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HOW TO BEAT-CRITICAL SLOWING-DOWHN: 1996 UPDATE

Alan D. SOKAL

Department of Physics, New York University, § Washington Place, Hew York, NY 10003 USA

(SOKALQACF4.NYU.EDY)

We discuss the problem of crtical slowing-down {CSD} in Monte Carlo simulations, and review recent
progress in devising collective-mode algorithms that reduce or dfmimnate CSD. Emphasis is on duster and
embedding algonthims; multignd and Fourier acceleration are also discussed brefly.

1. GENERAL THEORY

This talk is the latest installment in 2n an-
nual tradition of en the problem of critical
slowing-down in Monte Carlo simulations [1,2.3.4].
In particilar, much useful background can be found
in last year's review by Ulli Wolf {4] and in the pre-
vious year's review by Steve Adler [3]. For lack
of space-time | will not discuss here: aigorithms
for dynamical fermions [5]; algorithms for comput-
ing propagators [6,7]; or algorithms for geometrical
problems such as self-avoiding walks 8], random
graphs [9] and random swrfaces.

So what is critical slowing-down? Let us re-
call the general principles of dynamic Monte Carlo
methods [10,11]: We wish to generate random
samples from some probability distribution =(p)
[usually a Gibbs measure e~ 7¥)]. To do this, we
invent a transition probabifity matrix P{y — ')
that is ergodic (“from any state one can reach any
other”) and that leaves = invariant:

[er P =) = ate). @)

[The detailed-balance condition w{p) P(p — ©') =
w(¢") P(¢’ — ¢) is sufficient but not necessary]
We then simulate the Markov process defined by P,
starting in some arbitrary initial configuration ¢(®;

this generates a random sequence of configura-
tions (), o) . (™), where n is the run length.
After an initial transient (which we discard), the
system will have settled down to very nearly the
unique equilibrium probability distributior . So

*To some extent, in some favorable cases. {Al-
beit probably not the cases you want to study.)

we form sample means 4 = 2 37 AftY), and
take them as estimates of the theoretical means
{4) = Jdpmip) Al).

The trouble, of course, i that the samples
™ B are not statistically independent, bot
are i general highly conrelated. If the “aetocorre-
lation time™ of the Markov chain is 7. then a rin of
length n provides only ~ n/jr “effectively mdepen-
dent” samples. In patiadar, near a aritical pomt
{second-order phase transition), 7 typically diverges
as

T~ MLdE): T (2)
where L ts the lattice size, £ is the correlation length
in an infinite-volume system at the same parame-
ters,and zis a dy ic critical exp i For the
traditional local algorithms — such as the single-
site Metropolis and heat-bath algorithms, the wn-
accelerated Langewin algorithm, and so forth— z s
typically near 2 (see Section 2). This divergence of
7 at a critical point is called critical slowing-down
{CSD). For a theorist studying dynamic critical be-
havior, this is a fascinating phenomenon; but for a
practitioner of Monte Carlo, it is 2 pain. The goal
of much research over the last five years has been,
therefore, to invent new Monte Carlo algorithms
with radically reduced critical slowing-dcwn.

(Let me remark that near a first-order transi-
tion the slowing-down is even more severe: typ-
ically 7 ~ exp(cL?!), as required for t ling
through very improbable configurations involving

interfaces. Almost no progress has been made, to
my knowledge, in devising algorithms that alleviate
first-order slowing-down.)
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It is necessary to be a bit more precise: there
are at least two distinct definitions of 7, and corre-
spondingly, two distinct exponents z. Consider an
observable 4, and let

Caalt) = (AVACH) — (4 (3)

be its unnormalized autocorrelation function in the
stationary Markov process (i.e. in equilibrium}.
Define also the normalized autocorrelation function

paa(t) = Caa(t)/Casl0) . 0]

Typically ps4(t) decays exponentially {~ e~1%/7) for
large ¢; we define the ezponential autocorrelation

times
t
Tez, = limsup ——————— 5
e vy T R
Texp = sgp Teap,A (6)

Thus, Tezp,a is the relaxation time of the slowest
mode which couples to 4, and 7., is the relaxation
time of the slowest mode in the system. (For most
observables, T..p 4 = Tezp; the exception is when
A is “orthogonal” to the slowest mode.} On the
other hand, the statistical error in estimates of {4}
is controlled by the iniegrated autocorrelaiton time

s =3 3 o), ()

in the sense that

1 b 27,‘,,{ A
var (—ZA(‘)) = ZER0L(0).  (8)
ni n
In other words, a run of length n contains n/27;, 4
“effectively independent” samples. (This is some-
times expressed by saying that the “statistical inef-
ficiency” of dynamic Monte Carlo, relative to static
Monte Carlo, is 27:,¢,4.) In summary, the exponen-
tial and integrated autocorrelation times play dif-
ferent roles: 7., is very natural from the point of
view of the theory of dynamic critical phenomena,
while 7;,, 4 is of practical importance.

