becomes

sign(wTxµ) = tµ, µ = 1, . . . , P

We have
sign(wTxµtµ) = 1 or wTzµ > 0

with zµj = xµj t
µ.

Bert Kappen, Tom Claassen course SML 246

Extra material

Linear separation

Classification depends on sign of wTx. Thus, decision boundary is hyper plane:

0 = wTx =

n∑
j=1

wjxj + w0

Perceptron can solve linearly separable problems.

AND problem is linearly separable.

XOR problem and linearly dependent inputs not linearly separable.

Bert Kappen, Tom Claassen course SML 247

Extra material

Perceptron learning rule

Learning succesful when
wTzµ > 0, all patterns

Learning rule is ’Hebbian’:

wnew
j = wold

j + ∆wj

∆wj = ηΘ(−wTzµ)xµj t
µ = ηΘ(−wTzµ)zµj

η is the learning rate.

Depending on the data, there may be many or few solutions to the learning problem (or
non at all)

Bert Kappen, Tom Claassen course SML 248

Extra material

The quality of the solution is determined by the worst pattern. Since the solution does
not depend on the size of w:

D(w) =
1

|w|min
µ
wTzµ

Acceptable solutions have D(w) > 0.

The best solution is given by Dmax = maxwD(w).

Bert Kappen, Tom Claassen course SML 249

Extra material

Dmax > 0 iff the problem is linearly separable.

Bert Kappen, Tom Claassen course SML 250

Extra material

Convergence of Perceptron rule

Assume that the problem is linearly separable, so that there is a solution w∗ with
D(w∗) > 0.

At each iteration, w is updated only if w · zµ < 0. Let Mµ denote the number of times
pattern µ has been used to update w. Thus,

w = η
∑
µ

Mµzµ

Consider the quanty

−1 <
w · w∗
|w||w∗| < 1

We will show that
w · w∗
|w||w∗| ≥ O(

√
M),

with M =
∑
µM

µ the total number of iterations.

Therefore, M can not grow indefinitely. Thus, the perceptron learning rule converges in
a finite number of steps when the problem is linearly separable.

Bert Kappen, Tom Claassen course SML 251

Extra material

Proof:

w · w∗ = η
∑
µ

Mµzµ · w∗ ≥ ηM min
µ
zµ · w∗

= ηMD(w∗)|w∗|
∆|w|2 = |w + ηzµ|2 − |w|2 = 2ηw · zµ + η2|zµ|2

≤ η2|zµ|2 = η2N

|w| ≤ η
√
NM

Thus,

1 ≥ w · w∗
|w||w∗| ≥

√
M
D(w∗)√

N

Number of weight updates:

M ≤ N

D2(w∗)

Bert Kappen, Tom Claassen course SML 252

Extra material

Capacity of the Perceptron

Consider P patterns in N dimensions in general position:
- no subset of size less than N is linearly dependent.

- general position is necessary for linear separability

Question: What is the probability that a problem of P samples in N dimensions is linearly
separable?

Bert Kappen, Tom Claassen course SML 253

Extra material

Define C(P,N) the number of linearly separable colorings on P points in N dimensions,
with separability plane through the origin. Then (Cover 1966):

C(P,N) = 2

N−1∑
i=0

(
P − 1
i

)

9 When P ≤ N , then C(P,N) = 2
∑P−1
i=0

(
P − 1
i

)
= 2(1 + 1)P−1 = 2P

When P = 2N , then C(P,N) = 2
∑N−1
i=0

(
2N − 1

i

)
=
∑2N−1
i=0

(
2N − 1

i

)
=

22N−1 = 2P−1

9Conventions:

(
n
0

)
= 1;

(
n
k

)
= 0 when n < k.

Bert Kappen, Tom Claassen course SML 254

Extra material

Proof by induction.

