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We discuss the  problem of critical skming-docm (CAD) in Mcmte C.m4o ~ =  and review receipt 
proffress in devisipg c~]lectK~e-nmde algm~thms that  ~edu~e or d~ r=m~  CSD. ~ is oft ¢kmtef and 
embedding a|gc~ri~A3n-~; multigrid and Fourier acceleration are also discussed bta~t .  

1. GEHERAL THEORY 
This talk is the latest inslalhrtnt  in an an- 

nual tradition of rew;ew~ on the problem of critical 
slowing-down in Monte Car~ simulations [1.2,3A]. 
In particular, much useful background can he found 

in last ~-ar's r m  by Ulii Wolff  [4] arid in the pee- 
vious year's review by Steve Adler [3]. For lack 
of space-time I will not  discuss heze: a l g e r i a n s  
for dynamical femdons [5]: algorithms for ~ n p n t -  
ing propagators [6,7l; or algorithms for geometrical 
problems such as self-avoiding walks [8], random 
graphs [9] and random surfaces. 

So what is critical slowing-down7 Let us re- 

call the general principles of  dynamic Monte Cado 
methods [10,11]: We wish to generate random 
samples from some probability distribution a-(~o) 
[usually a Gibbs measure e-H(*) I. To do this, we 
invent a transition probability matrix P(W --~ ~o') 
that  is ergodic ("from any state one can reach any 
other") and that  leaves ~ invariant: 

f ~ ( ~ ) P ( ~  -~ # )  : ~ ( C ) -  (1) 

[The detailed-balance condition ~r(~,) P(~o -~ ~')  = 
~r(~') P(~o' ~ ~o) is sufficient but not necessary. I 
We then simulate the Markov process defined by P ,  
starting in some arbitrary initial configuration ~o(°); 
this generates a random sequence of configura- 
tions ~00), ~o(~), . . . ,  ~0(~) where n is the run length. 
After an initial transient (which we discard), the 
system will have settled down to very nearly the 
unique equilibrium probability distributin~ ~. So 

*To some extent, in some favorable cases. (Al- 
beit probably not the cases you want to study.) 

take them as  ~z~,~ltes of  the ~ m e a ~  

The t m e i ~  o f  mmse ,  is tha t  the  ~ 

are i .  general h i g l ~ / c m r ~ _  l f t t ~  " ~ . d , m ~ -  
latiou t ime" o f the  Madmv chain is r ,  t f ~ .  a n m d  

as 

~ m ~ L , O =  ; ( 2 )  

wfiere L is the  lattioe ~.e .  ~ is the  ¢acrdatio. l e q ~  
in an infinite-volume system at the same p m ~ m e -  

ters,  and z is a d~mamic c r i t i ~  ~ .  F ~  the 

site Me~opolis and heat-bath al~onitlm~ t h e m -  
accelerated Langevin algo6thm, and so forth - -  z is 
t~cal~ near 2 (see S~;ou 2). Th;s ~ e ~ g e n c e  d 

at a critical point is called c H / ~  s / o ~ - d m m z  
(CSD). For a ~ studying dynamic a i t i c~  be- 
hawior, this is a fascinating phenomenon; but  for a 
practitioner of Monte Carlo, it is a pain. The goal 
of much research over the last five years has  bern. 
therefore, to  invent new Monte Carlo algorithms 
with radically reduced critical slowing-ck:wn. 

(Let me remark that near a f i r s t - o r b  transi- 
tion the slowing-down is even more severe: typ- 
ically r ~ exp(cLa-1), as required for tunneling 
through very improbable configurations involving 
interfaces. Almost no progress has been made. to 
my knowledge, in devising algorithms that alleviate 
first-order slowing-down.) 

0920-5632/91/$3.50 © Elsevier Science Publishers B.V. (North-Holand) 
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It is necessary to be a bit mote precise: there 
are at least two distinct definitions of  ~-, and corre- 
spondingly, two distinct exponents z. C~sider  an 

observable A, and let 

CAa(O = (A (°)A(*+t)) - (A): (3) 

be its unnormalized autocorrelation function in the 
stationary Markov process (i.e. in equilibrium). 
Define also the normalized autocorrelation function 

p- - (O  : c ~ ( o / c . ~ ( o ) .  (4) 

Typically pyy(~) decays exponentially ( ~  e -Itll ') for 
large ~; we define the ezponential autocorrela~ion 
Limes 

r~p,a = l imsup (5) 
,-= - l o g l p * * ( O ]  

r ~  -- sup ~=p=. (6)  
A 

Thus, ~'~p,a is the relaxation t ime of  the slowest 
mode which couples to A, and ~-~ is the relaxation 
time of  the slowest mode in the system. (For most 
observables, ~'~-p~ ---- ~ '~ ;  the exception is when 
A is "orthogonal" to  the slowest mode.) On the 
other hand, the statistical error in estimates of (A) 
is controlled bythe integrated antocorrelation ~ime 

1 = 
. ~ . ~  - ~ ~ _ ~  ~ ( t ) ,  (7) 

in the sense that 

var (1 - -~A( t ' ]  ..~ 2r~c 'aCaa(O).  (8) 
\ n  ~, / 

In other words, a run of length n contains n/2~-i~t,a 

"effectively independent" samples. (This is some- 
times expressed by saying that the "statistical inef- 
ficiency" of dynamic Monte Carlo, relative to static 
Monte Carlo, is 2Ti~,a.J In summary, the exponen- 
tial and integrated autocorrelation times play dif- 
ferent roles: %=~ is very natural from the point of 
view of the theory of dynamic critical phenomena, 
while z~.t,a is of practical importance. 