It seems to be generally believed that .., and
Tint,a are of the same order of magnitude, i.e. di-
verge with the same dynamic critical exponent z.
This belief is implicit in articles which refer sim-
ply to “the” dynamic critical exponent z; and it is

made explicit in some of my own papers of a few
years back (Whld’l in my embarr t 1 frai

from citing). It now seems to me quite obvious
that 7.op and Tin 4 need nol be of the same order
of magniiude, i.e. they need not scale with the
same dynamic critical ezponent z. So we should
define distinct dynamic critical exponents z.., and

*

Zint A%
Tezp,d ™ Tezp ™ Hﬁn(La {}1&7 (9)
T4~ mn(L, £ (10)
Nearly always one has it 4 $ 7ezp,a {this is prov-
able if detailed balance holds [11]), hence zg s <
Zezp- But Zins 4 can be sirictly smaller than z.,}
One known example is the pivot algorithm for the
ordinary random walk, which is exactly soluble [12,
Section 3.3]. But | daim that in fact ziz 4 < 7y
should be regarded as the typical behavior!
To see this, consider the following analogses be-
tween dynamic and static critical phenomena:

Dynamic Static

fime «— space
Tep +— &
susceptibility x (if A = M)
specific heat C,, (if A = &)
etc.
Now we know perfectly well that the susceptibility
and correlation length have different critical expo-
nents (-7 # v); so shouldn’t one expect that the in-
tegrated and exponential autocorrelation times do
likewise (zins 4 F# Zezp)? Indeed, there is a scaling
law relating ¥ to v and the exponent 7 describing
the decay of correlations at criticality; and one ex-
pects a similar scaling law for dynamic correlations:

Tt A 2

paa(t) ~ EPAF (] Terp)
Gaa(z) ~ = HIE(z /E)
y Il

Zint,a = (1 — pa)2eap va = (2~ na)

*Even for observables A that are orthogonal
to the slowest mode, one typically expects that
Texp,A ™~ Tezp. FOr example, in any linear stochastic
iteration for a Gaussian model, the observables : p™:
have an exponential autocorrelation time which is
exactly 1/n times that of the slowest mode [14,
Section VIII].
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So one expects i g < Z.n, except in the spe-
aal case when ps = & This latter does occur
in some simnple examples (e.g. in most algorithms
for the Gaussian model}, but | see no reason for
it to occur even in the Glauber dynamics for the
two-dimensional Ising model! The moral is: (1)
the theory of dynamic aritical ph needs to
be rethought; (2) future numerical papers need to
distinguish between =+ and 2z, (and to spec-
ify AY); and (3) past numerical papers need to be
reanalyzed.

2. COLLECTIVE-MODE MONTE CARLO

The aitical slowing-down of the conventional
Monte Carlo algorithms arises fundamentally from
the fact that their updates are local: i a single
step of the algorithm, “nformation”™ is transmet-
ted from a given site or knk only to its nearest
neighbors. Crudely one might guess that thes -
formation™ exeantes a random walk arousd the fat-
tice. In order for the system to evolve to an “es-
sentiafly new” configuration, the “information” has
to travel a distance of order £, the (static) cor-
relation length. One would guess, therefore, that
7 ~ £ near aiticality, i.e. that the dynamic aiti-
cal exponent z equals 2. This guess is corvect for
the Gaussian mode} (free field).! For other models,
we have a situation analogous to theory of static
critical phenomena: the dynamic critical exponent
is a nontrivial number that charactesizes a rather
large class of algorithms (a so-called “dynamic uni-
versality class™). In any case, for most models of
interest, the dynamic critical exponent for local al-
gorithms is dose to 2 (usually somewhat higher)
[15,16]. Accurate measurements of dynamic oriti-
cal exp are, | , very difficult — even
more difficult than measurements of static critical
exponents — and require enormous quantities of
Monte Carlo data: run lengths of 2 100007, when
7 is itself getting large!*

We can now make a rough estimate of the com-

Hndeed, for the Gaussian mode! this random-
walk picture can be made rigorous: see [13] com-
bined with [14, Section 8}.

I The statistical aspects of such studies are dis-
cused in [11], [12, Appendix C] and [17].

puter time needed to study the Ising model near its
critical point, or guantum chromodynamics near
the continuum himit. Each sweep of the lattice
takes a time of order LY, where d is the spatial (or
space-“time” ) dimensionality of the model. And we
need = 27 sweeps in order to get one “effectively
independent” sample. So this means a computer
time of order L9¢* > £%t*% For high-precision
statistics one might want 10° “independent™ sam-
ples. Thereader is nvited toplugin § = 100, 4 = 4
{or d = 3 if you're 3 condensed-matter physicist)
and get depressed. [t should be emphasized that
the factor £ is inherent in ol Monte Carlo algo-
rithms for spin models and field theories (bot not
£ could, however, conceivably be rediced or elim-
mated by 5 more dever algorithm.

