Chapter 6

Exponential families and maximum
entropy

In this set of notes, we give a very brief introduction to exponential family models, which are a broad
class of distributions that have been extensively studied in the statistics literature [4, (1, 2,[7]. There
are deep connections between exponential families, convex analysis [7], and information geometry
and the geometry of probability measures |1], and we will only touch briefly on a few of those here.

6.1 Review or introduction to exponential family models

We begin by defining exponential family distributions, giving several examples to illustrate a few
of their properties. To define an exponential family distribution, we always assume there is some
base measure 4 on a space X, and there exists a sufficient statistic ¢ : X — R%, where d € N is
some fixed integer. For a given sufficient statistic function ¢, let § € R? be an associated vector of
canonical parameters. Then with this notation, we have the following.

Definition 6.1. The exponential family associated with the function ¢ and base measure p is
defined as the set of distributions with densities py with respect to u, where

po(x) = exp ((0, ¢(z)) — A(0)), (6.1.1)

and the function A is the log-partition-function (or cumulant function) defined by

A(6) = log / exp ({0, 6(x))) du(z), (6.1.2)

X

whenever A is finite.

In some settings, it is convenient to define a base function h : X — R, and define

po(x) = h(x) exp((0, o(x)) — A(0)),

though we can always simply include h in the base measure p. In some scenarios, it may be convient
to re-parameterize the problem in terms of some function 7(6) instead of 6 itself; we will not worry
about such issues and simply use the formulae that are most convenient.

We now give a few examples of exponential family models.
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Example 6.1 (Bernoulli distribution): In this case, we have X € {0,1} and P(X =1) =p
for some p € [0, 1] in the classical version of a Bernoulli. Thus we take p to be the counting
measure on {0, 1}, and by setting 6 = log % to obtain a canonical representation, we have

P(X =z) = p(z) = p“(1 — p)'™® = exp(xlogp — zlog(1 — p))

= exp (x log 1 fp + log(1 —p)> = exp (x@ —log(1 + 60)> .

The Bernoulli family thus has log-partition function A() = log(1 + ¢%). &

Example 6.2 (Poisson distribution): The Poisson distribution (for count data) is usually
parameterized by some A > 0, and for z € N has distribution Py(X = z) = (1/z!)A*e~A. Thus
by taking u to be counting (discrete) measure on {0, 1, ...} and setting § = log A\, we find the
density (probability mass function in this case)

1 1 1
p(x) = a)\ﬂle—/\ = exp(xlog A — )\)E = exp(zf — ee)a.

Notably, taking h(z) = (2!)~! and log-partition A(#) = ¢’, we have probability mass function
po(x) = h(z) exp(fz — A(0)). &

Example 6.3 (Normal distribution): For the normal distribution, we take u to be Lebesgue
measure on (—oo,00). Then N(u,X) can be re-parameterized as as © = ¥ ~! and § = X~ 1y,
and we have density

po.o(@) o exp <<9, o) + % <m:T, @>> ,

where (-,-) denotes the Euclidean inner product. &

6.1.1 Why exponential families?

There are many reasons for us to study exponential families. As we see presently, they arise as the
solutions to several natural optimization problems on the space of probability distributions. They
also enjoy certain robustness properties related to optimal Bayes’ procedures (more to come on this
topic). Moreover, they are analytically very tractable, and have been the objects of substantial
study for nearly the past hundred years. As one example, the following result is well-known (see,
e.g., Wainwright and Jordan |7, Proposition 3.1] or Brown [4]):

Proposition 6.4. The log-partition function 0 — A(0) is infinitely differentiable on its open do-
main © := {§ € R?: A() < oo}. Moreover, A is convex.

