Machine Learning Handouts

Bert Kappen,
Biophysics University of Nijmegen

November 16, 2022

Contents

(1 Networks of binary neurons
(1. Stochastic binary neurons and networks|
(1.1.1 Parallel dynamics: Little model|
(1.1.2 Sequential dynamics|
[1.2 Some properties of Markov processes|
(1.2.1 Eigenvalue spectrumof 7|
(1.2.2 Ergodicity and ergodicity breaking.
(1.3 Summary|

[2.1 ~ The stationary distribution|

2.2 Computing statistics|. o
2.3 Meanfieldtheory| o oo
2.4 Linear response correction|

[2.5.1 Classificationof digits|
2.6 Summary| o
277 Exercises|

|3 Perceptrons|

(3.3 Perceptron learningrule|. 31

[3.3.1 Convergence of Perceptronrulel 34

3.4 Lipearunits| 35
[3.4.1 Gradient descent learning| 36

[3.4.2 Thevalueofn 37

B.S Non-linearunits 38
hasticneurons| L oL 39

[3.7 Capacity of the Perceptron| 40
[3.8 Multi-layered perceptrons|. L. 41
3.9 Summary| 44
BI0 Exercises| oo oo 44

1 Networks of binary neurons

1.1 Stochastic binary neurons and networks

We have seen that even for a very simple neuron model, such as the integrate-
and-fire model, the relation between the stochastic input and the output can be
too complex to be described in analytical form. Therefore, in order to study the
behavior of networks of neurons we may try to find a more compact description
of a neuron which ignores its internal details but retains some of its input-output
behavior. Let us look again at fig. [[Left C, which shows the output frequency
of a biologically realistic compartmental model of a layer 5 pyramidal cell as
a function of a constant input current. A very simple model that captures this
relation is to state that in each small but finite time interval Ar the neuron can
either emit one spike or no spike. Thus, the output of the neuron is described by
a binary stochastic variable y = 0,1 which defines the number of spikes in Ar.
The probability of y = 1 is then proportional to the firing frequency of the neuron,
which as we see in fig. [T[Left C is a non-linear function of the input current I:

py=1)=0c)

A common choice for o is the sigmoid function o(x) = %(1 +tanh(x)). As a result

of the discretization of time in intervals of size At, the maximal firing frequency
is clearly 1/Ar. In fig. 2] we show that the curves of fig. [ILeft C can be repro-
duced approximately in the binary neuron model. But it should be understood
that whereas real neurons adapt their firing rate through time, the firing rate of the
binary neuron is constant for any value of 7 and Ar.

Suppose that we have a network of binary neurons and consider neuron i. The
current /; represents the total current input to the neuron and consists of current
contributions /;; from all neurons that make synaptic contacts onto the neuron
and that have recently fired (we will ignore temporal delays in the propagation of
action potentials). Therefore, we may write

(0 =) Ly + 6

J#i

where ©; is a free parameter that must be adjusted such that 0(®;) is equal to the
firing rate of the neuron in the absence of any input. ¢ labels the discretized time
in units of Az. The probability of firing of neuron i at the next time step is thus
dependent on y(t) = (yi(?),...,y,(t)) which we call the state of the network at

A) b

V()

v _ A) F
-20 0 20 40 60 80
t (msec) P % o
/ ; a
B) 300 — / / J/ / u
— F
<f> B) N
(H2) F
4 t
| —
0 tete A ' :
0 0.5 1 1.5 2 C) (:
Input current (nA) L. f
5 C
C) 300 == :
— Integrate-and-fire | A 1
——— Compartmental //f’_————— \
200 == /
o = D) 25 Hz J
(Hz) e 50 msec
100 1stISI /’/,/'/2nd = 1
A -
/ // o
/42~ Adapted
/ = p A
0 0.5 1 1.6 2
Input current (nA)

Figure 1: Behavior of the integrate-and-fire neuron when stimulated by a constant
current. Left A,B) When the current exceeds a minimal value, I, > Vi,/R, the
neuron will regularly emit a spike. Right B). Somatic membrane potential in a
layer 5 pyramidal cell compartmental model to a 1.5 nA current input. Right C)
Response of a cell in the primary visual cortex of the anesthetized adult cat to a
0.6 nA current injection. In both cases B and C, the firing rate decreases gradually
with time despite the constant input current. Left C) An adapting IF model of can
correctly reproduce these findings [[1]].

300

250

—— 10005(x-3)
200t | — 2500(2x-3)

150

100}

501

Figure 2: In the binary neuron model, the firing frequency of the neuron is a
non-linear function of the input current.

time ¢ (n is the number of neurons in the network), or
p(yi =11+ 1y@) = G(Z Lijy;(t) + ©;) (1)
Jj#i

For our subsequent analysis, we will find it useful to replace the binary vari-
ables y; = 0, 1 by the variables s; = +1 using the relation y; = %(y,- +1). Then eq.
becomes

psit+1ls,0) = o(sihi(s(1)) (2)
hi(S) = ZW,'J'SJ'"'QZ'
J#EL
1
Wij = Elij
1
0,' = ®i+§ZIij
i

In Eq. 2] we have made use of the property o(x) + o(—x) = 1, which allows us
to write the probability for both s; = +1 in one expression and s = (s1,..., S,).
Note, that Eq. [2]does not explicity depend on time, but only implicitly through the
dependence of s on time.

1.1.1 Parallel dynamics: Little model

Eq. [2| describes the conditional probability for a single neuron to emit a spike
between t and 7+ 1, given an input activity s. In a network of neurons, this equation
must be updated in parallel for all neurons. Thus, the transition probability from
a state s at time ¢ to a state s’ at time ¢ + 1 is given by

T(s's) = [| p(si. e+ 1Is,) 3)

with p(s?, t+7ls, 1) given by Eq. @ T denotes the probability to observe the network
in state s, given the fact that it was in state s at the previous time step. Since the
dynamics is stochastic, the network will in general not be found in any one state
but instead in a superposition of states. Therefore, the fundamental quantity to
consider is p;(s), denoting the probability that the network is in state s at time .
The dynamics of the network is therefore defined as

pia(s) =) TS I9pi(s).)

Eq @] is known as a first order homogeneous Markov process. The first order
refers to the fact that the probability of the new state only depends on the current
state and not on any past history. Homogeneous means that the transition proba-
bility is not an explicit function of time, as can be verified by Eq. 2] This Markov
process was first considered by Little [2].

1.1.2 Sequential dynamics

One of the drawbacks of parallel dynamics is that due to the strict discretization
of time in intervals of length Az, an external clock is implicitly assumed which
dictates the updating of all the neurons. There exists another stochastic dynamics
which has been used extensively in the neural network literature which is called
sequential Glauber dynamics. Instead of updating all neuron in parallel, one neu-
ron is selected at random and is updated. The neurobiological motivation that
is sometimes given for this dynamics is that neurons are connected with random
delays [3]. However, in my view a more important reason for the popularity of
sequential dynamics is that the stationary distribution is a Boltzmann-Gibbs distri-
bution when the connectivity in the network is symmetric. This makes the connec-
tion to statistical physics immediate and allows for all the powerful machinery of
mean field theory to be applied. Also, the parameters (weights and thresholds) in

6

the Boltzmann-Gibbs distribution can be adapted with a learning algorithm which
i1s known as the Boltzmann Machine [4].