It seems to he generally believed that  %~p and 
"ri,~t,a are of the same order of magnitude, i.e. di- 
verge with the same dynamic critical exponent z. 
This belief is implicit in articles which refer sim- 
ply to "the" dynamic critical exponent z; and it is 

critical slowing-down 

made explicit in some of my own papers o f  a few 
years back (which in my embarrassment I refrain 
from citing). It now seems to me quite obvious 
that z~.p and T ~  need not b~ of  ~ ~ame order 
of magnitude, i.e. they need not scale with 
same dynamic critical ezponent z. So we should 
define distinct dynamic critical exponents z~_-p and 

~ . ~  ~ ~=~ ~ ~ n ( r o O  ~ "  (9)  

~ a  ~ - ~ - ( L , O  ~ 00 )  

Nearly always one has ri,~.,t ~ ~-~,~t (this is pint.- 
able if detailed balance holds [11]), hence ~ t  _~ 
z~  v. But z~=~ can be striefl 9 smaller than z . ~  
One known example is the pivot algorithm for the 
ordinary random walk, which is exactly soluble [12, 
Section 3.3]. But I claim that  in fact z ~ t  < z¢~ 
should be regarded as the t ~ u d  behavior! 

To see fhis, consider the following analogies be- 
tween dynamic and static critical phenomena: 

Dynamic Static 

t ime ~ ~ space 

{ ~ p t i b i l ~  x (if a = ~ )  
~ - ~ t  ~ ~ specific heat U~ (if a = £) 

etc. 

Now we know perfectly well that  the susceptibility 
and correlation length have different critical expo- 
nents (7 ~ v) ;  so shouldn't one expect that the in- 
tegrated and exponential atrtocorrelation times do 
likewise (z/~,A ~ z ~ ) ?  Indeed, there is a scaling 
law relating 3' to ~, and the exponent 7/describing 
the decay of correlations at criticality; and one ex- 
pects a similar scaling law for dynamic correlations: 

a ~ ( = )  ~ =-(~-~+~"F(=/O 

~,.,,~ = (1 - p ~ ) ~  7~ = (2 - .~)~ 

*Even for observables A that are orthogonal 
to the slowest mode, one typically expects that 
T~p,a ~ %~. For example, in any linear stochastic 
iteration for a Gaussian model, the observables : ~o~: 
have an exponential autocorrelation time which is 
exactly 1 / n  times that of  the slowest mode [14, 
Section VIII]. 
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So c~e  e x p e c ~  ~ < ~ ,  except  in t he  ~p~- 

c~a! case when  p~ = O. This  l a t t e r  does  occu r  

in some simple ~ m l ~ s  (e.g. in most a~z i~ms  
for the G ~ , ~  mode}, but I see no reason f~r 
i t to  occur e~ee~ ~n the GL'~,d)er (lynmn~cs f~r the 
t w o - d i r n ~ e e a l  ~ modd!  The mor~i ~: ( I )  
d,e themy of o ~ i c  e~tical phenomma r, eeas to 
he r e t h o u ~ ;  (2) f,,tur- m , m , ~  pm, ers neea ~ 
distingulsh h e b . e ~  z,~.,,~ and ~ ,  (and to spec- 

2. COLLECTIVE-MODE MONTE CARLO 

T h e  c d t i c a / ~ - d m m  d t h e  m u m m 6 o v . d  

the fact t ~ t  the~ ul~lat~ a~e locd: in a single 
step of the algernon. ~ . , f . , , ~ "  ;~ trammel- 
ted frum a ~ e n s i t e o r  l i n k o m ~ t o ~  neace~ 

formation" emecutes a random ~ i k  mmmJ the lot- 
|n order fm the s)pstem to  emu4w to  a~ "es- 

to travel a d ls tm~ of redes ~. the (static) cor- 
r e ~  k~gtb_ On~ wo~d guess. ~ ~ 
~ ~ ~ near ~ .  Le_ that the dynmnic en~- 
cal exponent z ,.~,.~s 2. T I ~  ~r-',~ is om~ct  f ~  
the Gaus~n mod~ (flee fiekl).* For otb~ mo~ls. 
we have a situation anat~om to themy of  s to i c  
cdtical pheemmma: the dynamic ~ eq~ment 
is ~ nontd~i~ numl~  that ~ _ , ~ i z e s  a rather 
large dam of ~ l ~ d u m  (a so-called "dynan~ 
ves~ality c la~" ). In any case, for most modds o f  
interest, the dynamk c6tical ~ for local al- 
gmithms is close to  2 (usually somewhat higher) 
[15,16]. Accura te  nleasur~ml~nts o f  c~laglrlic 
cal exponents are, however, very difficult - -  even 

more  difficult t h a n  measurements o f  static c~tlcal 
exponents  - -  and  require enormous quant i t ies  o f  

Monte  Carlo da ta :  run lengths  of  ~ 100001", when  

T is itself ge t t i ng  large! ~ 
W e  can  now make  a rough  es t imate  o f  t h e  corn-  

purer t ime ~ to study the [sing mod~ near its 
critical point, or quantum c h r ~ m a m i c s  near 
the c~.tinmm~ limit. Each m~ep o f  the lattice 
takes  a t ime o f  order  L~,  m ~ r e  d is t h e  spatlal  (or  

spa~-"6me~ ) ~ of the model Andwe 
need ~ 2r  s ~ p s  in ofd~ to &et o ~  "effectiv~ 
; ~ l ~ t "  s.m~p~. So thls meam a con-mu~ 

s t a d s t ~  o ~  m i ~ t  ~ . , t  10~ -mdepee,,dl~" sam- 
TEe r ~  is ~.~ed to ~ in ~ = 100. d = 4 