Add one point X. The set C(P,N) consists of
- colorings with separator through X (A)

- rest (B)

Thus,

C(P + 1, N) = 2A+B = C(P,N) +A

= C(P,N) + C(P,N − 1)

Yields

C(P,N) = 2

N−1∑
i=0

(
P − 1
i

)

Bert Kappen, Tom Claassen course SML 255

4.1.7

The Perceptron algorithm

Perceptron approach: seek w such that wTφ(xn) > 0 for xn ∈ C1 and wTφ(xn) < 0
for xn ∈ C2. Target coding: t = +1,−1 for x ∈ {C1, C2}. Then we want all patterns:

tnw
Tφ(xn) > 0

Perceptron criterion: minimize error from misclassified patterns

C(w) = − 1

‖w‖
∑
n∈M

tnw
Tφ(xn)

Learning rule: choose pattern n. If misclassified, update according to

wτ+1 = wτ + ηφntn

It can be shown that this algorithm converges in a finite number of steps, if the data is
linearly separable.

Bert Kappen, Tom Claassen course SML 256

4.1.7

Convergence of perceptron learning

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Bert Kappen, Tom Claassen course SML 257

4.1.7

Perceptron critique

Minsky and Papert: perceptron can only learn linearly separable problems:

Most functions are not linearly separable: e.g. the problem of determining whether
objects are singly connected, using local receptive fields

Bert Kappen, Tom Claassen course SML 258

4.2

Probabilistic generative models

Probabilistic models for classification

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a)

where a is the ”log odds”

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)

and σ the logistic sigmoid function (i.e. S-shaped function)

σ(a) =
1

1 + exp(−a)

Bert Kappen, Tom Claassen course SML 259

4.2

Sigmoid function

−5 0 5
0

0.5

1

Properties:
σ(−a) = 1− σ(a)

inverse:
a = ln

σ

1− σ
10

10

1 + e
−a

= 1 +
1− σ
σ

=
1

σ
→ σ =

1

1 + e−a

Bert Kappen, Tom Claassen course SML 260

4.2

Sigmoid/softmax function

Softmax: generalization to K classes

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

where
ak = ln (p(x|Ck)p(Ck))

Note that softmax is invariant under ak → ak + const

Bert Kappen, Tom Claassen course SML 261

4.2

Continuous inputs

The discriminant function for a Gaussian distribution is

ak(x) = log p(x|Ck) + log p(Ck)

= −1

2
(x− µk)TΣ−1

k (x− µk)−
1

2
log |Σk|+ log p(Ck)

The decision boundaries ak(x) = al(x) are quadratic functions in d dimensions.

If Σ−1
k = Σ−1, then

ak(x) = −1

2
xΣ−1x+

1

2
µTkΣ−1x+

1

2
xΣ−1µk −

1

2
µTkΣ−1µk −

1

2
log |Σ|+ log p(Ck)

= wT
k x+ wk0 + const

with

wT
k = µTkΣ−1, wk0 = −1

2
µTkΣ−1µk + log p(Ck)

The discriminant function is linear, and the decision boundary is a straight line (or
hyper-plane in d dimensions).

Bert Kappen, Tom Claassen course SML 262

4.2

When class conditional covariances are equal, decision boundary is straight line.

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

When class conditional covariances are unequal decision boundary is quadratic.

Bert Kappen, Tom Claassen course SML 263

4.2.2

Maximum likelihood solution

Once we have specified a parametric functional form for p(x|Ck) and p(Ck) we can
determine parameters using maximum (joint!) likelihood (as usual !).

Actually, for classification, we should aim for the conditional likelihood, but the joint
likelihood is in general easier. In a perfect model, it makes no difference, but with
imperfect models, it certainly does!

Example of joint ML: a binary problem with Gaussian class-conditionals, with a shared
covariance matrix. Data is {xn, tn}n with labels coded as t = {1, 0} for classes C1, C2.