Proof We show convexity; the proof of the infinite differentiability follows from an argument
using the dominated convergence theorem that allows passing the derivative through the integral
defining A. For convexity, let let 6y = A0 + (1 — A\)f2, where 61,05 € ©. Then 1/\ > 1 and
1/(1 = X) > 1, and Holder’s inequality implies

log [ expl(6a, () () = 1o [ exp((61, 6(2)))* exp((62: 6())' )
1-X

<o | exp<<91,¢<x>>>idu<x>)A ([ et o0 P auto))
— Mog [ exp((61,6(a)))di(a) + (1~ Nlog [ exp((2,6(a)du(a),
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as desired. 0]

As a final remark, we note that this convexity makes estimation in exponential families sub-
stantially easier. Indeed, given a sample X, ..., X,,, assume that we estimate 6 by maximizing the
likelihood (equivalently, minimizing the log-loss):

n

= [ {0,6(X3)) + A©0)],

=1

1
Po(Xi)

n
mini@mize E log
i=1

which is thus convex in 6. This means there are no local minima, and tractable algorithms exist for
solving maximum likelihood. Later we will explore some properties of these types of minimization
and log-loss problems.

6.2 Shannon entropy

We now explore a generalized version of entropy known as Shannon entropy, which allows us to
define an entropy functional for essentially arbitrary distributions. This comes with a caveat,
however: to define this entropy, we must fix a base measure u ahead of time against which we
integrate. In this case, we have

Definition 6.2. Let i be a base measure on X and assume P has density p with respect to p. Then
the Shannon entropy of P is

H(P) =~ [ plo)logp(a)duo)

Notably, if X' is a discrete set and p is counting measure, then H(P) = — > p(x)logp(x) is
simply the standard entropy. However, for other base measures the calculation is different. For
example, if we take u to be Lebesgue measure, meaning that du(x) = dz and giving rise to the
usual integral on R (or R?), then we obtain differential entropy |5, Chapter 8].

Example 6.5: Let P be the uniform distribution on [0,a]. Then the differential entropy
H(P)= —1log(l/a) =loga. &

Example 6.6: Let P be the normal distribution N(u, ) and pu be Lebesgue measure. Then
HP) == [ p(o) [log e = a1 TSz = )| d
=— z) |log —= — = (2 — T — T
PRI ety 20 W s

= %log(%r det(X)) + %E[(X — 1) TSTHX — )]

1
=3 log(2r det(X)) +

N |
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6.3 Maximizing Entropy

The maximum entropy principle, proposed by Jaynes in the 1950s (see Jaynes [6]), originated in
statistical mechanics, where Jaynes showed that (in a sense) entropy in statistical mechanics and
information theory were equivalent. The maximum entropy principle is this: given some constraints
(prior information) about a distribution P, we consider all probability distributions satisfying said
constraints. Then to encode our prior information while being as “objective” or “agnostic” as
possible (essentially being as uncertain as possible), we should choose the distribution P satisfying
the constraints to maximize the Shannon entropy.

While there are many arguments for and against the maximum entropy principle, we shall not
dwell on them here, instead showing how maximizing entropy naturally gives rise to exponential
family models. We will later see connections to Bayesian and minimax procedures. The one thing
that we must consider, about which we will be quite explicit, is that the base measure p is essential
to all our derivations: it radically effects the distributions P we consider.

6.3.1 The maximum entropy problem

We begin by considering linear (mean-value) constraints on our distributions. In this case, we are
given a function ¢ : X — R? and vector a € R?, we wish to solve

maximize H(P) subject to Ep[¢(X)] =« (6.3.1)

over all distributions P having densities with respect to the base measure u, that is, we have the
(equivalent) absolute continuity condition P < p. Rewriting problem (6.3.1]), we see that it is
equivalent to

maximize — /p(x) log p(x)du(z)
subject to /p(x)qbi(a:)du(x) =a;, p(r)>0forzelX, /p(x)du(a:) =1.

Let .
Pin = (P < pu: Ep[¢(X)] = a}

be distributions with densities w.r.t. u satisfying the expectation (linear) constraint E[¢(X)] = a.
We then obtain the following theorem.

Theorem 6.7. For 0 € R?, let Py have density
po(x) = exp((9, 6(x)) — A(6)), A(9) = log / exp((0, 6(x)))dp(z),

with respect to the measure pu. If Ep,[¢(X)] = «, then Py mazimizes H(P) over P"; moreover,
the distribution Py is unique.