The sequential dynamics is defined as follows. At every iteration ¢, choose a
neuron i at random. Update the state of neuron i using Eq. 2] Let s denote the
current state of the network and let F; denote a flip operator that flips the value of
the ith neuron: 8’ = F;s & s = —s; and s;. = s; for all j # i. Thus, the network
can make a transition to state s’ = F';s with probability

1
T(s'|s) = Zp(s;,t+ 7ls,1), ifs’ =F;s (5)

and zero if 8" differs more thane one bit from s. p(s],r + 7ls,) is again given
by Eq. The factor % is a consequence of the random choice of the neurons
at each iteration. The probability to remain in state s is given by the equality
> T'(s’ls) =1, so that

1 ,
Tl =1~ Z p(si,t + 78, 1). (6)

Egs. [5] and [6] together with Eq.] define the sequential dynamics. Note, that
this dynamics allows only transitions between states s and s’ that differ at most at
one location, whereas the Little model allows transitions between all states.

1.2 Some properties of Markov processes

In this section, we review some of the basic properties of first order Markov pro-
cesses. For a more thorough treatment see [3]].

1.2.1 Eigenvalue spectrum of 7

Let S denote the set of all state vectors s. s € S is a binary vector of length n
and thus s can take on 2" different values. Therefore, p,(s) in Eq. {]is a vector of
length 2" and T'(s’|s) is a 2" X 2" matrix. Since p,(s) denotes a probability vector, it
must satisfy >’ p,(s) = 1. In addition, T'(s’|s) is a probability vector in s’ for each
value of s and therefore each column must add up to one:

Z T(s'|s) = 1. (7)

Matrices with this property are called stochastic matrices.

7

Let us denote the eigenvalues and left and right eigenvectors of T by A, Iy, o, @ =

1,...,2" respectively ﬂ In matrix notation we have
Tr, = A1y
I'T = A,

Since T is a non-symmetric matrix, the left and right eigenvectors are different,
non-orthogonal and complex valued. { denotes complex conjugation and trans-
pose. The eigenvalues are also complex valued. Under rather general conditions
each set of eigenvectors spans a non-orthogonal basis of C?', the complex 2" di-
mensional space. These two bases are dual in the sense that:

[ir5 = Sap. (8)

04 denotes the Kronecker delta: 6., = 1 if a = b and 0 otherwise. In Eq. @ a and
b are simple numbers, but below we wull also see cases where they are vectors,
such as the state of the network. We can therefore expand T on the basis of its

eigenvectors:
2n
T = Z Aatoll,
a=1

If at r = O the network is in a state s’ then we can write the probability distri-
bution at # = 0 as po(s) = p=o(s) = dsx. The probability vector p, at some later
time 7 is obtained by repeated application of Eq. 4}

pi=T'py=) Arolll - po) ©)

where T'py denotes ¢ times the multiplication of the matrix 7 with the vector
Do, and the - denotes inner product. The stationary probability distribution of the
stochastic dynamics T is given by p., which is invariant under the operation of T
and therefore satisfies

Tpe = Peo- (10)

Thus, the stationary distribution is a right eigenvector of 7" with eigenvalue 1.

'In general, the number of eigenvalues of T can be less than 2". However, for our purposes we
can ignore this case

1.2.2 Ergodicity and ergodicity breaking

A Markov process is called irreducible, or ergodic, on a subset of states C C S
if for any state s € C there is a finite probability to visit any other state s’ € C.
This means that for any two states s,s” € C, there exists a number k and a set of
intermediate states s = s%,s',...,s* = s’ such that [T, T(s|s"!) > 0. In words,
between any two states in an irreducible set there exists a path of transitions with
non-zero probability. A subset of states C C S is called closed when the Markov
process can never escape from C, once entered: 7(s’|s) = O foralls € C,s'= € C.
A subset of states 7 is called transient when the Markov process can never enter in
7, once outside: T'(s’|[s) = Oforalls ¢ 7,s" € 7. Itis a property of homogeneous
first order Markov processes that one can partition the state space S uniquely into
closed irreducible subsets C; and a transientset 7 : S=7 UC, UC,....

For an irreducible Markov process of periodicity d the Perron-Frobenius the-
orem states that 7" has d eigenvalues given by

A = exp(2rim/d),m =0,...,d — 1,

and all remaining eigenvalues of T are inside the unit circle in the complex plane:
[do] < 1 E] In particular, 7" has exactly one eigenvalue 1. Its corresponding right
eigenvector is equal to the (unique) stationary distribution. Note, that the left
eigenvector with eigenvalue 1 is oc (1,...,1) as is immediately seen from Eq.
The right eigenvector, in contrast, is in general difficult to compute, as will be seen
later.

A non-irreducible or non-ergodic Markov process has more than one eigen-
value 1 and therefore more than one left and right eigenvector with eigenvalue

The fact that all eigenvalues are within the unit circle in the complex plane can be easily
demonstrated in the following way. Let A be an eigenvalue of 7 and [its corresponding left
eigenvector. Then for all s,

(A= T(slsHi(s) = Y USHT('ls).
REX)

Choose s such that |I(s)| is maximal. Then
1

|4 =T (sls)l = ol

|Z ()T (s']s)| < Z T(s'|s) = 1 = T(s]s).
§'#ES

REX

This statement is known as Gershgoren’s Theorem. Thus, A is within a circle of radius 1 — T'(s|s)
centered at T(s|s). We do not know which s maximizes |/(s)| and therefore we do not know the
value of T'(s|s). However, since circles with smaller 7'(s|s) contain circles with larger T(s|s), 4 is
in the largest circle: |1] < 1. This completes the proof.

1. Let us denote these eigenvectors by /;,...,[; and r,..., ry, respectively. Any
linear combination of the right eigenvectors

k
Pe=) Pare (1)
a=1

is therefore a stationary distribution, assuming proper normalization: p.(s) > 0
for all s and) p(s) = 1. Thus, there exists a manifold of dimension k£ — 1 of
stationary distributions.

In addition, the k left eigenvectors with eigenvalue 1 encode invariants of the
Markov process in the following way. Let the state of the network at time ¢ be
given by p,. Define the numbers L}, = Il - p,a =1,..., kas the inner product of
l, with the probability distribution at time 7. Then it is easy to see that the L/, are
invariant under the Markov dynamics:

L' =L pe =LTp = p =L,

where the forelast step follows because [, is a left eigenvector of 7 with eigen-
value 1. We can thus drop the time index on L,. One of these invariants is the left
eigenvector /; oc (1,...,1) which ensures that the normalization of the probabil-
ity vector p, is conserved under the Markov process. The value of the remaining
k — 1 invariants are determined by the initial distribution py. Since their value is
unchanged during the dynamics they parametrize the stationary manifold and de-
termine uniquely the stationary distribution. We can thus compute the dependence
of the stationary distribution on the initial state. Because of Eq. [§|and Eq. we
obtain L, = I'py = I'pe = p. Thus, the stationary state depends on the initial
state as

k
Peo = > (Epo)ra. (12)
a=1

Note, that in the ergodic case (k = 1) the dependence on the initial state disappears,
as it should, since lI po = 1 for any (normalized) initial distribution.