Class probabilities are parametrized as

p(C1) = π, p(C2) = 1− π

and class-conditional densities as

p(xn|C1) = N (xn|µ1,Σ), p(xn|C2) = N (xn|µ2,Σ)

Bert Kappen, Tom Claassen course SML 264

4.2.2

Then the likelihood is given by

L = p(t1,x1, . . . , tN ,xn|π,µ1,µ2,Σ) =
∏
n

p(tn,xn|π,µ1,µ2,Σ)

=
∏
n

[πN (xn|µ1,Σ)]tn[(1− π)N (xn|µ2,Σ)]1−tn

logL =
∑
n

tn log[πN (xn|µ1,Σ)] + (1− tn) log[(1− π)N (xn|µ2,Σ)]

The maximum likelihood solution for π and µ1,2:

∂ logL

∂π
=

1

π

∑
n

tn −
1

1− π
∑
n

(1− tn) π =
N1

N
N1 =

∑
n

tn

∂ logL

∂µ1
=

∑
n

tn
∂ logN (xn|µ1,Σ)

∂µ1
= Σ−1

∑
n

tn(xn − µ1) µ1 =
1

N1

∑
n

tnxn

∂ logL

∂µ2
= . . . µ2 =

1

N2

∑
n

(1− tn)xn

The maximum likelihood solution for Σ given by Eqs. 4.78-80 (exercise).

Bert Kappen, Tom Claassen course SML 265

4.2.2

Probabilistic discriminative models

Discriminative versus generative models

Discriminative models:

• no spoiled effort in modeling joint probabilities. Aims directly at the conditional
probabilities of interest

• usually fewer parameters

• improved performance when class-conditional p(x|C) assumptions are poor (with joint
ML).

• basis functions can be employed

Bert Kappen, Tom Claassen course SML 266

4.2.2

Fixed basis functions

x1

x2

−1 0 1

−1

0

1

φ1

φ2

0 0.5 1

0

0.5

1

• Basis functions φ(x). Denote φn = φ(xn)

• Problems that are not linearly separable in x might be linearly separable in φ(x).

• Note: use of basis functions φ in place of variables x is not obvious in generative
models: N (x, x2, x3|µ,Σ)??.

Bert Kappen, Tom Claassen course SML 267

4.2.2

Logistic regression

Two class classification
p(C1|φ) = σ(wTφ)

M dimensional feature space: M parameters, while Gaussian class conditional densities
would require 2M (two means) and M(M+1)/2 (common covariance matrix) parameters.

Maximum likelihood to determine parameters w, (nb. tn ∈ {0, 1})

p(t1, . . . , tN |w, x1, . . . , xN) =
∏
n

σ(wTφn)tn[1− σ(wTφn)]1−tn =
∏
n

ytnn (1− yn)1−tn

with φn = φ(xn) and yn = σ(wTφn) i.e.,

E(w) = − ln p = −
∑
n

tn ln yn + (1− tn) ln(1− yn)

NB: entropic error function for classification, rather than squared error.

Bert Kappen, Tom Claassen course SML 268

4.2.2

Logistic regression

∇E(w) =
∑
n

(yn − tn)φn

11 No closed form solution. Optimization by gradient descent, (or e.g., Newton-Raphson).

Overfitting risk when data is linearly separable: w →∞ (i.e. σ → step function).

11Note, that when y = σ(x) then

dy

dx
= σ
′
(x) =

d

dx

1

1 + exp(−x)
=

exp(−x)

(1 + exp(−x))2
= σ(x)σ(−x) = σ(x)(1− σ(x))

Thus with y = σ(wTφ)

∂y

∂wi
= φiσ

′
(w

T
φ) = φiy(1− y)

Bert Kappen, Tom Claassen course SML 269

4.3.3

Iterative least squares

Minimize learning error by Newton-Raphson method

w(new) = w(old) −H−1∇E(w)

with

Hij =
∂2E

∂wi∂wj
=

∂

∂wj

∂E

∂wi
=

∂

∂wj

∑
n

(yn − tn)φi(xn)

=
∑
n

φj(xn)yn(1− yn)φi(xn) = ΦTRΦ

∇iE(w) =
∑
n

(yn − tn)φi(xn) = ΦT (y − t)

with Φnj = φj(xn) and Rn,n′ = yn(1− yn)δn,n′.