(or a~ = 3 if ~ou're a c ~ k n s e d - n m ~  physicist) 
and ~ depressed. ~t s ~ J d  l,e ~ ~ t  

r i t ~  ~ spin modds aed Edd t J ~ m ~  (but me 

~ cor~r~l, k~mmer, ~ ~ ~edEed ~ elin~ 

~ is ~o ~ d ~ ?  O f  ~ d the 
~ o~ o i6c~  ~ ~ ms t l ~ t  t ~  

coBee t~  modes, m d  k ,  de,,,,ke m ~ ,~m~ 

These tmo go~s me mm~mmmu~ im m, ulS~ k i s  
ve,y (rdrsc~ to d m ~  ~ a l~,~mm 
that  ame n0t so nodocai  d. '~ their knamsed ~m~ 
pma0m~ c m n p k ~  p ~  ~ ~ ~ e  
r e , ~  in a ~ c ~  s ~ - ~ , L  ( F ~  ~- 

a n , n  but has O0,,,md~M--~' ~ O(V ~) is 

cal  ~ p m m m t  is z = 4 - -  i.e_ mm:h  ~mr~r t l h ~  t l ~  

S p e c ~  ~ o f t ~  ~ 
mode ~ea ~e thin hig~ m o ~  one 

hasto use one's ~ d d~e ~ d a  
give~ model to buiid i~o  U~ algodthm the col- 
lectlve modes that the .~stem ~ - -  and do 

tlndeed, for the Gaussian model this random- 
walk picture can be made rigorous: see [13] com- 
bined with [14, Section 8]. 

:The statistical aspects of  such studies are dis- 
cused in [11], [12, Appendix C 1 and i171- 

~Cleady one must take L ~ ~ in order to  avoid 
sc~re {~nite-size effects. Typically one approaches 
the critical point with L ~ c~. where c ~ 2 - 4. 
and then uses finite-size scaling [18] to  extrapolate 
to the infinite-volume limit. 
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so at not too great a computational cost. Three 

classes of collective-mode algorithms have been in- 
vented so far, and found to be advan~,ageous in at 

least some models: 

• Fourier acceleration [20] 

• Mult/grid Monte Carlo (MGMC) [21,14,29_] 

• Auxiliary-variab!e (cluster) algorithms 
123,24,25] 

(Overrelaxation and hybrid are not collective-mode 

algorithms, but they can in some cases reduce the 

critical slowlng-down from z ~ 2 "~o z ~ 1 |3,26].) 

3. FOURIER ACCELERATION AND MULTI- 
GRID 
Fourier acceleration and multigrid Monte Carlo 

ace discussed in detail in references [20] and [14], 
respectively. Here I want to make only a brief com- 
parison. 

Fourier acceleration and multigrid are philo- 
sophically and physically very similar (though their 
technical details are quite ditTcerent). Both are 
based on an intuition from the flee-field (Gaus- 
sian) model, and both can be proven to eliminate 
completely the critical slowing-down in this modelf l  
Both offer the system collective-mode updates of 
~¢ed s~pc (sine waves in Fourier acceleration, typ- 
ically square or triangular waves in multigrid) on ol i  
lengfh scales, and allow the system to choose the 
amplitude. (These algorithms make sense, there- 
fore, only for systems of continuous-valued spins.) 
Both algorithms are expected to work well (i.e. have 
z ~ O) for systems that are in some sense near- 
Gaussian, such as asymptotically free continuous- 
spin models or the low-temperature (spin-wave) 
phase of the two-dimensional XY model. Both 
algorithms are expected to work badly (i.e. have 

¶This is not, of course, such a great feat: the 
critical slowing-down in the Gaussian model can 
also be eliminated by throwing away the computer 
and solving the model analytically. I consider the 
Gaussian model, rather, as a constraint: if an algo- 
rithm does not work well for the Gaussian model, 
then it is unlikely to work well for near-Gaussian 
models (e.g. asymptotically free theories) either. 

z ~ 2) for systems in which the dominant large- 
scale collective modes have discrete e|emenL% such 
as spin-flips in the one -compo~ t  ~4 model or 
vortices in the two-dimens;onal X Y  m o d d  near 

the Kosteditz-Thouless transition. In summary, the 
performance of Fourier acc~lerat/,on and MGMC is 
probably very s~milar, in the sense that t i~ W prc~ba- 
bly work well for the same models and work badly 
for the same models; it is even concehrable that in 
many models they are in the same ¢~inamic zmhmc- 

sality class. 
Two recent studies of MGMC for the 

dimensional X Y  model [22,271 co.~,m these 
dictions: they find z ~ G ~ c  ~ 1.4 as the critical 

temperature is approached from above, compared 
to z~a-~,~ ~ 2.1; but they find z~r@Me = 0 in 
the ka,~temperature (spin-wave) phase. S ~  of 
MGMC for asymptotically fren ~-models me now 
in ~ 128,201. co,,~ndi,,Oy d ~  stud- 

ies of the dynamic critical behav/or of the Fomier- 
accelerated Langecin and hybrid algodthnm have 
not yet been done - -  but they ought to be! (Who- 
ever does them should use the exact ~ s i o n s  of 
these algorithms i30,31l.) 

4. AUXIUARY-VARIABLE (CLUSTER) ALGO- 
RITHMS 
A vep/different type of collective-mode algo- 

rithm was proposed three years ago by Swendsen 
and Wang [23] for Potts spin models. Since then, 
there has been an explosion of work trying to under- 
stand why this algorithm works so well and why it 
does not work even better, and trying to improve or 
generalize it. The basic idea behind all algorithms 
of Swendsen-Wang type is to augment the given 
model by means of au.z~i.a~y variables,  and then 
to simulate this augmented model. (Algorithms of 

this type are sometimes called "cluster algorithms", 
but this term is too narrow, because the relevant 
objects are not always clusters - -  see below.) 