What is to be done? Owr knowledge of the
physics of aitical slowing-down tells os that the
slow modes are the long-wavelength modes, & the
spdating s porely local. The natwrad solatios s
therefore to speed up those modes by some sort of
eollective-mode {nonlocal) updating. R s neces-
saxy, then, to idenlify physically the appropriate
collective modes, and to devise an efficient com-
pulstional alyoriikm for speeding up those modes.
These two goals are nnfortonately i conflict: it is
very difficult to devise collective-nmnde alportians
that are not so nonlocal that their ncreased com-
putational complexity per iteration omtmeighs the
reduction in aitical slowsng-down. (For example,
d = 4, an algorithem that ebmmates aitical sowng-
down bt has computational complexity O(V?}) s
as bad as an O(V'} algorithen whose dynassic aiti-
cal exponent is z — 4 — iLe. much worse than the

Specific implementations of the collective-
mode idea are thus highly model-dependent: one
has to use one’s knowledge of the physics of a
given model to build into the algorithm the col-
lective modes that the systemm wants — and do

£Clearly one must take L > £ in order to avoid
severe finite-size effects. Typically one approaches
the critical point with L = cf, where ¢ = 2 — 4,
and then uses finite-size scaling [18] to extrapolate
to the infinite-volume fimit.
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so at not too great a computational cost. Three
classes of collective-mode algorithms have been in-
vented so far, and found to be advaniageous in at
least some models:

o Fourier acceleration {20}
o Multigrid Monte Carlo (MGMC) [21,14,22]

o Auxiliary-variable  {cluster) algorithms

[23,24,25]

{Overrelaxation and hybrid are not collective-mode
algorithms, but they can in some cases reduce the
critical slowing-down from z = 2 to z = 1 [3,26].)

3. FOURIER ACCELERATION AND MULTI-

GRID

Fourier acceleration and multigrid Monte Carlo
are discussed in detail in references [20] and {14},
respectively. Here { want to make only a brief com-
parison.

Fourier acceleration and multigrid are phile-
sophically and physically very similar {though their
technical details are quite different). Both are
based on an intuition from the free-field {Gaus-
sian) model, and both can be proven to eliminate
completely the critical slowing-down in this model ¥
Both offer the system collective-mode updates of
fized shape {sine waves in Fourier acceleration, typ-
ically square or triangular waves in multigrid) on all
length scales, and allow the system to choose the
amplitude. {These algorithms make sense, there-
fore, only for systems of continuous-valued spins.)
Both algorithms are expected to work well (i.e. have
z == 0) for systems that are in some sense near-
Gaussian, such as asymptotically free continuous-
spin models or the low-temperature (spin-wave)
phase of the two-dimensional XY model. Both
algorithms are expected to work badly (i.e. have

¥This is not, of course, such a great feat: the
critical slowing-down in the Gaussian model can
also be eliminated by throwing away the computer
and solving the model analytically. | consider the
Gaussian model, rather, as a constraint: if an algo-
rithm does not work well for the Gaussian model,
then it is unlikely to work well for near-Gaussian
models (e.g. asymptotically free theories) either.

z == 2) for systems in which the dominant large-
scale collective modes have discrete elements, such
as spin-flips in the one-component * model or
vortices in the two-di al XY del near
the Kosterlitz-Thouless transition. In summary, the
performance of Fourier acceleration and MGMC 1s
probably very similar, in the sense that they proba-
bly work well for the same models and work badly
for the same models; it is even conceivable that in
many models they are in the same dynamic univer-
sality class.

Two recent studies of MGMC for the two-
dimensional XY model [22,27] confirm these pre-
dictions: they find zyeac = 1.4 as the oitical
temperature is approached from above, compared
10 Zneat-patn = 2.1; hut they find zycaec = 0 in
the low-temperature (spin-wave) phase. Studies of
MGMC for asymptotically free o-models are now
in progre=s [28,29]. Correspondingly detailed stud-
ies of the dynamic critical behavior of the Fourier-
accelerated Langevin and hybrid algonthms have
not yet been done — but they ought to be! (Who-
ever does them should use the exact versions of
these algorithms [30,31].)

4. AUXILIARY-VARIABLE (CLUSTER) ALGO-

RITHMS

A very different type of collective-mode algo-
nthm was proposed three years ago by Swendsen
and Wang [23] for Potts spin models. Since then,
there has been an explosion of work trying to under-
stand why this algorithm works so well and why it
does not work even better, and trying to improve or
generalize it. The basic idea behind all algorithms
of Swendsen-Wang type is to augment the given

del by of iliary variables, and then
to simulate this augmented model. (Algorithms of
this type are sometimes called “cluster algorithms”,
but this term is too narrow, because the relevant
objects are not always clusters — see below.)