H(w) is positive definite for all w thus E(w) is convex, thus unique optimum (Ex. 4.15).

w(new) = w(old) −
(
ΦTRΦ

)−1
ΦT (y − t)

Bert Kappen, Tom Claassen course SML 270

4.4

Laplace approximation

Assume distribution p(z) is given up to normalization, i.e. in the form

p(z) =
1

Z
f(z) Z =

∫
f(z)dz

where f(z) is given, but Z is unknown (and the integral is infeasible).

Goal: approximate by a Gaussian q(z), centered around the mode of p(z).

Bert Kappen, Tom Claassen course SML 271

4.4

Laplace approximation

Mode z0 is maximum of p(z), i.e. dp(z)/dz|z0 = 0, or

df(z)

dz

∣∣∣
z0

= 0

The logarithm of a Gaussian is a quadratic function of the variables, so it makes sense to
make a second order Taylor expansion of ln f around the mode (this would be exact if p
was Gaussian).

ln f(z) ≈ ln f(z0)− 1

2
A(z − z0)2

where

A = −d
2 ln f(z)

dz2

∣∣∣
z0

Note that the first order term is absent since we expand around the maximum. Taking
the exponent we obtain,

f(z) ≈ f(z0) exp(−1

2
A(z − z0)2)

Bert Kappen, Tom Claassen course SML 272

4.4

and the Gaussian approximation is obtained by normalization

q(z) =
(A

2π

)1/2

exp(−1

2
A(z − z0)2)

−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

−2 −1 0 1 2 3 4
0

10

20

30

40

Bert Kappen, Tom Claassen course SML 273

4.4

Laplace approximation in M dimensions

In M dimensions results are similar,

q(z) =

(
det (A)

(2π)M/2

)
exp(−1

2
(z − z0)TA(z − z0))

where

Aij = − ∂2

∂zi∂zj
ln f(z)

∣∣
z=z0

Usually z0 is found by numerical optimization.

A weakness of Laplace approximation is that it relies only on the local properties of the
mode. Other methods (e.g. sampling or variational methods) are based on more global
properties of p.

Bert Kappen, Tom Claassen course SML 274

4.4.1

Model comparison and BIC

Approximation of Z:

Z =

∫
f(z)dz (4)

≈ f(z0)

∫
exp(−1

2
(z − z0)TA(z − z0))dz (5)

= f(z0)
(2π)M/2

det(A)1/2
(6)

Bert Kappen, Tom Claassen course SML 275

4.4.1

Model comparison and BIC

Application: approximation of model evidence.

f(θ) = p(D|θ)p(θ) (7)

Z = P (D) =

∫
p(D|θ)p(θ)dθ (8)

Then applying Laplace approximation, we obtain (Ex. 4. 22)

lnP (D) ≈ ln p(D|θMAP) + ln p(θMAP) +
M

2
ln 2π − 1

2
ln det(A)︸ ︷︷ ︸

Occam factor

where
A = −∇∇ ln p(D|θ)p(θ)

∣∣∣
θMAP

= −∇∇p(θ|D)
∣∣∣
θMAP

which can be interpreted as the inverse width of the posterior.

Bert Kappen, Tom Claassen course SML 276

4.4.1

Model comparison and BIC

Under some assumptions, A =
∑
nAn ≈ NÂ, and full rank, then

ln det(A) ≈ ln det(NÂ) = ln(NM det(Â)) = M lnN +O(1)

leads to the Bayesian Information Criterion (BIC)

lnP (D) ≈ ln p(D|θMAP)− 1

2
M lnN (+const.)

Bert Kappen, Tom Claassen course SML 277

4.5 (not)

Bayesian logistic regression

Prior p(w) = N (w|m0,S0)

Log posterior = log prior + log likelihood + const

ln p(w|t) = −1

2
(w −m0)TS−1

0 (w −m0)

+
∑
n

{tn ln yn + (1− tn) ln(1− yn)}+ const

where yn = σ(wTφn).

Posterior distribution in p(w|t)?