The time it requires to approach stationarity is also given by the eigenvalues of
T. In particular, each eigenvalue whose norm |1,| < 1 corresponds to a transient
mode in Eq. 9| with relaxation time 1, = 10;11(,'

Both concepts of irreducibility and periodicity are important for neural net-
works and we therefore illustrate them with a number of simple examples. Con-

sider a network of two neurons connected symmetrically by a synaptic weight

10

w = wyp = wy; and thresholds zero. First consider sequential dynamics. The net-
work has four states, the transition matrix 7' can be computed from Eqgs. [5] and [6]
and has 4 eigenvalues. Their values as a function of w are plotted in Fig. [3h. We

sequential parallel

1.5 ‘ 1.5 .
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 1

0 1 2 3 4 0 1 2 3 4
w w

Figure 3: Eigenvalues of T as a function of w under sequential and parallel dy-
namics. For large w, multiple eigenvalues 1 signal ergodicity breaking.

observe, that for small w there exists only one eigenvalue 1. Its corresponding
right eigenvector is the Boltzmann-Gibbs distribution p(sy, s,) = %ﬁ”) as will
be shown below. For small weights, the dynamics is ergodic: for any initialization
of the network the asymptotic stationary distribution is the Boltzmann-Gibbs dis-
tribution. The dominant relaxation time is given by the largest eigenvalue that is
smaller than 1. For larger w, we observe that the relaxation time becomes infinite
because a second eigenvalue approaches 1. This means that some transitions in
the state space require infinite time and therefore ergodicity is broken. From the
Boltzmann-Gibbs distribution, we see that the large weight prohibits the two neu-
rons to have opposite value and therefore only the states (1, 1) and (-1, —1) have
positive probability in this distribution. The ergodicity breaking signals the fact
that transitions between (1, 1) and (-1, —1) become impossible.

Let us denote the 4 states (1,1),(1,-1),(-1,1),(-1,-1) by s*, u = 1,...,4.
The right eigenvectors with eigenvalue 1 are the Boltzmann-Gibbs distribution

1
ri(s) = 5(55,51 + 6s,s4)

and the vector |
Y‘Q(S) = 5(65,51 - 6s,s4)

11

The stationary distribution is no longer unique and consists of any linear combina-
tion of r; and r;, that is normalized and positive: p., = r; + 0212, with -1 < p, < 1.
As a result, any convex combination Adgg + (1 — A)dse, With 0 < A < lisa
stationary distribution.

As we showed above, the particular stationary distribution that is attained by
the network is determined by the initial condition, in particular by the invariants
L,. The left eigenvectors with eigenvalue 1 are

L(s) = 1
lZ(S) = 55,51 _5s,s4

It can be checked that the vectors r, and [, satisfy the duality relation Eq.
The corresponding quantities L; and L, are conserved and the dependence of the
stationary distribution on the initial distribution is given by Eq.

1 1
Do = Liry + Loy = 5(1 + L2)6s,sl + 5(1 - L2)5s,s4

L, = 1 for any initial distribution that is normalized, and therefore is not of interest
to determine the final distribution. In particular, the 4 pure states are mapped onto:

s'iLy=1 — po(s) = g

s L, =0 = po(s) = ri(s)
stiLy=-1 = pu(s) = e

Since there are two eigenvalues 1, there are two ergodic components, each con-
sisting of one state (s' and s*), and the remaining two states are transient.

For the same network with parallel dynamics, the eigenvalues are depicted in
Fig. [3b. For small weights the network is again ergodic. The stationary distri-
bution is given by Eq. [I9]and is flat: independent of w and s. For large weights
ergodicity breaking occurs together with the occurence of a cycle of period 2 and
two additional eigenvalues 1. Thus, there are three ergodic components. Two er-
godic components are of period one and consist of one of the eigenvalues 1 (fixed
points states s; and S4: 7's;4 = S;4). The third ergodic component is of period 2
and consists of the eigenvalues 1 and -1 (a limit cycle of period 2 on states s, and
sy T%s? = Ts® = §2).

In these two examples we have seen that all the eigenvalues of T are real.
This is indeed in general true for both parallel and sequential dynamics when
the weights are symmetric: —1 < 4, < 1. In addition, one can show for se-
quential dynamics (symmetric or asymmetric) that all eigenvalues are within the

12

Figure 4: Eigenvalues of the transition matrix 7 are numbers in the complex
plane with 1] < 1. There is always at least one eigenvalue 4 = 1. When the
system is ergodic, there is only one eigenvalue 1 and the stationary distribution
is unique and is reached for any initial state. When ergodicity is broken, there
are more eigenvalues 4 = 1 and multiple stationary distributions. The asymp-
totic behavior then depends on the initial state of the network. The state space
is partitioned in ergodic components (plus a transition region). In addition, the
ergodic components can have periodicity d > 1, leading to additional eigenval-
ues A = exp(2rim/d),m = 1,...,d, all with |4] = 1. For sequential dynamics
(symmetric or asymmetric) all eigenvalues are within the circle centered at % + 0i
with radius % Therefore, sequential dynamics has always periodicity 1. When
weights are symmetric, the eigenvalues are real. Therefore, parallel dynamics
with symmetric weights has at most periodicity 2. Parallel dynamics with asym-
metric weights can have arbitrary periodicity.

circle centered at % + 0i with radius % [3]. The proof of this last statement again
uses Gershgoren’s Theorem and the special property of sequential dynamics that
T(F;s|s) + T(s|F;s) = % As a consequence, sequential dynamics has always peri-
odicity 1 since other eigenvalues with || = 1 are excluded. Note, that this property
holds regardless of whether the network has symmetric or asymmetric connectiv-
ity. It also follows that for parallel dynamics with symmetric weights one can
have at most periodicity 2 (because the eigenvalues are real). The spectrum of
eigenvalues of 7" in the complex plane is sketched in fig.

13

1.3 Summary

The behavior of a network of stochastic neurons can be dscribed as a first order
Markov process. The Markov process is a prescription of how the probability
distribution at time ¢ over all the states of the network s = (sy,..., s,), p,(s), maps
onto p,.1(s), and is given by the transition matrix 7°(s’|s).

The transition matrix can be analysed in terms of its eigenvalues and eigenvec-
tors. The right eigenvectors with eigenvalue 1 give the stationary distributions of
T. When the Markov process is ergodic, there is a unique stationary distribution
that is asymptotically reached from all initial states. Such a network has therefore
no memory, because its stationary distribution contains no information about its
past.

When the Markov process is non-ergodic, there are multiple stationary distri-
butions. The asymptotic behavior of the network depends then on its initial state.
Such a network can be used as a memory, where each memory corresponds to
one of the ergodic components of the network. The topic of Markov processes,
irreducibility and ergodicity is taken from [5, 6].

1.4 Exercises

1. (a) Compute the interspike interval distribution for the binary neuron as
defined in Eq.

(b) Show that the distribution is normalized.
(c) Discuss the similarities and differences between the binary neuron

model and the Poisson process.

2. Consider a network of two neurons symmetrically connected by a synaptic
weight w = wy, = wy;. Consider sequential Glauber dynamics as defined in

Egs.[5]and [6]
(a) Write the transition matrix 7 in terms of the states si, s, and s/,).

(b) Write T explicitly as a 4 X 4 matrix in the limit that w — oco. Show
that there are three eigenvalues 1.

(c) What are the invariants in this case?

3. Consider a network of two neurons symmetrically connected by a synaptic
weight w = wy, = wpy. Consider parallel Glauber dynamics as defined in

Eq.[3

14

(a) Write the transition matrix 7" in terms of the states sy, s, and s/, .

(b) Write T explicitly as a 4 X 4 matrix in the limit that w — oco. Show
that there are three eigenvalues 1.