Consider the Hamiltonian for the ferromagnetic 
q-state Putts model [32]: 

H(o') = - ~ Jis (&,w,  - 1) ,  (11) 

where Ji j  _> 0 for all i , j .  The partition function is 
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t h ~  

= ~ II I~ ~ - ~ )  + ~J~-,~I (12) 

• ~a~recmEmeeel~medr~ = 1-ezp(-J~s). We 
.m, ~mp~ t!~ aem ~nf i t y  

¢Yaere a aml 6 are ¢ ~ l  ~ [ t l  ~ k, ~ "m. 

(1t)  
L~t m . o ~ h e  sedom~ the {~ }  as ~ ~ 

t l ~ r e e o ~  ~ the  ~ o ~ - l I ' ~ ¢ e a k - l ~  

W, me (FgSW) m o ~  to be a ~ ~ 
~ Potts q~ns o'; at lhe ~iles an~ ocmpaeiom 

d ; ~ : . , ,  ~ by (]4) .  F . , ~ o  ~ , -  - - .  
what h a m ~  ~ ~ s,m, o.~r the {o} at r, xed {,q. 

t h e  ~pim o-~ and  ~ri mu~t he in t l ~  ~m '~  ~tate, last 

~ h e r c h ~  the  q~ir, n are ~ .  We  t lmm- 

fore group the ~ into ~ ~ (two 
sites are in the same d , ~  ;t[ they can be 
bya p~h of o~up~d bo.dsy. ~ .  ~ , ~  
within a dus t e r  must  be in the  same  s ta te  (all  q 

values are  equally probable), and d-retinal dus te r s  

are independent.  It follows t h a t  

{-} (i.O: ~i=; / \(ij):,,~,_--o / 
( ~ )  

where ~(~) is the number of connected dusters (in- 
cluding one-site clusters) in the graph whose edges 
are the bonds having n/ j  : l .  The corresponding 

HThis identity is valid in an arbitrary abdian 
semigroup, but such generality will not be needed 
here. 

p¢obability distribution is c.atled the random-elgster  

m o d ~  ~ pan~r~efe~ q |361: it is a generalized 

bond-percolation w, mid with non3oca! co.eJa6ons 
coming from the fact~ ~('~}, and for q = 1 it rz~ 

~ s  to ord;na~ bond p~colado. .  
We have tta,as vmified the f i ~ o w h g  facts about 

the FKSW m o d ~  

a) Z e ~ ,  = Z e e : ~  = Z ~ c .  

b) The ~ cEst~mtm of F rxsxr  o~ the 
Pore ~ ~ O,~,qp~,~ o ~  . ,e {~} )  
is ~ ~ P ~  m a d  ~ r . ~ ( ~  

T I ~  (onKalma t  ~ e f  Ft r .xsv are a i m  

a- ,e~ 

a) 

boml {/jq,. o, ,e s , ~  ~.~ = 0 i ~ u~ # g i ,  

a ed  ~ t ~  ~t~ i = O, I wit l l  i m l d i k I  1 - - 1 ~ ? , . / .  

-) 
d~ { . }  is as f d o ~  ~ i m ~  
o ~ t _  ~_ d u s ~ ,  cme sets d l  the sj~s u~ in 
the d , s ~  to d~e same val.e, d~mm eqmipmb- 
~ ,  {x,2,...,q}. 

~ ( ; , ,dq, , , ,d~ of ,h~ dd o , ~ )  ~ .  the 
sp;,,s, and new s ~  ~ ( ~ l m m d m t  of d,e 
old ones) ~.,e,, ~,e bo.ds. F _ a ~ o f ~ ~  
can be can~_~ out in a comput~ t~ne o~ onk'r vol- 
ume: for gene~Lb~ the bond vamiables this is triv- 
ial, and for generating the ~ va.~ables it reties 

ing the connected dusters [33,34,35|. ;t is easy to 
see that the SW algorithm is ergodic and leaves 
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L I X ITo~.E(SW) "r.=p,,~(Metr) 
64 1575 ( 1 0 )  I 5.25 (0.30) 5380 (140) 

128 5352 ( 5 3 )  7.05 (0.67) 23950 (z80) 
256 17921 (109) 6.83 (0.40) 104500(es¢. )  
5!2 59504 (632) 7.99 (0.81) 458000 (es t . )  

Table 1: Data for two-dimensional Ising model at 
criticality. Susceptibility X and Swendsen-Wang 
autocorrelation time ~'~,E (~" : energy ~ slow- 
est mode) are from 12]. Metropolis autocorrelation 
time ~-~-~,~ (./~ = magnetization ~ slowest mode) 
is from [39]; data in italics are extrapolations. Stan- 
dard error is shown in parentheses. 

I q = l [  q = 2  

d : l  0 0 
O×Jog (?) 

d = 2  0 

d = 3  0 ~ ~0.-~ (?) 

d = 4 1  o 1 ( ~ , ~ ? )  

t q = ~ i  q=4 ( 
J 0 ~ 0 

o . ~  ± o.o~ ~ ] (~?) 