Consider the Hamiltonian for the ferromagnetic
g-state Potts model [32]:

H{o) = - Z i (6"1'10']‘ -1, (11)
(i)

where J;; > 0 for all ¢,j. The partition function is
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then

o} (i} ;

Y UM - py) + mibee]  (12)
==

where we have defined p; = 1 — exp{—J;). We
now employ the deep identity

I

E

L= ]
where a and b are real numbers. ! That s, we in-
troduce on each bond (i} an auxhary variable =;;
taking the valves 0 and 1. and obtain

z =YY M - pidbass + Bisbuysbecr] -

{e} =} &)
1)

Let us now take seriously the {n} 25 dynamical vari-
ables: we can think of 12;; as an occupation variable
for the bond {i7} (1 = occupied, 0 = empty). We
therefore defne the Fortuin-Kasteleyn-Swendsen-
Wang (FKSW} model to be a jont nxodel having
g-state Potts spins o; at the sites and oocupation
variables n;; on the bonds, with the joint probabil-
ity distribution imphed by (14). Finally, let us see
what happens if we sum over the {0} at fixed {n}.
Each occupied bond (i7) imposes a constraint that
the spins o; and o; must be in the same state, but
otherwise the spins ate unconstrained. We there-
fore group the sites into connected clusters (two
sites are in the same cluster if they can be jomed
by a path of occupied bonds); then all the spins
within a duster must be in the same state {ofl ¢
values are equally probable), and distinct clusters
are independent. It follows that

Z = 2( Il P (( il (1—p,-,—))q“"’,

{2} \{if):nij=1 i7): nij=0

(15)
where C(n) is the number of connected dusters (in-
cluding one-site cl } in the graph whose edges

are the bonds having n;; = 1. The cosresponding

IThis identity is valid in an arbitrary abelian
semigroup, but such generality will not be needed
here.

probability distribution is called the random-cluster
model with paremeter g [36}: it is a generafized
bond-percolation model with non-local correlations
coming from the factor ¢°, and for ¢ = 1 it re-
duces to ordinary bond percolation.

We have thas verified the following facts about
the FKSW model:

3} Zpuse = Zrxsw = Zne.

b} The marginal distribution of srxsw on tie
Potts variables {o} (integrating out the {n}}
s precisely the Potts model gp,..{o}).

<} The margmal distribution of prxew on the
bond occopation variables {n} (ategrotmg
cut the {s}) i precisely the random-chrster
modef par{n}.

The conditional destributions of prroy e dbo
smple:

d) The conditional distribution of the {n} gives
the {o} = as follows: independently for each
bond {ij}. one sets n; = 0 m case o; # o,
and sets n; = 0,1 with probability I — ;. ;.
sespectrrely, in case o; = 55

€} The conditicaal distribution of the {o} gven
the {n} & as follows: mdependently for eack
connected custer, one sets all the spns o; m
the duster to the same valve, chosen egaeprob-
ably from {1,2,....4}

ulates the joint model (14) by alternately applying
is, by alternately generating new bond occupation
variables (independent of the old ones} given the
spins, and new spin variables (independent of the
old ones) given the bonds. Each of these operations
can be carried out in a computer time of order vol-
ume: for generating the bond variables this is triv-
ial, and for generating the spin vasables it refies
on an efficient (finear-time) algorithm for comput-
ing the connected clusters [33,34,35]. It is easy o
see that the SW algorithm is ergodic and leaves
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L X Tint £(SW) | Teapa’ Meir) | g=1 7=2 9=3 | q=2¢ |
64| 1575 ( 10) | 5.25 (0.30) | 5380 (140) | =1l o p - -
128 | 5352 ( 53) | 7.05 (0.67) | 23950 (80) | orie ) —" ,i
256 | 17921 (109) | 6.83 (0.40) | 704500 (est.) | a=20 0 1 aas (7 |00~ (m_}{
512 | 59504 (632) | 7.99 (0.81) | 458000 est.) PN A TR -
B =075 {7) | ;
Table 1: Data for two-dimensional Ising model at d=4j] 0 | 1{eaa?) | — | — |

criticality.  Susceptibility x and Swendsen-Wang
autocorrelation time 7. {€ = energy = slow-
est mode) are from [2]. Metropolis autocorrelation
time Tezp a1 (M = magnetization ~ slowest mode)
is from [39]; data in italics are extrapolations. Stan-
dard error is shown in parentheses.

invariant the distribution (14).**

it is certainly plausible that the SW algorithm
might have less critical slowing-down than the con-
ventional (single-spin-update) algorithms: the rea-
son is that a local move in one set of variables can
have highly nonlocal effects in the other. For exam-
ple, setting n; = 0 on a single bond may disconnect
a cluster, causing a big subset of the spins in that
cluster to be flipped simultaneously. In some sense,
therefore, the SW algorithm is a collective-mode al-
gorithm in which the collective modes are chosen
by the system rather than imposed from the out-
side as in Fourier acceleration or multigrid. (The
miracle is that this is done in a way that preserves
the correct Gibbs measure.)