(c) What are the invariants in this case?

15

2 Boltzmann-Gibbs distributions

If we consider a stochastic neural network with a specific connectivity matrix,
what will the behavior of the network be? This is a rather difficult question to
answer in general, but in some specific cases quite a lot is known. In particular
for symmetrically connected networks with sequential dynamics, the equilibrium
distribution is the Boltzmann-Gibbs distribution which plays a central role in sta-
tistical physics. In this section we derive the Boltzmann-Gibbs distribution. Then
we indicate the computational problems associated with the computation of statis-
tics of the Boltzmann-Gibbs distribution. We introduce the mean field theory as a
simple approximation to compute the mean firing rates of the network and the lin-
ear response correction to approximately compute the correlations. We illustrate
the use of these methods on Boltzmann Machines, which are Boltzmann-Gibbs
distributions whose weights are thresholds are adapted through learning.

2.1 The stationary distribution

In the case that the synaptic connectivity is symmetric, w;; = w;; one can compute
the stationary probability distribution for the parallel and sequential dynamics ex-
plicitly. In both cases the derivation uses the argument of detailed balance, which
states that for the dynamics 7'(s’|s) there exists a function p(s) such that

T(s|s")p(s") = T(s'|s)p(s) forall s,s’. (13)

If detailed balance holds, it implies that p(s) is a stationary distribution of T,
which is easily verified by summing both sides of Eq. [13| over all states s’ and
using Eq. [/l However, the reverse is not true: many stochastic dynamics do not
satisfy detailed balance and a solution to Eq. [I0]is then typically not available in
analytical form, although its existence is dictated by the Perron-Frobenius theorem
[S].

For random sequential dynamics, 7' is given by Egs. [5] and 2] and the detailed
balance equation reads T'(F;s|s)p(s) = T(s|F;s)p(F;s) for all states s and all neigh-
bor states F;s. It is easy to show that

T(s|F;s)
T(Fisls) = exp(2(Z/1 wi;jS;j + 9,')5,‘). (14)
Consider the distribution
1 1
p(s) = — exp(5 ZJ Wijsis; + Z 0;50). (15)

16

p(s) is called a Boltzmann-Gibbs distribution and plays a central role in statistical
physics. For this reason, the expression in the exponent is often referred to as the
energy:

1
—E(S) = EZWUS[S]"F ZQ,-S,-. (16)
ij i
States of low energy have high probability. Z is a normalization constant,

Z =" exp(-E(s)) (17)

and is called the partition function. p(s) only depends on the symmetric part of
the weights w}; and

% = exp2() | wijs; +6)s). (18)
p(Fs -

Thus for symmetric weights, detailed balance is satisfied between all neighboring
states. Since all values of T are zero for non-neighboring states this proves that
p(s) is the equilibrium distribution. [}

2.2 Computing statistics

p(s) in Eq. [T15] and [I9] give an analytical expression of the stationary probability
distribution of an arbitrary network with symmetric connectivity and sequential
and parallel dynamics, respectively. From these equations we can compute any

3When all neurons are updated in parallel, the transition matrix is given by Eq.|3| As in the case
of sequential dynamics, we can again compute the stationary distribution for symmetric weights.
We use again detailed balance:

T(s'ls) _ exp(Xwijs;s; + 2 0is7) 11 cosh(hi(s'))
T(sls’) exp(2;; wijssi + i bisi) cosh(h(s))

When the weights are symmetric, the term involving the double sum over i and and j cancels and
the remainder is of the form 2% with

p(s)”’
1
p(s) = exp(zi: log cosh(zj] wijsj +0;) + Z 0;s,). (19)

This is the equilibrium distribution for parallel dynamics [2].

17

interesting statistics, such as for instance the mean firing rate of each of the neu-
rons:

mi = (s)=)" sip(s), (20)

N

and correlations between neurons:

Xij = <SiSj> —(s) <Sj> = Z SiSjP(S) - mm;. (21)

N

However, these computations are in general too time consuming due to the sum
over all states, which involves 2" terms.

For some distributions, the sum can be performed efficiently. For Boltzmann-
Gibbs distributions, the subset of probability distributions for which the sum over
states can be performed efficiently are called decimatable distributions [7]. These
include factorized distributions, trees and some other special graphs as sub sets.
For factorized distributions, p(s) = []; pi(s;), the energy only depends linearly on
s; and the sum over states can be performed by factorization:

Z exp(z ;s;) = n Z exp(a;s;) | = 1—[2 cosh(;).

K i Si

From Egs. [I[5]and 19 we infer that this corresponds to the rather uninteresting case
of a network without synaptic connections. |z_r]

In general, the sum over states can not be computed in any simple way. In this
case we call the the probability distribution intractable and one needs to apply
approximation methods to compute the partition function and statistics such as

Eq.[20and 21}

“4The probability distribution p(s) is called a tree when between any two neurons in the network
there exists only one path, where a path is a sequence of connections. Alternatively, one can order
the neurons in the graph with labels 1,...,n such that neuron i is connected to any number of
neurons with higher label but only to at most one neuron with lower label. For Boltzmann-Gibbs
distributions which are trees:

Z exp(z W;ijSis;) = Z exp(Z Wip, 8iSp,) = 1_[2 cosh(wjp,),

s ()] s

where p; labels the parent of neuron i. For parallel dynamics, such non-trivial decimatable struc-
tures do not exist.

18

0.5

-0.5¢

-1.5¢ _ f(x0)+(x—x0)f‘(x0)
ot

-2.5 : ‘ :
0 0.5 1 1.5 2

Figure 5: Illustration of the concavity property f(x) < f(xo) + (x — x0)f"(xo) for
the logarithmic function and x, = 1.

2.3 Mean field theory

In this section, we will show how to approximate Z in Eq. [1/|using the standard

mean field theory. In fact this approximation is a lower bound on Z. As a by-

product we will obtain an estimate of the mean firing rates of the neurons as well.
We can use Eq.[I7]and write

-E
logZ = logZexp(E(s))—logz ()%
Zq()lo g(eXp((f(s))) —(E)y+S84=-F (22)

q(s) is an arbitrary positive probability distribution on the state space s. The in-
equality is called Jensen’s inequality and follows from the concavity of the loga-
rithmic function and the fact that g(s) is a probability distribution:) g(s) = 1.
For any concave function f, we have f(x) < f(xo) + (x — x0)f"(x0), as illustrated
in fig. E} Therefore, if we chose xo = (x),, then (f), < f({x),). Further we have

(EY, =) q()E(s)

and

" a(s)loggq(s)

19

is the entropy of the distribution ¢g(s). The bound F on log Z is called the mean
field free energy.

Up to now, we have not specified g(s), except that it must be a normalized
probability distribution. We can in fact choose any probability distribution, but
in order to make the mean field method tractable, we should choose a tractable
distribution g(s). The simples choice is to choose for g(s) a factorized distribution
where all neurons are independent:

1
gs) = | [atsd. aits) = 51+ mus).

m; is the expectation value of s; under the distribution g;: m; = (s;),,. The m;,i =
1,...,n are undetermined parameters that specify the distribution ¢ uniquely. F
1S now given by

F= —% Zj: w,-jm,-m,—Z Him,-+% Z ((1 +m) log(%(l +my) + (1 - m;) log(%(l - m,-))) .