Proof We first give a heuristic derivation—which is not completely rigorous—and then check to
verify that our result is exact. First, we write a Lagrangian for the problem (G.3.I]). Introducing
Lagrange multipliers A\(x) > 0 for the constraint p(z) > 0, 6y € R for the normalization constraint
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that P(X') = 1, and 6; for the constraints that Ep[¢;(X)] = a;, we obtain the following Lagrangian:
£00.000) = [ o) logpla +ZG (0 [ porostarinto))

oo / p(a)du(z) — 1) - [ N@p@ina)

Now, heuristically treating the density p = [p(x)]zex as a finite-dimensional vector (in the case
that X is finite, this is completely rigorous), we take derivatives and obtain

8pa(x)£(p’0’90’)\) =1+ logp(z ZM% )+ 60 — Az) = 1 +logp(z) — (6, $(x)) + by — A(z).

To find the minimizing p for the Lagrangian (the function is convex in p), we set this equal to zero
to find that

p(z) = exp ((0, () — 1 — b — A(z)).
Now, we note that with this setting, we always have p(x) > 0, so that the constraint p(z) > 0
is unnecessary and (by complementary slackness) we have A(z) = 0. In particular, by taking
0p = —1+A(0) = —1+log [ exp((0, ¢(z)))du(x), we have that (according to our heuristic derivation)
the optimal density p should have the form

po(x) = exp ((0, ¢(x)) — A(0)).

So we see the form of distribution we would like to have.
Let us now consider any other distribution P € 7?};“, and assume that we have some 6 satisfying
Ep,[¢(X)] = a. In this case, we may expand the entropy H(P) as

H(P) = —/plogpduz —/plog p%du— /plogpodu
— Du(P|Py) — / P(@)[(0, 6(x)) — A®)]dp(z)

*

= —Du (P|Pp) — /pe(w)[<9,¢(l‘)> — A(0)]du(z)
= —Dy (P|Pp) — H(Fp),

—
N

where in the step (x) we have used the fact that [ p(z)¢(x)du(z) = [ pe(z)d(x)du(x) = a. As
Dy (P|Py) > 0 unless P = Py, we have shown that P is the unique distribution maximizing the
entropy, as desired. ]

6.3.2 Examples of maximum entropy

We now give three examples of maximum entropy, showing how the choice of the base measure
u strongly effects the resulting maximum entropy distribution. For all three, we assume that the
space X = R is the real line. We consider maximizing the entropy over all distributions P satisfying

Ep[X?] = 1.
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Example 6.8: Assume that the base measure p is counting measure on the support {—1, 1},
so that p({—1}) = u({1}) = 1. Then the maximum entropy distribution is given by P(X =
x)=3forze{-1,1}. &

Example 6.9: Assume that the base measure p is Lebesgue measure on X = R, so that
p([a,b])) = b—a for b > a. Then by Theorem [6.7, we have that the maximum entropy
distribution has the form pg(z) o exp(—6x?); recognizing the normal, we see that the optimal
distribution is simply N(0,1). &

Example 6.10: Assume that the base measure p is counting measure on the integers 7Z =
{-..,—=2,-1,0,1,...}. Then Theorem shows that the optimal distribution is a discrete
version of the normal: we have pg(z) x exp(—0z?) for x € Z. That is, we choose 6 > 0 so that
the distribution py(z) = exp(—0x2)/ Do exp(—032) has variance 1. &

6.3.3 Generalization to inequality constraints

It is possible to generalize Theorem in a variety of ways. In this section, we show how to
generalize the theorem to general (finite-dimensional) convex cone constraints (cf. Boyd and Van-
denberghe [3, Chapter 5]). To remind the reader, we say a set C is a convex cone if for any two
points x,y € C, we have Ax 4+ (1 — \)y € C for all A € [0, 1], and C is closed under positive scaling:
x € C implies that tx € C for all £ > 0. While this level of generality may seem a bit extreme, it
does give some nice results. In most cases, we will always use one of the following two standard
examples of cones (the positive orthant and the semi-definite cone):

i. The orthant. Take C = Ri ={z cR¢: xj > 0,7 =1,...,d}. Then clearly C is convex and
closed under positive scaling.

ii. The semidefinite cone. Take C = {X € R4 : X = XT X = 0}, where a matrix X = 0 means
that a' Xa > 0 for all vectors a. Then we have that C is convex and closed under positive
scaling as well.