How well does the SW algorithm perform? Ta-

Table 2: Current best estimates of the dynamic
critical exponent z for the Swendsen-Wang algo-
rithm. References: d =2, ¢ =2 [40,41,23]; d =2,
g=3{82481;d=2,9g=4{42};d=3.g=2
{43,17,23); d = 4, g = 2 {44]. Exror bar is a 95%
confidence interval.

sistent both with 755 ~ L™ [23] and with
7sw ~ log L {40} (it seems difficult tc distinguish
except by using exfremely large lattices, e.g. L up
to 2000 or more). By contrast, the Metropolis al-
gorithm has z =~ 2.13 [39). For L = 512, this
translates into a facto-of 50000 advantage for SW
over Me is. Even granting that one teration
of the Swendsen-Wang algorithm may be a fac-
tor of ~ 10 — 100 more costly in CPU time than
one iteration of a conventional algorithm (the ex-
act factor depends on the efficiency of the cluster-
finding subroutine), the SW algorithm wins already
for L 2 25.

For other Potts models, the performance of the
SW algorithm is less spectacular than for the two-

&

tonal Ising model, but it is still very impres-

ble 1 shows some data [2] on a two-di ional
Ising model at the bulk critical temperature; for
comparison we give also data on the single-site
Metropolis algorithm [39]. These data are con-

**Historical remark: The random-cluster model
was introduced in 1969 by Fortuin and Kasteleyn
[36]; they derived the identity Zp,u. = Zpc and
some corresponding identities for correlation func-
tions. These relations were rediscovered several
times during the subsequent two decades [37]. Sur-
prisingly, however, no one seems to have noticed the
joint probability distribution (14) that underlay all
these identities; this was discovered implicitly by
Swendsen and Wang [23], and was made explicit
by Edwards and Sokal [38].

sive. In Table 2 we give the current best estimates
of the dynamic critical exponent zsy for ¢-state
Potts models in d di ions, as a function of ¢
and d. (For the SW algorithm the decay of the
energy-energy autocorrelation function appears to

be very close to exponential, hence zin e = Zerp.)
All these exponents are much lower than the z > 2
observed in the single-spin-flip algorithms.
Although the SW algorithm performs extraor-
dinarily well, we understand very little about why
these exponents take the values they do. Some
cases are easy. If ¢ = 1, then all spins are in
the same state (the only state!), and all bonds are
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thrown independently, so the atocorrelation time
s ze10. {Here the SW slgorithm just reduces to
the standard stetic algorithm for independent bond
percolation.} H 4 = 1 {more generally, if the lat-
tice s 3 iree), the SW dynamics is exactly soluble:
the behavior of each bond is independent of each
other bond, and 7, — —1/log{l — 1/q} < oo as
B — +oc. But the remamder of our snderstand-
ing is very munky. Two princpal insights have been
ohbtamed so for:
a) A calculation yielding zsw = 1 2 mean-feld
{but of course does not prove)} that zop = 1
for ksing models (g = 2) in dimension d > 4.

b) A rigorous proof that zew > ofr 42} phys-
ically this is due to the slow convesgence of
energy-Eke observables. This bound, whie
vakd for all d and g, s extremely far from
sharp for the ksing models in imensions 3 and
higher. But it is reasonably good for the 3-
and 4-state Potts models i fwo demensions,
and i the latter case it may even be sharp.

But much remains to be undeistood!

Numerous modifications and generafizations of
the SW algorithm have been proposed. For Potts
and related models we have:

o Single-cluster variant [24]

® Duality-improved SW algorithm (d = 2 only)
47

e Multi-scale SW algorithms [51]

* SW algorithm for Potts lattice gauge theories
[49.50

o Algorithm for fully frustrated Ising models [52]

For non-Potts models, several generalizations have
been proposed [38,53], but the most promising
ideas at present seem to be the embedding algo-
rithms discussed in the next section.

in the single-cluster (1C) variant of the SW al-
gorithm [24], one builds only a single cluster (start-
ing at a randomly chosen site) and flips it — as

opposed to the standard SW algorithm, which enu-
merates all the clusters in the lattice. Clearly, one
step of the single-cluster SW algorithm makes fess
change n the systern than one step of the standard
SW algorithm, but it also tokes much jess work:
what matters is the dynamic critical exponent =
measured i CPU-time unils. One advantage of
the smgle-cluster algorithm is that the probabidity of
choosing a chisster is proportional to its size (since
we pick a random sile ), so the work is concentrated
preferentially on larger clusters. Another advantage
is that the successive clusters are fess strongly cov-
related. So # would not be surprismg € zicopy
were smaller than zow. The measurements thus
far [17,41,46] paint a confusing pictise: o cpy
and zew sees to be rooghly the some m d = 2
Ticcpy seems to be shghtly smaller in d = 3 (but
this is far from certam). and ziccpg seems 1o be
significantly smaller in d = 4. Better measurements
are defmutely needed.