(23)

From Eq. 22] we have F > —logZ, for any choice of m;. We get the tightest
bound on log Z by minimizing F wrt m;:

or

- = Z w;im; + 6; — tanh_l(m,-)
om, ;

Setting % = (0 we obtain

m; = tal’lh(Z Wiim; + 9,) (24)

J=1

These equations are called the mean field equations. They consist of n non-linear
equations with n unknown, which has te be solved selfconsistently. The solution
m; provides us with an approximation to the mean firing rates of the intractable
Boltzmann distribution Eq. 20}

m; = (Si)g = {Si)p

2.4 Linear response correction

We can also compute the correlations in the mean field approximation. The crucial
observation is that both the mean firing rates and the correlations can be computed

20

as derivatives of the partition function:

OlogZ
(i) 26,
_ 0*logZ
Y= 960,00,

with the correlations y;; defined in Eq. Combining these two expressions, we

can relate the correlations to the mean firing rates as

_ O(s;) Om
a0; 06,

Xij (25)
where in the last step we have used the mean field approximation for (s;). Because
the mean field equations give us an implicit relation between m; and 6;, we can
derive

00; 0

om; 1o 20
7 i

Thus the correlations can be computed by inverting this matrix. This approxima-
tion to the correlations is know as the linear response correction.

2.5 Boltzmann Machines

A well-known application of the Boltzmann-Gibbs distribution are Boltzmann
Machines [4]. The basic idea is to treat the distribution Eq. as a statistical
model, and to use standard statistical tools to estimate its parameters w;; and 6;.

Let us restrict ourselves to the simplest case, that all neurons receive sensory
input. The general case would be that only a subset of neurons (sensory neurons)
receive input and the rest of the network (the hidden neurons) receive no direct
input. The case with hidden neurons is somewhat more complex and is beyond
the scope of these lectures.

Learning can be described in the following way. Consider a set of P train-
ing patterns s* = (s),...,s,) withu = 1,...,P. We wish to find the value of
the weights and thresholds, such that the Boltzmann-Gibbs distribution "best’ de-
scribes these data. The standard statistics approach to this problem is to construct
the log likelihood of the observed data

L(w,0) = %Zlogp(s‘“,...,s’,f)
M

21

and maximize this function wrt to w and 6.
This maximization can be easily performed by computing the gradients of L
wrt w;; and 6; [4,8]:

%::mem)
g% = ((s3), = (s35)) i # J. (27)

The brackets (-) and (-). denote the ’free’ and ’clamped’ expectation values, re-
spectively. The ’free’ expectation values are defined as:

(s1)

> sip(s) (28)

N

<s,-sj> = Zs,-sjp(s) (29)

N

with p(s) given by Eq.[I5] The ’clamped’ expectation values are simply the statis-
tics computed in the training set:

(sde = 5D, (30)
7

(vs), = 2 @D
M

The simplest learning procedure is to start at + = 0 with a random initial value of
all weights and thresholds and to iteratively change these values in the direction
of their gradients:

oL

Wi'(t + 1) = Wi'(t) +nN—

J J awij
oL
9,' t 1 = 91' -
(t+1) H+n 36,

with n a small number. This so-called gradient ascent algorithm increases the
value of L at each step (for sufficiently small 77) and terminates when the gradients
are zero, i.e. at a local maximum. From Eq. we see that at a local maximum
of L, the first and second order statistics of the Boltzmann distribution p and the
data are equal. It is good to be aware that there exist much more sophisticated

22

methods for maximizing a function, but the gradient ascent method is probability
the closest to biology.

The computation of the free expectation values is intractable, because the sums
in Eqgs. 29 consist of 2" terms. As a result, the exact version of the BM learning
algorithm can not be applied to practical problems. We can however apply the
mean field approximation as discussed in the previous section. Given the weights
and thresholds at iteration ¢, we compute (s;) from Eq. [24|and <sl-s.,-> from Eqgs.
and [26] and insert these values into the learning rule Eq. This approach can
also be applied when hidden units are present.

In the absence of hidden units we do not have to resort to an iterative learning
procedure, but we can set the lhs of Egs.[27|equal to zero and solve these equations
directly. In the mean field approximation, these equations read:

m; = (i) (32)

Xij = (sisj) —mmj,i# | (33)
m; is a function of w;; and 6; as given by the mean field equations Eqgs. Xij 18
a function of w;; and m; as given by the linear response equations Eqgs. [25|and [26]
Egs. and are n + %n(n — 1) equations with an equal number of unknowns w;;
and 6; and can be solved using standard numerical routines.

The righthandside of Eq.[33|can be computed from the data, because of Eq.[32]
Thus Eq. [33|is an matrix equation of the form

x=C

with C;; = <s,~sj>c — (8i)¢ <sj>c. If we invert this equation, we obtain

(€ = 0y = s~
ij — iy = 2 1

I —m;
where the last step is the result of Eqs 25| and This gives an explicit solution
for w;; in terms of known quantities.

However, this procedure is incorrect, because Eq. is only enforced off-
diagnonally. By using the following trick we can however still use this approach.
We introduce additional parameters, diagnonal weights w;;, which we estimate in
the learning process. Thus, in the mean field equations Eq.[24]the sum over j now
also contains a term w;m;. We now need n additional equations for learning, for
which we propose the diagonal terms of Eq. xii = 1 —m?. This equation is

23

true by definition for the exact y, but becomes an additional constraint on w;; and
0; when y is the linear response approximation. Thus our basic equations become

m;

tanh(Z Wiim; + 9,) (34)
=1

(99j _ 5ij

(9m,- B 1- I’I’Ll2

From Eq. we can compute the solution for w;; and 6; in closed form:

-1

Xij - Wij. (35)

mi = (i) (36)
Cij = <Sisj>c_<si>c<sj>c (37)
wy = 115"’}'11 s—(c), (38)
9,' = tanh_l(mi)—iwijmj (39)

=1

2.5.1 Classification of digits

We demonstrate the quality of the above mean field approximation for Boltzmann
Machine learning on a digit recognition problem. The data consists of 60000
training examples and 10000 test example of handwritten digits (0-9) compiled
by the U.S. Postal Service Office of Advanced Technology. The examples are
preprocessed to produce 28 x 28 binary images with noise added. See examples
in fig. [6]

Our approach is to model each of the digits with a separate Boltzmann Ma-
chine. For each digit, we use approx. 6000 patterns for training using the approach
outlined above. We thus obtain 10 Boltzmann distributions, each with its own pa-
rameters W% = (WZ., 09),a=1,...,10.

We then test the performance of these models on a classification task using
500 of the 10000 test patterns. We classify each pattern s to the model « with the
highest probability:

1
class(s) = argmax, p,(s), pa(s) = ZW0) exp(i Zj: w?js,-sj +67s;)

The normalization Z(W®) is intractable and depends on « and therefore affects
classification. We use its mean field approximation log Z ~ —F, with F given by

Eq.23]

24

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Figure 6: Sample of 60000 training patterns and 10000 test patterns of the 28 X
28 handwritten digits of the U.S. Postal Service Office of Advanced Technology.
Patterns are binary and 10 % pixel noise is added.

Test the performance on 500 of the 10000 test patterns classifies 45 incorrect.
Compare with simple template matching on the mean image yields 123 errors.

