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Run the program makedata.m to generate an instance of the following com-
binatoric optimisation problem:

E = −
1

2
xtwx,

with w an n × n symmetric matrix with zero diagonal and x = (x1, . . . , xn)
a binary vector: xi = ±1. Finding the minium of E is intractable in general
because x is binary (what is the solution when x is real and ‖x‖ = 1?).

However, for specific choices of w, the problem can be significantly more or
less difficult. For instance, if all elements wij are positive or zero, there are two
optimal solutions:

x = ±(1, . . . , 1)

(show this result). This solution minimizes the cost for each interaction term
separately. These systems are called ferro-magnetic.

Instead, when wij has arbitrary sign, there is typically no global solution
x that minimizes each term wijxixj . Because not all terms can be satisfied
simultaneously, these systems are called frustrated. A simple example is the
interaction matrix





0 1 1
1 0 -1
1 -1 0





the global minimum is the best compromise for all interaction terms taken to-
gether.

We will study several methods to approximately solve this problem.

1 Iterative Improvement

The iterative improvement is the simplest method for discrete optimization. It
consists of the following ingredients:

Initialization We start with a random initialization of x. Compute the cost
E(x).
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Definition of neighborhood The iterative improvement algorithm compares
the cost of x with the cost of neighboring states x′. If the new cost is
lower than the old cost, x is replaced by x′:

E(x′) < E(x),→ x := x′

Otherwise, x′ is rejected. Clearly, the larger the neighborhoud, the more
time that is needed for convergence and the better the solution that is
obtained.

Termination When no further improvement is obtained for any state in the
neighborhood of x, the algorithm terminates.

Excersizes

Use the program optimizer.m to apply the interative improvement method to
the combinatoric optimization problem.

• Compare the ferro-magnetic and frustrated problems. How many restarts
are needed for reproducible results?

• For the frustrated problem, study the influence of the neighborhood size
on the quality of the solution and the cpu time required.

2 Simulated annealing

Simulated annealing is an advanced method for combinatoric optimization. The
idea is to convert the optimization problem to a probability estimation problem
by defining the probability distribution

p(x) =
exp(−βE(x))

Z
(1)

Z is a normalization constant and β is an adjustable parameter, in physics
referred to as the inverse temperature. For small β, p(x) looks like an inverted
version of E(x). For large β, p(x) becomes peaked around the global minimum
of E(x). See fig. 1.

This suggests the following algorithm for finding the minimum:

Initialization Choose a random initialization of x. Choose the initial value of
βinit such that the sampling will reach all parts of the x-space with high
probability, independent of the particular initial value of x.

Cooling schedule Choose a increasing sequence of β values β1, . . . , βT2. Then
for each βi:

Markov chain Use the Metropolis method to sample T 1 samples from the
distribution p(x) ∝ exp(−βiE(x)). Estimate

〈E〉 =
1

T 1

T1
∑

i=1

E(xi), σ2 =
1

T 1

T1
∑

i=1

(E(xi) − 〈E〉)2
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Cost function p, β=0.1 p, β=1 p, β=10

Figure 1: Simulated annealing. The algorithm samples the distribution Eq. 1
for increasing values of β. If this is done carefully, the global minimum of E(x)
is obtained.

Termination For increasing β, the spread in values of E that are obtained in
the Markov chain decreases. The algorithm terminates when the spread
is zero.

An illustration is given in Fig. 2.

2.1 Excersizes

Use the frustrated problem with n = 50.

• Reproduce parts of figure 31.11 of MacKay a ferromagnetic system of
n = 50 spins, ie. estimate the mean energy and the standard deviation
of the energy. Repeat this for a frustrated system by choosing random
couplings.

• Study the effect of initial β and the cooling schedule (factor) and the
length of the Markov Chain T 1 on the performance and reproducibility
of the SA result. Estimate the critical temperature in both cases. Use a
larger n to get more accurate results if your computer or patience allows.

• Which method (SA or Iter) has the best performance in terms of speed
and quality?

• Put n = 200 and make an instance with the random seed fixed (rand(’state’,0)).
Try to find the best solution and compare with your fellow students.
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Figure 2: Blue curve: A typical SA run. n = 200 frustrated problem. Initial
β1 = 0.0486, βi+1 = 1.01 ∗ βi. Markov chain length is T 1 = 1000, nearest
neigbors only. Green dot: best out of 100 iterative improvement runs with
nearest neigbors. Red dot: best out of 10 iterative improvement runs with pair
flips.
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