A second generalzation, which works only =
fwo denensions, aupments the SW slgorithe by
transformations to the dual lattice $7]. Prelioe-
nary data show the complete dimination of critical
slowing-dowr: i i encrgy £ — but not for other
observables, such as {£ — (£3F — m the “ultra-
scaling region” |8 — A < L.

The idea of the multi-scale SW algonithen [51]
s to carry ot only 2 partial FKSW trassformation,
but then to apply this concept reawsively m 2 mults-
grid style. This is a very interesting idea, and it &
plausible that the W-cyde version of this algorithen
could have a dynanmc aritical exponent smalller than
that of standard SW. But this remamns to be estab-
fished; the daims that = — 0 are m my opmion
unsupported by the cuarrently available numerical
evidence.

The SW algorithm can be generafized in a
straightforward manner to Potts lattice gauge theo-
ries (more precisely, fattice gauge theories with a fi-
nite abelian gauge group G and Potls (§-function}
action). The auxiliary variables {n} live now on

plagueties, and the SW update req & ing
a random gauge field subject to the constraint of
zero curvature on each occupied plaguette. Doing
this efficiently (i.e. in time of order volume) seems
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to be a difficult problem in compirationaf algebraic
topology (an almost nonexistent field [48]); it has
been done in d = 3 by a clever use of duality [49].
[l emphasize that “clusters” play no role in this ai-
gorithm: clusters (= connected components) are
zeroth cohomology, whereas what is relevant here
is first cohomology mod G.] Experiments on the
three-dimensionat Z, gauge theory [49,50] yeld a
dynamic critical exponent z = 0.6 — 0.7.

The SW algorithm can easily be generalized to
Ising models with both ferromagnetic and antiferro-
magnetic couplings, but this generalized algorithm
does notf work well {23]. The trouble is that the
ferromagnetic and antiferromagnetic bonds work
against each other in making a phase transition,
but work together in making the SW bonds per-
colate; therefore, the SW bonds begin to perco-
Iate well above the critical temperature, and near
criticality almost all the lattice belongs to a single
huge cluster. {Flipping a huge cluster is equiva-
{ent to flipping its compl t, which consists of
many very small clusters.) Very recently, the Weiz-
mann group has made significant advance toward
handling fi d Ising models [52]: their idea is
to consider all the bonds in a plaquette as a single
unit, and to apply a cleverly chosen FKSW transfor-
mation to this entity. They say that their method
works well when every plaquette is frustrated, but
not in cases of partial frustration. This may be an

area of rapid progress in the next year or two.

Finally, it is worth indicating the general idea
behind all algorithms of Swendsen-Wang type.
Consider an arbitrary statistical-mechanical model
with variables {¢}, and let W({y}) be its Boltz-
mann weight. The idea is then to introduce auxil-
iary variables {n} according to

W({e}) = {X;W{"}({tp})- (16)

Here the {n} are any kind of variables you like,
discrete or continuous (in the latter case the sum
would be an integral), and you are free to decom-
pose W into partial Boltzmann weights Wi} any
way you please. Usually W = [], W, where the
“bonds” b are sites, links or plaquettes, and corre-
spondingly Wi}t = [T, W.,,; but this is not manda-

rd

tory. One then simuiates the joint

Wiene({e},{n}) = WIH{p}) (7
by any legal algorithm {usually by alternately ap-
plying the conditional distributions given {io} and
{n}). Such an algorithm may or may not reduce the
critical slowing-down; that depends on the physics
behind the decomposition {16). But this formalism
provides, in any event, an easy way 1o check the
validity of proposed SW- aigorithms.

5. EMBEDDING ALGORITHMS

Thanks to Swendsen and Wang, we now have
a fantastically good algorithm for simulating ferro-
magnetic ksing {and Potts) models. Can we extend
our success to non-Potts models such as nonlinear
og-mndels and lattice gauge theories?t!

Tre most promising methods at present seem
to be tre embedding algorithms: the idea is to
“embed” Ising variables {c} “inside” the original
model, and then simulate the induced Ising model
using the ordinary SW algorithm {or the single-
cluster variant).

For one-component spins, this embedding is
the obvious decomposition into magnitude and sign
[54]. Let the Hamiltonian be

H(p) = —BY wooy + 3. Vlp.), (18)

(=¥} =

where 8 > 0 and V{p} = V{—y). We write
Pz = Ex ;‘P:] ’ (19)

#More than one conference participant asked
me: “When are you guys [and gals] going to do
something useful, like giving us an algorithm for
QCD with dynamical fermions?” To such narrow
minds | offer the same counsel that conservatives
have always offered the poor: patience. More pre-
cisely, | advise using (for now) the hybrid algorithm
with a carefully tuned random trajectory length
(this may achieve z = 1 {26]), possibly combined
with Fourier acceleration. Then wait a decade or
so: | trust that by Lattice "00 we will hear either
a decent numerical solution of QCD (using a few
years CPU time on a teraflop parallel computer)
or else a decent algorithm for QCD with dynami-
cal fermions. (In truth, the situation is not quite
so grim: there is a fair chance of progress in the
near future on algorithms for computing propaga-
tors [6,7]; and this step consumes most of the CPU
time in QCD computations.)
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kg i with fer gnetic (though space-
dependent) couphings 1, = Hig.i,). There-
the Swendsen-Wang algorithm (or its single-cluster
variant). Heat-bath or S84GMC sweeps must also be
pesformed, in order to update the magnitudes.