Laplace approximation: find wMAP and compute second derivatives:

S−1
N = −∇∇ ln p(w|t) = S−1

0 +
∑
n

yn(1− yn)φnφ
T
n

and
q(w) = N (w|wMAP,SN)

Bert Kappen, Tom Claassen course SML 278

4.5 (not)

Predictive distribution

p(C1|φ, t) =

∫
σ(wTφ)p(w|t)dw ≈

∫
σ(wTφ)q(w)dw

The function σ(wTφ) depends only on w via its projection on φ. We can marginalize
out the other variables, since q is a Gaussian. The marginal is then again a Gaussian for
which we can compute its parameters∫

σ(wTφ)q(w)dw =

∫
σ(a)N (a|µa, σ2

a)da

where the parameters turn out to be µa = wT
MAPφ and σ2

a = φTSNφ.

Unfortunately, this integral cannot be expressed analytically. However σ(x) is well
approximated by the probit function, i.e., the cumulative Gaussian

Φ(x) =

∫ x

∞
N (u|0, 1)du

In particular σ(x) ≈ Φ(
√

π
8x). With additional manipulations the predictive distributions

Bert Kappen, Tom Claassen course SML 279

4.5 (not)

can be shown to be approximated by

p(C1|φ, t) ≈ σ((1 + πσ2
a/8)−1/2µa) = σ(κ(σ2

a)µa)

Note that the MAP predictive distribution is

p(C1|φ,wMAP) = σ(µa).

The decision boundary p(C1|φ, . . .) = 0.5 is the same in both approximations, namely at
µa = 0. Since κ < 1, the Laplace approximation is less certain about the classifications.

Bert Kappen, Tom Claassen course SML 280

5

Chapter 5 Neural Networks

Bert Kappen, Tom Claassen course SML 281

5

Feed-forward neural networks

Non-linear methods using a fixed set of basis functions (polynomials) suffer from curse of
dimensionality.

A succesful alternative is to adapt the basis functions to the problem.
- SVMs: convex optimisation, number of SVs increases with data
- MLPs: aka feed-forward neural networks, non-convex optimisation

Bert Kappen, Tom Claassen course SML 282

5.1

Feed-forward Network functions

We extend the previous regression model with fixed basis functions

y(x,w) = f

 M∑
j=1

wjφj(x)


to a model where φj is adaptive:

φj(x) = h(

D∑
i=0

w
(1)
ji xi)

Bert Kappen, Tom Claassen course SML 283

5.1

Feed-forward Network functions

In the case of K outputs

yk(x,w) = h2

 M∑
j=1

w
(2)
kj h1

(
D∑
i=0

w
(1)
ji xi

)
h2(x) is σ(x) or x depending on the problem. h1(x) is σ(x) or tanh(x).

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

x1

x2

z1

z3

z2

y1

y2

inputs outputs

Left) Two layer architecture. Right) general feed-forward network with skip-layer connections.

If h1, h2 linear, the model is linear. If M < D,K it computes principle components
(Bishop section 12.4.2).

Bert Kappen, Tom Claassen course SML 284

5.1

Feed-forward Network functions

Two layer NN with 3 ’tanh’ hidden units and linear output can approximate many functions. x ∈ [−1, 1],

50 equally spaced points. From left to right: f(x) = x2, sin(x), |x|,Θ(x). Dashed lines are outputs of

the 3 hidden units.

−2 −1 0 1 2

−2

−1

0

1

2

3

Two layer NN with two inputs and 2 ’tanh’ hidden

units and sigmoid output for classification. Dashed

lines are hidden unit activities.

Feed-forward neural networks have good approximation properties.

Bert Kappen, Tom Claassen course SML 285

5.1.1

Weight space symmetries

For any solutions of the weights, there are many equivalent solutions due to symmetry:
- for any hidden unit j with tanh activation function, change wji → −wji and wkj →
−wkj: 2M solutions
- rename the hidden unit labels: M ! solutions

Thus a total of M !2M equivalent solutions, not only for tanh activation functions.