Given a convex cone C, we associate a cone ordering = with the cone and say that for two
elements x,y € C, we have z = y if x —y > 0, that is, x — y € C. In the orthant case, this simply
means that x is component-wise larger than y. For a given inner product (-,-), we define the dual

cone
C*:={y:(y,z) >0forall z € C}.

For the standard (Euclidean) inner product, the positive orthant is thus self-dual, and similarly the
semidefinite cone is also self-dual. For a vector y, we write y =, 0 if y € C* is in the dual cone.

With this generality in mind, we may consider the following linearly constrained maximum
entropy problem, which is predicated on a particular cone C with associated cone ordering < and
a function ¥ mapping into the ambient space in which C lies:

maximize H(P) subject to Ep[¢p(X)] =«a, Ep[(X)] <5, (6.3.2)
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where the base measure p is implicit. We denote the family of distributions (with densities w.r.t.
) satisfying the two above constraints by Pgnﬁ Equivalently, we wish to solve

maximize — /p(m) log p(z)dp(x)
subject to [ pla)(e)dn(z) = a, [ pla)i(e)dn(z) <.
p(z) >0 forz e X, /p(x)du(a:) =1.

We then obtain the following theorem:

Theorem 6.11. For 0 € R? and K € C*, the dual cone to C, let Py i have density

po.i (x) = exp ({8, ¢(2)) — (K, ¢ (x)) — A(0,K)), A0, K) = log/exp((@¢(w)>—(K7¢($)>)du($),
with respect to the measure p. If

EPH,K[¢(X)] =a and EPe,K[w(X)] =B,

then Py x mazximizes H(P) over P};nﬂ Moreover, the distribution Py g is unique.
We make a few remarks in passing before proving the theorem. First, we note that we must assume
both equalities are attained for the theorem to hold. We may also present an example.

Example 6.12 (Normal distributions maximize entropy subject to covariance constraints): Sup-
pose that the cone C is the positive semidefinite cone in R**¢, that o = 0, that we use the
Lebesgue measure as our base measure, and that ¢ (z) = x| € R™?, Let us fix f = ¥ for
some positive definite matrix 3. This gives us the problem

maximize — /p(x) log p(z)dx subject to Ep[XX '] < ¥

Then we have by Theorem 6.1 that if we can find a density px(z) o« exp(— (K,zz')) =
exp(—z " Kz) satisfying E[X X '] = ¥, this distribution maximizes the entropy. But this is not
hard: simply take the normal distribution N(0,3), which gives K = %E_l. &

Now we provide the proof of Theorem G111
Proof We can provide a heuristic derivation of the form of pg i identically as in the proof of The-
orem [6.7], where we also introduce the dual variable K € C* for the constraint [ p(z)¢(x)du(z) < .
Rather than going through this, however, we simply show that the distribution Py x maximizes
H(P). Indeed, we have for any P € P}j% that

p(x)
Po,K ()
= =Dy (P|Pyx) — /P(l‘) [0, ¢(x)) — (K, (x)) — A0, K)] du(z)
< —Du (P|Pyx) — [(0,a) — (K, B) — A(0, K)],

H(P) = - / p(a) log p(z)du(x) = — / p(z) log dpu(z) - / p() log po e (2)du(x)
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where the inequality follows because K >, 0 so that if E[¢)(X)] < 3, we have
(K, E[p(X) = f]) <(K,0) =0 or (K,E[}(X)]) <(K,p).

Now, we note that [ pg i (2)¢(z)dp(z) = a and [ pg x(x)(x)du(z) = B by assumption. Then we
have

H(P) < Dy (P|Pyx) — [(6.0) — (K. B) — A(6, K)
— D (P|Pyx) - / Po.sc (@) [(0, 6(x)) — (K, b(x)) — A9, K)] dp(x)
— D (P|Pox) - / Po.c(2) 108 pp g (2)dpa(x) = —Dia (P Po.xc) + H(Py xc).

As Dy (P|Py,k) > 0 unless P = Py i, this gives the result. O
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