Table 2: Current best estimates of  the dynamic 
critical exponent z for the Swenclsen-Wang a lg~  

rithm. References: d = 2. q = 2 ~10.41,23]; d = 2, 

q = 3 [42,41l: d =  2, q = 4 [42l; a = 3 .  e = 2  
[43,17,23]; d = 4 ,  q : 2 [44]. Error bar is a 95% 
confiderv-~ interval. 

invariant the distribution (14).** 

It is certainly plausible that  the $W algorithm 

might have less critical slowing-down than the cow 
ventional (singl~spin-update) algorithms: the rea- 
son is that  a local move in one set of  variables can 
have highly noniocal effects in the other. For exam- 
ple, setting n~ = 0 on a single bond may doc~nuect 

a cluster, causiag a big subset of  the spins in that  
duster to be flipped simultaneously. In some sense, 
therefore, the SW algorithm is a collective-mode al- 
gorithm in which the collective modes are chosen 
by fJte sps tem rather than imposed from the out- 

side as in Fourier acceleration or multigrid. (The 
miracle is that  this is done in a way that preserves 
the correct Gibbs measure.) 

How well does the SW algorithm perform? Ta- 
ble 1 shows some data [2] on a two-dimensional 
Ising model at the bulk critical temperature; for 
comparison we give also data on the slngle-site 
Metropolis algorithm [39]. These data are con- 

**Historical remark: The random-cluster model 
was introduced in 1969 by Fortuin and Kasteleyn 
[36]; they derived the identity Z p ~  = ZRc and 
some corresponding identities for correlation func- 
tions. These relations were rediscovered several 
times during the subsequent two decades [37]. Sur- 
prisingly, however, no one seems to have noticed the 
joinL probability distribution (14) that undeday all 
these identities; this was discovered implicitly by 
Swendsen and Wang [23], and was made explicit 
by Fdwards and Sokal [38]. 

sistent both ~ t h  ~'sw ~ L ~ e ~  [23] and whh 
~sw ~ log/: [40] (it seems crdlicott to ~t inguish  
except by using ~tremel~ large lattices, e.g.  L up 
to  2000 or more). By contrast, the  Metropolis al- 
gorithm has z ~ 2.13 [39]. For L : 512, this 
translates into a facte~-of-SO000 advantage for SW 
over Metropolis. Even granting that one iteration 
of the Swendseft-Wang algorithm may be a fac- 
tor of ~ 10 -- 100 more costly in CPU time than 
one iteration of a conventional algorithm (the ex- 
act factor depends on the efficiency of the duster- 
finding subroutine), the SW algorithm wins already 
for L ~  25. 

For other Ports models, the  performance of the  

SW algorithm is less spectacular than for the  two- 
dimensional Ising model, but it is still very impres- 
sive. In Table 2 we give the current best estimates 
of the dynamic critical exponent zsw for q-state 
Ports models in d dimensions, as a function of q 
and d. (For the SW algorithm the decay of the 
energy-energy autocorrelation function appears to 
be very close to exponentia. ~, hence z~,z  ~ ze=p.) 
All these exponents are much lower than the z ~ 2 
observed in the single-spin-flip algorithms. 

Although the SW algorithm performs extraor- 
dinarily well, we understand very little about wh U 
t~.ese exponents take the values they do. Some 
cases are easy. If q : 1, then all spins are in 
the same state (the only state[), and all bonds are 



61 

thrown ;~lepeu, destt~ so the a ~ o c o r r e ~  Ume 
is zero. (Here the SW algenthm :rust reduces to 
the st~.dard ~ f f ~  aiga~itl~, for i~eper~em bend 
p~atm.) If~ = z (more ~ .  if the ~- 

t~ isz ~ ) .  W~e SW ~ m ~ n ~ s  is e ~ c ~  solu~: 
the hek=~ of ~d~ be=~ is ~pende, t of each 

other bond. and r ~ ,  -* - - 1 / k ~ l  - I / q )  < ~ as 
~ --, :~o~. B ~  tbe ~ ~ o u r  ~ 

a) A ~ ~ k l ~ g z s w  = I ina  me=n-fiekl 

(C=~W~) ~ ==x~ 14S I. T~ =~-,s~ 

i ca~ this is due to the sio~ cormeegem~ e f  
e ~ g ~ d =  ~ 11~  b e m ~  ~ 
vaEd for all damd q. is ~ far f ~ m  
sham for the tsmg ~ m £ m ~ e ~ m  3 a.d 
h ~ .  Snt ~ is ~ gond f =  ~ ~ 
and 4-state Pntts models m ~ d~nemlous, 
and in the latter case it  may even be sharp. 

But much remains t o  be umJk~tood! 

gumerc~ ~ and genora~atimm of  
the SW algorithm have been proposed. For P ~  
and related mndels we have: 

• Single-dust~ variant [24 t 

• Duality-improved SW algorithm (d = 2 ou~) 

147] 

• Multi-s~ale SW algorithms [51] 

• 5W algorithm for Potts lattice gauge theories 
[49,501 

• Algorithm for fully frustrated Ising mode.Is [52] 

For non-Potts models, several geueralizations have 
been proposed [38,53], but the most promising 
ideas a t  present seem to  be the embedding algo- 
rithms discussed in the next section. 