Bert Kappen, Tom Claassen course SML 286

5.2

Network training

Regression: tn continue valued, h2(x) = x and one usually minimizes the squared error
(one output)

E(w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

= − log

N∏
n=1

N (tn|y(xn,w), β−1) + . . .

Classification: tn = 0, 1 , h2(x) = σ(x), y(xn,w) is probability to belong to class 1.

E(w) = −
N∑
n=1

{tn log y(xn,w) + (1− tn) log(1− y(xn,w))}

= − log

N∏
n=1

y(xn,w)tn(1− y(xn,w))1−tn

Bert Kappen, Tom Claassen course SML 287

5.2

Network training

More than two classes: consider network with K outputs. tnk = 1 if xn belongs to class
k and zero otherwise. yk(xn,w) is the network output

E(w) = −
N∑
n=1

K∑
k=1

tnk log pk(xn,w)

pk(x,w) =
exp(yk(x,w))∑K
k′=1 exp(yk′(x,w))

Bert Kappen, Tom Claassen course SML 288

5.2

Parameter optimization

w1

w2

E(w)

wA wB wC

∇E

E is minimal when ∇E(w) = 0, but not vice versa!

As a consequence, gradient based methods find a local minimum, not necessary the global
minimum.

Bert Kappen, Tom Claassen course SML 289

5.2

Gradient descent optimization

The simplest procedure to optimize E is to start with a random w and iterate

wτ+1 = wτ − η∇E(wτ)

This is called batch learning, where all training data are included in the computation of
∇E.

Does this algorithm converge? Yes, if ε is ”sufficiently small” and E bounded from below.

Proof: Denote ∆w = −η∇E.

E(w + ∆w) ≈ E(w) + (∆w)T∇E = E(w)− η
∑
i

(∂E
∂wi

)2 ≤ E(w)

In each gradient descent step the value of E is lowered. Since E bounded from below,
the procedure must converge asymptotically.

Bert Kappen, Tom Claassen course SML 290

Handouts Ch. Perceptrons

Convergence of gradient descent in a quadratic well

E(w) =
1

2

∑
i

λiw
2
i

∆wi = −η ∂E
∂wi

= −ηλiwi

wnew
i = wold

i + ∆wi = (1− ηλi)wi

Convergence when |1− ηλi| < 1. Oscillations when 1− ηλi < 0.

Optimal learning parameter depends on curvature of each dimension.

Bert Kappen, Tom Claassen course SML 291

Handouts Ch. Perceptrons

Learning with momentum

One solution is adding momentum term:

∆wt+1 = −η∇E(wt) + α∆wt

= −η∇E(wt) + α (−η∇E(wt−1) + α (−η∇E(wt−2) + . . .))

= −η
t∑

k=0

αk∇E(wt−k)

Consider two extremes:

No oscillations all derivative are equal:

∆wt+1 ≈ −η∇E
t∑

k=0

αk = − η

1− α
∂E

∂w

results in acceleration

Bert Kappen, Tom Claassen course SML 292

Handouts Ch. Perceptrons

Oscillations all derivatives are equal but have opposite sign:

∆w(t+ 1) ≈ −η∇E
t∑

k=0

(−α)k = − η

1 + α

∂E

∂w

results in decceleration

Bert Kappen, Tom Claassen course SML 293

Handouts Ch. Perceptrons

Newtons method

One can also use Hessian information for optimization. As an example, consider a
quadratic approximation to E around w0:

E(w) = E(w0) + bT (w −w0) +
1

2
(w −w0)H(w −w0)

bi =
∂E(w0)

∂wi
Hij =

∂2E(w0)

∂wi∂wj

∇E(w) = b+H(w −w0)

We can solve ∇E(w) = 0 and obtain

w = w0 −H−1∇E(w0)

This is called Newtons method.

Quadratic approximation is exact when E is quadratic, so convergence in one step.