Wolf's embedding algorithm [24.25] for O{ N -
nvariant spin models {N > 2}, independently in-
vented by Hasenbusch [55], is equally smple. Let
the Hamiltonian be

H(‘) ~ﬂ2a,-¢r, + Evéiaﬂ) % ‘”}
fzah

with 3 > 0. Nowr fix 2 unit vector r = R¥, and
wrrite

a. = o, tedo.-xir, (21
where 0l = 0. — (o, -rirand ol = (o, -rhr
are the components of o, perpendicular and par-
allel to r, and &, = sgnfo. -t} = £1. (Fipping
&, corresponds to reflecting o, in the hyperplane
pespendicular to 1.} Therefore, for fized vakses of
the {0} and {]o - r]}, ihe probabfity distribution
of the {c} is given by an Ising model with ferro-
magnetic couplings J.; = Blo- -rijo, -x|. The
algorithm is then: Choose at random a unit vector
x; fix the {1} and {|o - £]} at their current val-
ues, and update the {c} by either SW or 1CSW.
No other moves are required: the random choice of
r suffices to make the algorithm ergodic.

A third example was provided recently by Ev-
ertz, Hasenbusch, Marcu, Pinn and Solomon [56}:
it concerns solid-on-solid (SOS) models such as
the discrete Gaussian model. An SOS model has
integer-valued fields n_ living on lattice sites, and
the Hamiltonian is of the form

H(n) = 3 V(ln.—m). 2)

lzr)

The embedding is as follows: Choose cleverly a “re-
flection level” M € Z or Z + 1 (this is the subtle
part), and write

= M +e,ln, — M| . (23)

COne then fixes the {in, ~ 3|} and updates the
{c} by SW or 1CSW. This embedding is closely
anafogous to the Wollf embedding (21) for the XY
model, if one identifies an SOS height with an XY
angle.

A fourth example was provided by Ben-Av, Ev-
ertz, Marca and Solomon |57} it concerns the
ST(2) ttice gauge theory at finite temperature,
but only 2t N, = If

The general idea behind ol these algorithms is
the following: “Foliate™ the configuration space of
the ongimal model mto “leaves” Bomorphic to the
configration space of the “embedded” model. fin
the above examples the embedded madet is an Ising
model, but the idea s muchk more general. For
example. one might consider embeddings of XY
spirs i 2 Ingher o-moded, T/(1) spaes s an SU{N'}
gavge theory, eic] One then moves around the
anvent leof, using any kegitnate Monte Carlo -
gonithm for sensdatiog the conditional probability
destribution restvicted to that leaf (Le. the daced
Hamiltorsan for the embedded modef). OFf comese,
one st combine this with othey moves, or with 2
different foliation, n order 1o make the Aporithm
ergodic. {This same stracture asises i medti-grid
Monte Carlo, wheve it 5 termed “povtial resam-
pling™ [11,21,14].)

The performance of an embedding algonthm
15 detesmined by the combmed effect of two com-

i) How well the embedding captures the impor-

tant large-scale collective modes of the origmal

model.

71} How well some particular algorithm (e.g. stan-
dard SW or single-clustesr SW) succeeds n up-

! wish to emphasize the importance of studying
these questions. separatch:. if the physically rel-
evant large-scale collective motions of the original
model cannot be obtained by motions within a leaf,
then the embedding algorithm will have severe crit-
ical slowing-down no matter what method is used
to update the embedded variables. On the other
hand, if the embedding algorithm with a parfic-
ular choice of updating method for the embed-
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ded variables shows severe critical slowing-down,
this does w0t necessarily mean that the embedding
works badly: the poor performance might be due
to slow decorrelation in the inner updating subrou-
tine, and could possibly be remedied by switching
to a better algorithm for updating the embedded
model. (This is particularly likely to occu: if the
induced Hamiltonian for the embedded model ex-
hibits frustration.} It is crucial to distinguish these
two issues, if we wish to obtain physical insight.

How can we disentangle these two effects? To
study question (i), we can investigate the ideakized
embedding algorithm defined by independent re-
sampling on each leaf. (In MGMC this is called
the “idealized two-grid algorithm™.) To approxi-
mate this in practice, one makes Nj; hits of the
best available method for simulating the embedded
model, and extrapolates to N;; = co. (A familiar
analogue is approximating the single-site heat-bath
algorithm by multi-hit Metropolis.) 1 emphasize
that this is not claini=d to be an efficient algo-
rithm (usually Ny:: = 1 is optimal for fixed CPY
time). Rather, it is a test procedure for gaining
physical insight into the embedding; it is expensive
but indispensable. To study question (ii), one can
investigate the autocorrelation behavior of particu-
lar algorithms for the embedded model, using the
induced Hamiltonians generated from a few “typi-
cal” configurations of the original model.