In the single-duster  (1C) variant of the SW al- 

gorithm [24], one builds only a single cluster (start-  

ing at a randomly chosen site) and flips i t  - -  as 

to the standard SW algorithm~ which enu- 
rnerates ~[ the cfu~ers in the lattice. CJe~-'~y, one 
step of the s~r~e-duster StY algorithm makes te~s 

m the system than one step of the standaed 
SW ~ J ~ ,  but it also tal~s much less wGck; 
what ~ _ _ ~ s  is the ~ i c  criticaJ exl~oeem z 
rr=~=re.d ~, CPU-f, in~ = ~ .  One ~ e  of 

d~oor~ a dmxer is p r ~  to ~ s~ze (s~=ce 

we p ~  a ~ =  =~)~ sothe u r k  is ¢ ~ a ~ r ~ d  

is dt=z the sz~ane a, _,~__--s_ ~ kss stmel~ cer- 

t .  So it w~Jlkl net k szzlp~am¢ ;l=~c~ 
we~ ~ dz=~ :s~. The tkzm 

a~l  --sir seem to be m=~l~  lJhe same = =[ = ~ 
~ z c ~  seems to be s¢~l=~ small~ m d = $ ( /~ t  
t [ ~  is ~ar from ¢es~m]; m=l ~ c ~  seems to  be 
~ s m a i l ~ i n  =i = ~ Bett~ ~ 
am defi=ae~ ~e&~L  

~ zo the ~mi J ~  ~ P ~  

X ~  td~, ,,~ W ~ SW , to ,  ie, , ,  ISq 
is to c=.-~c om o.l~ a p=rt~,l FICSW ~ 
bnt timm to appl~ this mncept nxnni~ l~  in a ~ d l i -  

could have a ~ oitkal ezpeee~ smaler tibaz= 

"altar of  standaed SW. Bnt this ~ a ~ s  to be ,-=t=~- 
lisl=~; the claims that z = O me i .  my OllX~km 
uns.ppmted b~ the c = r r ~  avaaabte nmnenkai 
evidence. 

T ~  SW algmithm can be generalized in a 
straightforward manner to Poets lattice gauge theo- 
ries (more precisely, lattice gauge tfieories w~th a 
ni~ ab¢lian gauge group ~ and PoLLs (~-f~zndio~) 
action). The auxiliary variables {n}  live now on 

plaquetles, and the  SW update  requires generat ing 

a random gauge field subject to  the  constraint  of 

zero curvature on each occupied plac;:tette. Doing 

this efficiently (i.e_ in t ime of order volume) seems 
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to be a difficult problem in compu~ationa| algebraic 
topology (an almost nonexistent fieJd [48]); it has 
been done in d = 3 by a clever use of duaffty t49]. 
[I emphasize that "dusters" play no rc,~e in this al- 
gorithm: dusters (=  connected components) are 
zeroth cohomoiogy, whereas what is re]evznt here 
is f i r : i  ¢ohomoiogy rood G.] Experknents on the 
three-dimensiona~ Z~ gauge theory [49,50] y~]d a 
dynamic critical exponent z ~ O.6 - 0.7. 

The SW algorithm can easily he generalized to 
ising models with both ferromagnetic and antiferro- 
magnetic couplings, but this generalized algorithm 
does not work well |23]. The trouble is that the 
ferromagnetic and antiferromagnetic bonds wore 
against each other in making a phase transition, 

but work together in making the SW bonds per- 
colate; therefore, the SW bonds begin to perco- 
late well above the critical temperature, and near 
criticality almost all the lattice belongs to a tingle 
huge duster. (Flipping a huge duster is equiva- 
lent to flipping its complement, which consists of 

many very small dusters.) Very recently, the Weiz- 
mann group has made significant advance toward 
handling frustrated lsing models [52]: their idea is 
to consider all the bonds in a plaquette as a tingle 
unit, and to apply a cleverly chosen FKSW transfor- 

mation to this entity. They say that their method 
works well when energ plaquette is frustrated, but 

not in cases of pa,~ial frdstration. This may be_ an 
area of rapid progress in the next year or two. 

Finally, it is worth indicating the general idea 
behind all algorithms of Swendsen-Wang type. 

Consider an arbitrary statistical-mechanical model 
with variables {<p}, and let 1¥({~0}) be its Boltz- 
mann weight. The idea is then to introduce auxil- 
iary variables {r~} according to 

W({~0}) = ~ W { " } ( { ~ } ) .  (16) 
{-} 

Here the {n} are any kind of variables you like, 
discrete or continuous (in the latter case the sum 
would he an integral), and you are free to decom- 
pose W into partial Bohzmann weights W {"} any 

way you please. Usually W = Fib Wb where the 
"bonds" b are sites, links or plaquettes, and corre- 
spondingly W( n} = llb W,b; but this is not manda- 

tory. One then simulates the joint moc~l 

by any legal algorithm (usLk~Tly by alternately ap- 
plying the conditional distributions gimm {~}  and 
{n}).  St~w-.h an a]gor~rthm may or ma~ r~t reduce the. = 
critical sio~ing-down; that depends on the P~Z=/~ 
behind the decxanposition (16). But this f ~  
provides, in any e~enL an easy way to ched¢ the 
validity of proposed SW-type alg~rithrr~ 

5. EMBEDDffIG ALGORITHMS 
Thanks to Swendsen and Wang, we now have 

a fantastically good algorithm for simulating ferro- 
magnetic |slog (and Ports) modds. Can we extend 
our _maccess to non-Ports mock~ such as nonfinear 
a -m~Ls  and lattJee gauge ~ ? e ~  

Tre most promising methods at present seem 
to be t~e end~d~r~ ~9or~J~ms: the idea is to 
"embed" lsing variables {E} ~in~de" the ~ n a !  
model, and then simulate the induced I s ~  model 
using the ordinary SW algorithm (or the single- 
duster vanaut). 