2.6 Summary

The Boltzmann-Gibbs distribution is the stationary distribution of the stochastic
neural network, when using sequential dynamics and symmetric weights. The
symmetric weights is a severe restriction, and is clearly not true for the synaptic
connectivity in the brain. However, if we view the binary neurons as describing
the average behavior of groups of neurons, as is customary in the connectionists
approach, symmetric connectivity is not so bad. It is often observed that the time-
delayed correlation between neurons shows a peak at delay zero, indication that
the ’effective’ connectivity is symmetric.

For non-symmetric networks the theoretical analysis is much harder and fewer
results are known. Most of the results have been obtained with numerical simu-
lations. It appears that when a sufficient amount of asymmetry is introduced, the
network dynamics is dominated by periodic orbits of different length. Thus asym-
metric networks are radically different from symmetric networks. The differences
between symmetric and asymmetric networks are discussed in [6]].

Despite the fact that the stationary distribution can be given in a closed form
mathematical formula, the computation of any statistics of this distribution, such
as means and correlations is intractable. The mean field method, as introduced in
this chapter, allows to compute these quantities approximately. There exist more
powerful approximate methods. For a discussion of the extensions of mean field
theory see [9] and [10], as well as other contributions to that book.

Because the computation of means and correlations in stochastic is intractable,
also any learning method is intractable. The Boltzmann Machine learning paradigm
is the simplest learning method for stochastic neural networks.

2.7 Exercises

1. (a) Derive Eq.[I4]

(b) Show that the detailed balance does not hold when the weights of the
neural network are not symmetric (w;; # wj;). In other words, show
that te Boltzmann distribution is not the stationary distribution of the
Glauber dynamics with asymmetric weights.

26

2. Study the accuracy of the mean field and linear response method for a Boltz-
mann distribution on 2 neurons with equal threshold 6, = 6, = 6 and con-
nected by a weigth w:

1
p(sy, 82) = Z exp(wsy sy + 6(s; + 52))

(a) Give an expression for the mean field equations to approximately com-
pute the firing rates for this network.

(b) Solve the mean field equations numerically for 6 = w and various
values of w and compare the mean field approximation with the exact
result.

(c) Compute the linear response estimate of the correlations and compare
with the exact values.

3. Work out analytically the result of mean field learning with linear response
correction for the case of two neurons and a data set consisting of three
patterns (1,-1),(1, 1), (=1, -1).

4. Take home computer exercise. The objective is to 1) make you familiar with
the mean field approximation and the linear response correction and 2) to
numerically compare the accuracy of a Monte Carlo sampling method with
the mean field method.

e Write a program that can compute means and correlations in an Ising
model of n binary neurons using a Metropolis Hastings (MH) method.
Use s; = =1 coding. Choose the coupling matrix 1) with random
positive entries (ferromagnetic case) and 2) with random entries of
either sign (frustrated case). Choose the thresholds 6; = 0.

e Write a program that can compute means and correlations in the same
Ising model using the mean field theory and linear response correction.

e We will rely on the results of the MH method to be an good approx-
imation of the exact result. To demonstrate the reliability of the MH
method, show that the results of different MH runs with different ini-
tializations are identical within the errors of individual runs. Note,
how the required length of the MH run depends on the n, on the size
of the weights and on whether the weights are ferromagnetic or frus-
trated.

27

e Compare the quality of of the mean field approximation of the means
and correlations as a function of n, size of the weights for the ferro-
magnetic and frustrated case.

Provide plots and texts for all your results and conclusions.

28

(b)

Figure 7: A) Simple Perceptron B) Multi-layered Perceptron

3 Perceptrons

Perceptrons are feed-forward neural networks. Examples are given in Fig.[/| Con-
sider a simple perceptron with one output:

o=gh)=¢ (Z Wi~ 9) =8 [Z ijj]
=1

Jj=0
with weights w; and inputs &;. & = —1 and 6 = wy. g is a non-linear function.
Learning: Given a number of input-output pairs (5’;), u=1,...,P, findw;

such that the perceptron output o for each input pattern & is equal to the desired
output J*:

Oﬂ:g(zwjé:?]:gy’ M= 1’-"’P
j=0

3.1 Threshold units

Consider the simplest case of binary threshold neurons:

g(h) = sign(h)

Then, the learning condition becomes

signw-&) =0, u=1,...,P

29

@ o J ot (b) /o
’ ’
& o° J o8
G ,’ ’ H
ol / oG
/' w /0 w
/ oC I, F eC
// b /I D OE
;e ;r®

Since {* = +1, we have
sign(w-&¢")=1 or w-x*>0

with x}]‘ = f?{”.

3.2 Linear separation

Classification depends on sign of w - £. Thus, decision boundary is hyper plane:
0:w-§:ij§,-—9
=1

Perceptron can solve linearly separable problems. An example of a linearly sepa-
rable problem is the AND problem: The output of the perceptron is 1 if all inputs
are 1, and -1 otherwise (see Fig. [g).

By definition, problems that are not linearly separable need more than one
separating hyper plane to separate the two classes. An example of a non-linearly
separable problem is the XOR problem: The output is equal to the product of the
input values (see Fig. [§]A). Other problems that are not linearly separable occur
when three or more input patterns are linearly dependent (see Fig. [§B).

30

(0] 1.0}

’
0.0} (1.

3.3 Perceptron learning rule
We have seen that the desired weight vector satisfies
w-x* >0, all patterns (40)

We define the following perceptron learning rule:

new _ old)
wio = wit + Aw;

Aw; = n@(—w-x“)g’;{”:n@(—w-x“)x” 41

n is the learning rate. This learning rule is Hebbian in the sense that the change
in weight is proportional to the product of input and output activity. The function
® is 1 for positive arguments and zero otherwise: When presenting pattern p,
learning only occurs, when the condition w - x* > 0 is not satisfied for that pattern.

31

Figure 9: The perceptron learning rule in action. Learning rule Eq. #1]is applied
to all patterns in some random or given order. Learning stops, when a weight
configuration is found that has positive inner product with all training patterns.

In Fig.[9]we show the behavior of the perceptron learning rule with 7 = 1. The
dataset consists of three data patterns x', x> and x°. The initial weight vector is w.
Presenting pattern x!, we note that w - x! < 0 and therefore learning occurs. The
resulting weight vector is w' = w + x!. Presenting pattern x*> and x° also result in
learning steps and we end up in weight configuration w'”’. This weight vector has
positive inner product with all training patterns and learning terminates.

Depending on the data, there may be many or few solutions to the learning
problem, or non at all! In Fig.[T0] we give examples of two data sets and their so-
lutions Eq. In Fig.[I0A there are more admissible weight vectors and they can
have a larger inner product with all training patterns than in Fig. [I0B. We define
the quality of the solution w by the pattern that has the smallest inner product with
w. Since the solution does not depend on the norm of w, we define the quality as

D(w) = Lrninw - Xt
Wl «
The best solution is given by D, = max,, D(w).
In Fig.[TT] we illustrate this for a given data set and two admissible solutions w
and w’ and their values of D respectively. Since D(w’) > D(w), w’ is the preferred
solution.

32

Figure 10: Two examples of data sets and the sets of w that satisfy condition
Eq.H0l A) Many solutions B) Few solutions.

@
o O e
® '
W w ® A .
B ¢ \9&“‘,
Dm:-1x _ - -

Figure 11: Two admissible solutions w and w’ and their values of D respectively.
Since D(w") > D(w), w’ is the preferred solution.

If we can find a w such that D(w) > O the problem is linearly separable and
learnable by the perceptron learning rule. If the problem is not linearly separable
not such solution exists.