Bert Kappen, Tom Claassen course SML 294

Handouts Ch. Perceptrons

Line search

Another solution is line optimisation:

w1 = w0 + λd0, d0 = ∇E(w0)

λ is found by a one dimensional optimisation

0 =
∂

∂λ
E(w0 + λd0) = d0 · ∇E(w1) = d0 · d1

Therefore, subsequent search directions are orthogonal.

Bert Kappen, Tom Claassen course SML 295

Handouts Ch. Perceptrons

Conjugate gradient descent

We choose as new direction a combination of the gradient and the old direction

d′1 = ∇E(w1) + βd0

Line optimisation w2 = w1 + λd′1 yields λ such that d′1 · ∇E(w2) = 0.

The direction d′1 is found by demanding that ∇E(w2) ≈ 0 also in the ’old’ direction d0:

0 = d0 · ∇E(w2) ≈ d0 · (∇E(w1) + λH(w1)d′1)

or
d0H(w1)d′1 = 0

d0, d
′
1 are said to be conjugate.

Bert Kappen, Tom Claassen course SML 296

Handouts Ch. Perceptrons

Polak-Ribiere rule

The conjugate directions can be computed without computing the Hessian matrix, for
instance using the Polak-Ribiere rule:12

β =
(∇E(w1)−∇E(w0)) · ∇E(w1)

‖∇E(w0)‖2

It can be proven that this rule keeps the last n directions all mutually conjugate [?].

12We need 0 = dT0H(w1)d′1. We use ∇E(w0) ≈ ∇E(w1) + (w0 − w1)TH(w1) = ∇E(w1)− dT0H(w1).

Bert Kappen, Tom Claassen course SML 297

Handouts Ch. Perceptrons

Stochastic gradient descent

One can also consider on-line learing, where only one or a subset of training patterns is
considered for computing ∇E.

E(w) =
∑
n

En(w) wt+1 = wt − αt∇En(wτ)

May be efficient for large data sets. This results in a stochastic dynamics in w that can
help to escape local minima.

Bert Kappen, Tom Claassen course SML 298

Handouts Ch. Perceptrons

Robbins Monro

Method of stochastic approximation originally due to Robbins and Monro 1951:
- Solve M(x) = a with M(x) = 〈N(x, ξ)〉.
- Iterate xt+1 = xt + αt(a−N(x, ξ))
- Convergence requires ∑

t

αt =∞
∑
t

α2
t <∞

For instance αt = 1/t.

Application to stochastic gradient descent:
- ∇E(w) = 0 with ∇E(w) =

∑
n∇En(w)

- Iterate wt+1 = wt − ηt∇En(w)

Extensions of SGD and comparisons see [?].

Bert Kappen, Tom Claassen course SML 299

5.3.1

Error backpropagation

Error is sum of error per pattern

E(w) =
∑
n

En(w) En(w) =
1

2
‖y(xn,w)− tn‖2

yk(x,w) = h2

wk0 +

M∑
j=1

wkjh1

(
wj0 +

D∑
i=1

wjixi

)
= h2(ak)

ak = wk0 +

M∑
j=1

wkjh1(aj) =

M∑
j=0

wkjh1(aj) h1(a0) = 1

aj = wj0 +

D∑
i=1

wjixi =

D∑
i=0

wjixi x0 = 1

Bert Kappen, Tom Claassen course SML 300

5.3.1

Error backpropagation

We do each pattern separately, so we consider En

yk(x
n,w) = h2(ank) = h2

 M∑
j=0

wkjh1(anj)

 = h2

 M∑
j=0

wkjh1

(
D∑
i=0

wjix
n
i

)
∂En

∂wkj
= (ynk − tnk)

∂ynk
∂wkj

= (ynk − tnk)h′2(ank)
∂ank
∂wkj

= (ynk − tnk)h′2(ank)h1(anj)

= δnkh1(anj) δnk = (ynk − tnk)h′2(ank)

∂En

∂wji
=

K∑
k=1

(ynk − tnk)
∂ynk
∂wji

=

K∑
k=1

(ynk − tnk)h′2(ank)
∂ank
∂wji

=

K∑
k=1

δnkwkjh
′
1(anj)

∂anj
∂wji

=

K∑
k=1

δnkwkjh
′
1(anj)xni = δnj x

n
i

δnj = h′1(anj)

K∑
k=1

δnkwkj

Bert Kappen, Tom Claassen course SML 301

5.3.1

Error backpropagation

zi

zj

δj
δk

δ1

wji wkj

The back propagation extends to arbitrary layers:

1. zni = xni forward propagation all activations znj = h1(anj) and znk = h2(ank), etc.