For one-component spins, this embedding is 
the obvim~ decomposition into magnitude and sign 
[54]. Let the Hamiltonian be 

H(~p) : --/~ ~ ~ % ~ V(~p=), (18) 
( ~  = 

where f l  ~_ 0 and V(~) = V ( -~ ) .  We write 

~= = ~= i~=J, (19) 

ltMore than one conference participant asked 
me: "When are you guys [and gals] going to do 
something useful like giving us an algorithm for 
QCD with dynamical fermions?" To such narrow 
minds I offer the same counsel that conservatives 
have always offered the poor: patience. More pre- 
dsely, I advise using (for now) the hybrid algorithm 
with a carefully tuned random trajectory length 
(this may achieve z -~ 1 [26]), possibly combined 
with Fourier acceleration. Then wait a decade or 
so: I trust that by Lattice '00 we will hear either 
a decent numerical solution of QCD (using a few 
years CPU time on a teraflop parallel computer) 
or else a decent algorithm for QCD with dynami- 
cal fermions. (In truth, the situation is not quite 
so grim: there is a fair chance of progress in the 
near future on algorithms for computing propaga- 
tors [6,7]; and this step consumes most of the CPU 
time in QCD computations.) 



~ i ~ t ] ~  Heat-ba~ or MGMC m e e t ~  m u ~  a ~  be 

H ~ I b e  

t~(#) = - a ~  ,,=-,,, + ~v ( l , , .O .  (20) 

~i th  ~ > 0. Now f ix  a emit t ~ d m  r ~ R'~, amJ 
m i te  

• , ~  -_- o - = -  (o-=-~')r a,,a ~= -- ( ' ~ - , ~ "  
are d)e om.pomee~ d (r= ~ amd p x -  

abel to  r ,  and e.  ~ s i l o =  - ~) = ~ L  ( F g p p ~  

~ to r.} Therd~re. Ik~r f~z~4 vadlu~ d 
t ~  { o  ~ }  ~ {I~-  -I}, m~ ~ 

algodthm is tben: Chno~  at  ramlom a ur& v e o ~  
r; ~ t , ~  { o  -~} and {1~" r~} at ~ o ~ t  
ues, and update the {~} by either SW or 1CSW. 
No other moves are required: the random choice o f  
r suffices to  make the algorithm ergodic. 

A third example was provided recently by Ev- 
ertz, Hasonbusch, Marcu, Pinn and Solomon |56]: 
i t  concerns solid-on-solid (SOS) models such as 
the discrete Gaussian model. An SOS model has 
integer-valued fields n~ living on lattice sites, and 
the Hamiltonian is of  the form 

~(~)  = ~ V(l~= - ~1 ) -  (22) 
,=..) 

The embedding is as follows: Choose cleverly a "'re- 
flection level" M ~ Z or Z + ~ (this is the subtle 
part), and write 

• n= = M+~=I~= ~I  I .  (23) 

c . ~ M  -~o~- i~-do~ 6.3 

One then ~ the {in= - Mi} and updates the 

a n s ~ o ~  ~ Le,e Worn e m b e d a ~  (Z~) f~x, ) ~  X y  
m o ~ ,  ~ or, e ~ e r ) t ~  an SOS h e ~ t  w ~  am XY 
a)~)e. 

A f,~ exaeTqQ~e was ~ by Ben-Av. Ev- 
e~, Ua,~ and 5o#o.mn [571: it co.o~m d~e 

bm o,~y at N~ = i.J 

"rbe gemm~ ~dea bee~d ~ these a~o~ms ~ 

~ .  bm eke ~de~ ~s mm~ m~e l~nera/. Far 

~ k,r d ,e  ~ me,de~ O ( a ~ e .  
on~ m ~  ~ tlkis ~ I ~  odor  m o ) ~  m meh a 
~ f o ~ e i ~  i o . ]er  ~)  malke eke al~mCe~ 

Mome Cada. udmre it ~ re.reed "e~.,; ~mm- 

#ms" p~m.~4T) 

m ~ by the comldmd d[ext d mm ~m- 

i) H~ wea tbe ~ ,~=,=. e~e ~eor- 

model. 

dmd SW or singie-chtster SMV} ~ in up- 
dating the embedded modd. 

I wish to emphasize the- impo~tan(e of mm'ying 
these q u e s t i o n s . ~ , t ~  If tl,e physically rel- 

evant large-scale collectiv~ ~ of  the ~ 1  
model cannot be obtained by motions ~ m  a leaf, 
then the embedding algorithm will have severe crit- 
ical slowing-down r~o maUer m ~ t  method is used 
to update the embedded variables. On the other 
hand, i f  the embedding algorithm with a p ~ -  
ular choice o f  updating method for the embed- 
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ded variables shows severe critical stowing-down, 
this does ~ot necessarily mean that the embedding 
works badly: the poor performance might be due 
to slow decorrelation in the inner updating subrou- 
tine, and could possibly be remedied by switching 
to a better algorithm for updating the embedded 
model. (This is particularly likely to occuc if the 
induced Hamiltonian for the embedded model ex- 
hibits frustration.) It is crucial to distinguish these 
two issues, if we wish to obtain physicoJ i~fi3h/. 

How can we dLsentangle these two e~ects? To 
study question (1), we can investigate the ~dea~zed 
embeddin# algorlthm defined by independent re- 
sampling on each leaf. (In MGMC this is called 
the "idealized two-grid algorithm ". )  To approxi- 
mate this in practice, one makes _N~ hits of the 
best available method for simulating the embedded 
model, and extrapolates to N~t  = co. (A familiar 
analogue is approximating the single-site heat-bath 
algorithm by multi-Eft ~etropolis.) i emphasize 
that this is no¢ claim-~d to he an efficient algo- 
rithm (usually N ~  = 1 is optimal for fixed CPU 
time). Rather, it is a / ~ t  procedure for gaining 
physical insight into the  embedding; it is expensive 
but indispensable. To study question (ii), one can 
investigate the autocorrelation behavior of  particu- 
lar algorithms for the embedded model, using the 
induced Hamiltonians generated from a few "typi- 
cal" configurations of the origina! model. 