3.3.1 Convergence of Perceptron rule

In this section we show that if the problem is linearly separable, the perceptron
learning rule converges in a finite number of steps. We start with initial value
w = 0. At each iteration, w is updated only if w - x** < 0. After some number of
iterations, let M* denote the number of times pattern u has been used to update w.

Thus,
w=n Z M* X
u

M = 3, M" is the total number of iterations in which the weight vector is
updated. If the learning rule converges, it means that M is finite and does not
grow indefinitely.

The proof goes as follows. Assume that the problem is linearly separable, so
that there is a solution w* with D(w*) > 0. We will show that

where the second inequality follows simply from the definition of the inner prod-
uct, and we will show the first inequality below. Thus, M can not grow indefinitely
and the perceptron learning rule converges in a finite number of steps.

The proof of the first inequality is elementary:

wew' =) MA w2 M min - w' = gMDOlIw|
M
w -+ 7| = Wl = 27w - X + PP < PP = °N

Allwl?

The inequality in the second line makes use of the fact that for each training pattern
where learning takes place w - x* < 0. The norm of w is thus bounded by

Iwl> < n’NM

Combining these two inequality, we obtain Thus,

w-w* S D(w")
Iwlw*| — VN
34

(42)

which completes the proof. Note, that the proof makes essential use of the exis-
tence of w* with D(w*) > 0. If D(w*) < 0 the bound Eq. [42] becomes a trivial
statement and does not yield a bound on M.

If the problem is linearly separable, we can in conclude that the number of

weight updates:
N

< —
D2(w*)
where N is some trivial constant. We see that convergence takes longer for harder
problems (for which D(w*) is closer to zero).

3.4 Linear units

We now turn to a possibly simpler case of linear units:
o= 2L
J

Desired behavior is that the perceptron output equals the desired output for all

patterns: o* = *,u = 1,..., P. In this case, we can compute an explicit solution
for the weights. It is given by
1 _) 1 ,
wi= 20 (0), 8 Q=588 43)
/%4 J

Q is a matrix with dimension P X P and contains the inner products between the
input patterns.

To verify that Eq. d3] solves the linear perceptron problem, we simply check
for one of the input patterns (£“) whether it gives the desired output:

>t % 2. &
J

P
= Z ("), 0w
= Z gpépu =
P

35

For this solution to exist, Q must be invertible which means that Q must be of
maximal rank (rank P). Therefore P < N. E]
When P < N the solution w; = ﬁ 2o’ (Q‘l)pv &% is not unique. In fact, there

exists a linear space of dimension N — P of solutions w. Namely, let

W) ; Ye(e), e
,W

0 L
wj+§

Wi

with &+ an n-dimensional vector that is perpendicular to all training patterns: &+ L
{£&"}. Then the output of the perceptron is unaffected by &*:

¢= wigh =)+ Ehe =) Wi
J J J

3.4.1 Gradient descent learning

Often P > N, and thus patterns are linearly dependent. In general, one can define
a learning rules through a cost function, that assigns a cost or quality to each
possible weight vector. A common cost function is the quadratic cost:

2
1
Ew) = 5 [¢ =D wi (44)
H J

which is minimized when the actual perceptron output 3’ ; w jf’j‘ is as close as pos-
sible to the desired output £* for all patterns p.

>In addition, the input patterns must be linearly independent. If the input patterns are lin-
early dependent, solution Eq. A3 does not exist unless the corresponding outputs are also linearly
dependent. Linear dependence of the inputs implies that there exists a* such that

Z a“‘f’; =0
u
This implies that
Za“{" = ija”f’j. =0
M Hj

in other words, that the outputs cannot be chosen at freely. For problems with linearly dependent
inputs and matched linearly dependent output Eq. 43|can be used by restricting the training set to
a linearly independent subset that spans the training set, and computing Q for this subset.

36

The cost function can be minimized by the so-called gradient descent proce-
dure. We start with an initial random value of the weight vector w and we compute
the gradient in this point:

OE
) IR
! u j
We change w according to the ’learning rule’

OE

—-n— 45
"aw,. (45)

w; = w; + Aw; Aw,; =
and repeat this until the weights do not change any more.

When 7 is sufficiently small, it is easy to verify that this gradient descent pro-
cedure converges. The proof consists of two observations. One is that for small 7,
E(w) decreases in each step, and the other is that E(w) is bounded from below, so
that it has a smallest value. Therefore E cannot continue decreasing indefinitely
and must converge to some stationary value (see Exercises).

3.4.2 The value of n

What is a good value form n? Clearly, when 7 is very small, convergence is
guaranteed, but in practice it may take a very long time. If 17 is too large, however,
convergence is no longer guaranteed. The problem is further complicated by the
fact that the optimal choice of 7 is different for different components of the weight
vector w. This is illustrated in Fig. where E as a function of w is drawn. This
valley has a unique minimal value for E, but the curvature in two directions is very
different. In the long (flat) direction, large steps can be made, but in the orthogonal
direction only small steps are allowed. We can analyze the problem, by assuming
that the energy has the form

1 ;
E(W) = EZ(L‘(W,’—WZ-)Z'FEO

with w* the location of the minimum, and a; the curvatures in the two directions
i = 1,2. Eq. 45| becomes
OF
Aw; = —-n— = -2na;(w; —w}) = —2na;0w;
8W,’

37

Error

Fattern
Subspace

Orthogonal Subspace

Figure 12: Cost landscape E(w) with different curvatures in different directions.

with 6w; = w; — w;,. The effect of learning step on ow; is

— 2na;ow?™ — wi = (1 — 2na;)ow™

i

old

new __ new
ow. = W, ;

— *—
i i w, =W

thus, ow; converges asymptotically to zero iff
[1 —2na;| < 1. (46)

We must find an 7 that satisfies Eq. 46| for all i. When 1 — 2na; < 0, 6w; changes
sign in each iteration. The behavior is illustrated in Fig. with E(wy,wy) =
w? + 20w; for different values of 7.

3.5 Non-linear units

We can extend the gradient descent learning rule to the case that the neuron has a
non-linear output:

o =g, W= wi
J
We use again the quadratic cost criterion:

1
Eiw) = 3 @& =0
M
OE
Awi = g = Z (& - 0" g (e

38

Figure 13: Behavior of the gradient descent learning rule Eq. 45| for the quadratic
cost function E(wy, w,) = wi + 20w; for n = 0.02, 0.0476,0.049, 0.0505.

When the function g is a monotonous function, it is invertible and one could
also formulate a different cost criterion by observing the identity

g(h') & g7'(¢") = 1"
1 _ 2
5 2 (e @ —m)
Jui
Note, that E, has a quadratic dependence on w, as in the linear case (but with

transformed targets g~!(£#) instead of /#). In general, optimizing either E, or E,
yield different optimal solutions.

I
E>(w)

3.6 Stochastic neurons

For o = +1:

1
p(olé) = 3 (1 + tanh(ho)), h= Zjl wiE;

When the target distribution is given by g(o|¢), we use the (conditional) KL diver-
gence as cost function for learning:

g0l
E=)1
2.), 40k log (p(ow))

uooo==xl1

39

For a specific training set, we have g(¢#|é*) = 1 and g(—{*|&*) = 0. Thus,

E =~) log p(¢"le")
u

Gradient descent on this learning rule yields

WER) e p(-c e e

(9wj J
OE

e —22#119(—{%“){“65

- > @ =08
u
This is equivalent with (5.57-58).