2. Compute the δnk for the output units, and back-propagate the δ to obtain δnj each
hidden unit j

3. ∂En/∂wkj = δnkz
n
j and ∂En/∂wji = δnj z

n
i

4. for batch mode, ∂E/∂wji =
∑
n ∂E

n/∂wji

E is a function of O(|w|) variables. In general, the computation of E requires O(|w|)
operations. The computation of ∇E would thus require O(|w|2) operations.

The backpropagation method allows to compute ∇E efficiently, in O(|w|) operations.

Bert Kappen, Tom Claassen course SML 302

5.5

Regularization

M = 1

0 1

−1

0

1 M = 3

0 1

−1

0

1 M = 10

0 1

−1

0

1

Complexity of neural network solution is controlled by number of hidden units

0 2 4 6 8 10

60

80

100

120

140

160

sum squared test error for different number of hidden units and different weight initializations. Error is also

affected by local minima.

Bert Kappen, Tom Claassen course SML 303

5.5

Part of the cause of local minima is the saturation of the sigmoid functions tanh(
∑
wijxj).

When wij becomes large, any change in its value hardly affects the output, implying
∇ijE = 0.

One can partly prevent this from happening by

• chosing tanh instead of σ transfer functions

• scaling of inputs and outputs with mean zero and standard deviation one

• proper initialisation of wij with mean zero and standard deviation of order 1/
√
n1,

with n1 the number of inputs to neuron i.

• add regularizer such as
∑
iw

2
i to cost keeps weights small

Bert Kappen, Tom Claassen course SML 304

5.5

MLPs are universal approximators

Consider 2n binary patterns in n dimensions and two classes:

xµ → cµ = ±1, xµi = ±1

Use 2n hidden units, labeled j = 0, . . . , 2n − 1, k labels input. Set

wjk = b if kth digit in binary repr. of j is 1

wjk = −b else

j binary wj1 wj2
0 00 -b -b

1 01 -b b

2 10 b -b

3 11 b b

x1 x2 w0kxk w1kxk w2kxk w3kxk
-1 -1 2b 0 0 -2b

-1 1 0 2b -2b 0

1 -1 0 -2b 2b 0

1 1 -2b 0 0 2b

Use threshold of (n − 1)b at each hidden unit. The remaining problem has p = 2n

patterns in 2n dimensions and is linearly separable.

Bert Kappen, Tom Claassen course SML 305

5.5

MLPs are universal approximators

The combination of linear summation and non-linear functions can create many different
functions.
- The MLP with a single hidden layer can map any continuous function [?, ?]

- The MLP with multiple hidden layers may (or may not) be more efficient

Bert Kappen, Tom Claassen course SML 306

5.5

5.5.2 Early stopping

0 10 20 30 40 50
0.15

0.2

0.25

0 10 20 30 40 50
0.35

0.4

0.45

w1

w2

w̃

wML

Early stopping is to stop training when error on test set starts increasing.

Early stopping with small initial weigths has the effect of weight decay:

E(w) =
1

2

(
λ1(w1 − w∗1)2 + λ2(w2 − w∗2)2 + λ(w2

1 + w2
2)
)

∂E

∂wi
= λi(wi − w∗i) + λwi = 0, i = 1, 2

wi =
λi

λi + λ
w∗i

When λ1 � λ� λ2, w1 ≈ λ1/λw
∗
1 and w2 ≈ w∗2.

Bert Kappen, Tom Claassen course SML 307

5.5

Weights in ’flat’ directions are underspecified by the data and stay small.

Bert Kappen, Tom Claassen course SML 308