Let's make these ideas concrete by looking at 
the Wolff algorithm for the N-vector model. At 
first thought it may seem strange (and somehow 
"unphysicar') to try to find Ising-like (i.e. discrete) 
variables in a model with a continuous symmetry 
group. However, upon reflection (pardon the pun) 
one sees what is going on [58]: if the spin config- 
uration is slowly varying (e.g. a long-wavelength 
spin wave), then the induced Ising Hamiltonian 
tends to decouple along the surfaces where Jz~ is 
small, hence where or • r ~, 0. The regions where 
or - r > 0 and or - r < 0 then get flipped indepen- 
dently, and this corresponds to a long-wavelength 
collective mode (Figure 1). So it is quite plausi- 
ble that the idealized Wolff algorithm could have 
very small (or even zero) critical slowing-down in 
models where the important large-scale collective 

Figure 1: Action of the Wolff a|gor~hm on a 
long-wavelength spin wave. For s i ~ ,  both 
spin s p ~  (~) and p h i l  ~ (~) ~ 

as one-dimensional. 

modes are spin waves. (An additional argument 
158[ is needed to explain how the Wolff embed- 
ding deals with vortices in the two-dimensional X Y  
mo@~.l.) To see why the pra~tiea/Wol~ algorithm 
using SW or 1CSW updates also works well, i t  suf- 
fices to note that the induced Ising Hamiltonian is 
ferrmnagne~, and that for such an ]sing 
SW and 1CSW ware well. 

.M.ume~ca! tests of  the_ Wo]~.: a!goeithm confirm 
these pvedictk~. For the two-dimensional mod- 
els with N = 2,3,4,  the  data show z ;~ 0.1, 
both in the idealized algorithm and in the practi- 

cal alg~hthm with SW [58] or 1CSW [25] updates. 
For the three-dimensional X Y  model, a simula- 
tion using standard SW updates ( N ~  : 1) found 
zi..~z ~ 0.46 [5g], while one using single-duster up- 
dates found zm~,cp~ ~ 0.25 [60 I. But these latter 
exponents may well he duo to critical slowing-down 
in the inner SW or 1CSW subroutine; a study of 
the idealized Wolff algorithm for this model would 
be very useful [61]. 

In view of the extraordinary success of the Wolff 
algorithm for spin models, it is tempting to try to 
extend it to lattice gauge theories with continu- 
ous gauge group [for example, U(1), SU(N)  or 
SO(N)[.  Gauge theories differ from _N-vector mod- 
els in two ways: 

a) The field takes values in a group rather than 
a sphere. IU(1) and SU(2) are spheres, but 
higher Lie groups are not.] 

b) The field is a 1-form rather than a 0-form, i.e. 
it lives on links rather than sites. Correspond- 



+~i'y+ ~ +Ime~g~ +s the c ~  r Of the ~ rather 
;cs llr.d~mt, am~ it E~es on ~ d ~  

r+,e+~r the~ Fm+/m As a result, the theory has 
a ~ J  ~0nr~je ~mm~P:.~m:e l-ather tha~ jl.~t a 
grma~ s~mmme~+ 

The _a~p_+ ~ ~ bemmm e~.~e ~ a  

+cal e~etadom im a Ipqp+ ttmmey, w t  ~ se- 
vere ~ o~ the a~-yet-emimo.m a,aiolp~ 

Iogue em~tsl.m At mese~ I Kave m+~_ to say m 

~y be ck+mea emm t ~  S.mken-W.q~ .~o~m~ 

c.va,~k,io. ~ p ~ s e u o  ma ! F ~  e,.~ ad- 

~ .  p ro i d~  (a). To ao t l ~  , e  ask wimd, er the 
~ . , ~  (m) ,~. ~ ~ ~o , , o , i ~  
o-models ~ r.,a-,-,~ i .  ~_,~,'~+,~ ~ 
s~kem,+-  mm:K as SIP(JV)for ~ __. 3 - -  aml, 
if so. ~,dm, t is t ~  dymm, n ~  erb, Jcai hehas~ of flt~ 
cemrespomling ~ + , r , ~  W,~ilF ~ O.r  ap- 
proach is as fo l io~  F ~  we ask ~lmt ar~ d ~  
~-nd+m.m~ m m - . ~  o + ~  . . ~ r .  c (21) 
cause d~e Wolff a ~  to wo~ so well Then 
we as~ ~ embeddln~ h a ~  these mopor- 
ties ex+st also in other Riemanr:.a~ manifolds M;  
this is a question [n ~ e r e n t ~  geometer to  wtm~h 
we are able to  g~ve a ~ omnplete answer. F~- 
.ally, we perform a nun~ca! study to test (m 
one case) whether our thec.retical r~_~_ "rig is cor- 
rect. The condus~n o f  this analysis is qurte su r l p~  
ing: roughly speaking, we find that  a genles'-a~zed 
Wolff  algorithm can work well (i.e. have ~ ~ 2) 
or~/ i f  the manifold _~r is a Cartesian product o f  
one or more spaces o f  constant positive cun~ature. 
This means that ~I f is ether a sphere, or the quo- 
tient of a sphere by a discrete group (for exam- 
pie, real projective space ~ r - z ) ,  or a product 
of such spaces. If correct, this conclusion is quite 
disappointing, and lends renewed impetus to other 
classes of collective-mode algorithms such as mult;- 

**:The same issue arises in devising multi-gr~d al- 
gorithms for gauge theories [14, Section VI. 

~5 

grid Monte Carlo and Fourier acceJerat~on. 
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