3.7 Capacity of the Perceptron

How many patterns can be perfectly mapped by a perceptron:
e Linear perceptron Pp,,x = N
e Binary perceptron Py,x = 2N

Consider P patterns in N dimensions. Each pattern can be either class (B/W).
How many of the 27 colorings are linearly separable?

e P small, then C = 2°

e P large, then C << 2°

C(p.N)2P

0.5

40

Proof by induction. Define C(P, N) the number of linearly separable colorings
on P points in N dimensions.

Add one point X. The set C(P, N) consists of

e colorings with separator through X (A)

e rest (B)
Thus,
ClP+1,N) = 2A+B=C(PN)+A
= C(PN)+C(P,N-1)
Yields

N-1
C(P,N):ZZ(Plfl)
i=0

3.8 Multi-layered perceptrons

The gradient descent learning procedure can be trivially extended to the percep-
tron with multiple layers and multiple outputs as shown in Fig. [7B. In addition to
the input variables & and the output variable o;, we have a layer of hidden vari-
ables v; for which no training data are observed. The value of the hidden variables
is computed in terms of the input variables, and the outputs are computed in terms
of the hidden variables:

The output is now a complex function of the input pattern & and the weights w
in the first layer of the network and the weights w;; in the second layer of the
network.

41

Given a set of P training patterns (&,!),u = 1,..., P, we again use the gra-
dient descent procedure to find the weights that minimize the total quadratic error:

Ew) = 5 2. 2#] (o - 2) (48)

with o/’ the output on node i for input pattern & as given by Eq.

For large neural networks with many hidden units, the simple gradient descent
procedure can be quite slow. However, there exist well-known algorithms that
significantly accelerate the convergence of the gradient descent procedure. One
such method is the conjugate gradient method. Treatment of this method is beyond
the scope of this course (see however [8] or Matlab for further details).

Note, that the optimal solution that is found depends on the number of hidden
units in the network. The more hidden units, the more complex functions between
input and output can be learned. So, for a given data set, we can make the error
Eq. 48| as small as we like by increasing the number of hidden units. In fact, one
can show that the multi-layered perceptron can learn any smooth function, given
a sufficiently large number of hidden units.

However, the objective of a learning algorithm is to use the neural network
to predict the output on novel data, that were not previously seen. Increasing the
number of hidden units does not necessarily improve the prediction on novel data.
The situation is illustrated in Fig. [14] for the case of one input variable and one
output variable. The crosses denote the data points that were used for training and
the smooth curve is the neural network solution. For a small number of hidden
units, the solution may look something like Fig. [[4]A. The solution does not pass
through all the data points. For a larger number of hidden units, the solution may
look something like Fig. [I4B. The solution does pass through all the data points
and is more complex. However, the prediction of the more complex network is less
accurate than the simple network for the data point indicated by the circle, which
was not part of the training set. The extend to which the trained neural network is
capable of predicting on novel data is called the generalization performance. The
network with the optimal generalization performance must balance two opposing
criteria: minimization of the error on the training data requires a large number
of hidden units, but the solution should also be sufficiently smooth to give good
prediction.

42

Figure 14: Network output versus network input. A) Network with a small num-
ber of hidden units. B) Network with a large number of hidden units. Networks
with more hidden units can implement more complex functions and can better fit

a given training set. However, more complex networks do not necessarily gener-
alize better on novel data.

43

3.9 Summary

This chapter is based on [8]. Perceptrons are simple models of feed-forward com-
putation in a network of neurons. Binary perceptrons can be used for classification
problems. Learning is done using the perceptron learning rule. The learning rule
converges in a finite number of iterations if and only if the problem is linearly
separable.

Perceptrons can also be constructed with continuous output, either using a
linear or non-linear transfer function. These perceptrons can be learned using the
gradient descent method. Gradient descent converges asymptotically for any data
set.

The quality of the perceptron can be significantly improved by using multiple
layers of hidden units. The multi-layered perceptron can learn any function by
using a sufficiently large number of hidden units. However, prediction quality on
novel data does not generally increase with the number of hidden units. Optimal
generalization is obtained for a finite number of hidden units.

3.10 Exercises

1. Check dat D,,,, = \/% voor het AND probleem en D,,,, = —% voor het
XOR probleem. Het AND probleem in de & = +1 codering is gedefinieerd
als = 1lalsé =& =1and ¢ = —1 in alle overige gevallen. Het XOR
probleem is gedefinieerd als { = &; = &. Gebruik voor de gewichten vector
w = (Wp, w1, wp). (Hint: gebruik w; = w, vanwege symmetrie).

2. Consider gradient descent in an error landscape given by E = a;x* + a,)*.
Compute the value of the learning rate n such that the convergence in both
x and y direction is equally fast.

3. Consider a linear perceptron as in section [3.4] to learn the AND function
using the quadratic error Eq. [44]

e What are the optimal weights and threshold value after learning? What
is the optimal cost E?

4. Show that the gradient descent algorithm Eq. 45| converges asymptotically.
The proof consists of two steps: show that the error does not increase in
each learning step (ie. decreases or stays equal) and that the error is bounded
from below.

44

References

[1]
(2]

(3]

[4]

[7]

(8]

[9]

[10]

Chr. Koch. Biophysics of computation. Oxford University Press, 1999.

W.A. Little. The existence of persistent states in the brain. Math. Biosci., 19:101—
120, 1974.

P. Peretto. An introduction to the modeling of neural networks. Cambridge Univer-
sity Press, 1992.

D. Ackley, G. Hinton, and T. Sejnowski. A learning algorithm for Boltzmann Ma-
chines. Cognitive Science, 9:147-169, 1985.

G.R. Grimmett and D.R. Stirzaker. Probability and random processes. Clarendon
Press, Oxford, 1992.

H.J. Kappen. An introduction to stochastic neural networks. In F. Moss and
S. Gielen, editors, Neuro-Informatics and Neural Modelling, pages 517-552. North-
Holland, 2001.

L. Saul and MLI. Jordan. Learning in Boltzmann trees. Neural Computation, 6:1174—
1184, 1994.

J. Hertz, A. Krogh, and R. Palmer. Introduction to the theory of neural computation,
volume 1 of Santa Fe Institute. Addison-Wesley, Redwood City, 1991.

H.J. Kappen. An introduction to stochastic neural networks. In F. Moss and S. Gie-
len, editors, Neuro-informatics and neural modelling, volume 4 of Handbook of
biological physics, pages 517-552. Elsevier, 2001.

H.J. Kappen and W. Wiegerinck. Mean field theory for graphical models. In D. Saad
and M. Opper, editors, Advanced mean field theory, pages 37-49. MIT Press, 2001.

45

	Networks of binary neurons
	Stochastic binary neurons and networks
	Parallel dynamics: Little model
	Sequential dynamics

	Some properties of Markov processes
	Eigenvalue spectrum of T
	Ergodicity and ergodicity breaking

	Summary
	Exercises

	Boltzmann-Gibbs distributions
	The stationary distribution
	Computing statistics
	Mean field theory
	Linear response correction
	Boltzmann Machines
	Classification of digits

	Summary
	Exercises

	Perceptrons
	Threshold units
	Linear separation
	Perceptron learning rule
	Convergence of Perceptron rule

	Linear units
	Gradient descent learning
	The value of

	Non-linear units
	Stochastic neurons
	Capacity of the Perceptron
	Multi-layered perceptrons
	Summary
	Exercises