Let’s make these ideas concrete by looking at
the Wolff algorithm for the N-vector model. At
first thought it may seem strange (and somehow
“unphysical”) to try to find Ising-like (i.e. discrete)
variables in a model with a confinuous symmetry
group. However, upon reflection (pardon the pun)
one sees what is going on [58]: if the spin config-
uration is slowly varying (e.g. a long-wavelength
spin wave), then the induced Ising Hamiltonian
tends to decouple along the surfaces where J, is
small, hence where o - r & 8. The regions where
o-r >0 and o-r <0 then get flipped indepen-
dently, and this corresponds to a long-wavelength
collective mode (Figure 1). So it is quite plausi-
ble that the idealized Wolff algorithm could have
very small (or even zero) critical slowing-down in

models where the important large-scale collective

N

Figure 1: Action of the Wolff algorithm on a
long-wavelength spin wave. For simplicity, both
spin space {o°) and physical space {z} are depicted
as one-dimensional.

modes are spin waves. {An additional argument
[56] is needed to explain how the Wolff embed-
ding deals with vortices in the two-dimensional XY
model.} To see why the practical Wolff algorithm
using SW or 1CSW updates also works well, it suf-
fices to note that the induced Ising Hamiltonian is
ferromagnetic, and that for such an lsing model
SW and 1CSW work well.

Numerical tests of the Wolf algorithm confirm
these predicticns. For the two-dimensional mod-
els with N = 2.3,4, the data show z < 0.1,
both in the idealized algorithm and in the practi-
cal algorithm with SW [58] or 1CSW [25] updates.
For the three-dimensional XY model, a simula-
tion using standard SW updates (Nj = 1) found
Ziat £ 72 0.46 [59], while one using single-cluster up-
dates found z;,. £ cpp = 0.25 [60]. But these latter
exponents may well be due to critical slowing-down
in the inner SW or 1CSW subroutine; a study of
the idealized Wolf algorithm for this model would
be very useful [61].

In view of the extraordinary success of the Wolff
algorithm for spin models, it is tempting to try to
extend it to lattice gauge theories with continu-
ous gauge group [for example, U(1), SU(N) or
SO(N)). Gauge theories differ from N-vector mod-
els in two ways:

a) The field takes values in a group rather than
a sphere. [U(1) and SU(2) are spheres, but
higher Lie groups are not.}

b) The field is a 1-form rather than a O-form, i.e.
it lives on links rather than sites. Correspond-
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mnghy, the energy is the curf of the field rather
than &5 gradient, and i lives on plaguetfes
rather thon finks. As a result, the theory has
a local genge invarisnce rather than just a2
global symmetry.

The deep physical difference between gauge and
spin modeis is, of course, item (b). The fact of
gauge mvariance, and the transverseness of phys-
iczal excitations in a gange theory, will impose se-
vere consiraints oa the as-yet-imknown analogue
of the embedding (21) [f mdeed such an ana-
fogue exists].¥# At present | have fittle to say in
this direction {though some msight might possi-
bly be gleaned from the Swendsen-Wang algorithen
for Potts lattice gauge theories [49.50]). Instead,
Caracciolo, Edwards, Pelissetto and | [67] have ad-
dressed the less profound, but still highly nontriv-
ial, problem (a). To do this, we ask whether the
embedding (21} can be generalized 1o nonlinear
o-models taking wolves in menifolds other than
spheres — such as SU(N) for N > 3 — and,
if so, what ts the dynamic critical behavior of the
corresponding idealized Wollf aizorithm. Our ap-
proach is as follows: Fist we ask what e the
fundamental properties of the embedding (21) that
cause the Wolff algorithm to work so well. Then
we ask whether embeddings having these proper-
ties exist also in other Riemannian manifolds 3
this is a question in differential geometry to which
we are able to give a fairly complete answer. Fi-
nally, we perform a numerical study to test (in
one case) whether our theoretical reasoning is cor-
rect. The conclusion of this analysis is quite surpris-
ing: roughly speaking, we find that a generalized
Wolff algorithm can work well (i.e. have z < 2)
only if the manifold M is a Cartesian product of
one or more spaces of constant positive curvature.
This means that M is either a sphere, or the quo-
tient of a sphere by a discrete group (for exam-
ple, real projective space RPY~1), or a product
of such spaces. If correct, this conclusion is quite
disappointing, and lends renewed impetus to other
classes of collective-mode algorithms such as multi-

#The same issue arises in devising multi-grid al-
gorithms for gauge theories {14, Section V].

&

grid Monte Carlo and Fourier acceleration.
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