
Comparison BP, MF and exact on Ising model
In this exercise you will assess the accuracy of the mean field approximation and belief
propagation on on the Ising model, by comparing with the exact results.

Ising model

The Ising model is defined as p(x) = 1
Z exp

(∑
(i j) wi jxix j +

∑
i θixi

)
. The couplings wi j

are defined on a sparse graph. The weights are random from a Gaussian distribution
with mean J0/k and variance J2/k with k = cn, n the number of spins and c the density
of connections (there are approximately cn2 non-zero connections in w. The θi are also
random.

Mean field (MF) approximation
The mean field approximation mMF

i = mi is defined as the solution to the system of
equations mi = tanh

(∑
j∈N(i) wi jm j + θi

)
. You compute the solution using so-called

fixed point iteration. Start with a random vector m, compute the rhs of the equation
m′ = tanh

(∑
j∈N(i) wi jm j + θi

)
and set m = m′. In each iteration you check how much m

changes as dm=max(abs(m-m old)). Put the iterations in a while loop and stop when
dm < ε with ε is of the order of the machine precision or 1 × 10−13.

Convergence should occur in less than several hundred iterations provided that the
wi j are sufficiently small. For larger wi j convergence slows down or might break down
entirely. The fixed point iteration starts to oscillate and does not converge. When this
arises, a good solution is called smoothing. Replace the fixed point iteration updates
by

m := ηm + (1 − η) tanh

 ∑
j∈N(i)

wi jm j + θi

 0 ≤ η < 1

The new m is a linear combination of the suggested update tanh
(∑

j∈N(i) wi jm j + θi

)
and

the old m. Smoothing has better convergence properties but converges slower.

Belief propagation (BP)
For BP, we need to compute the solution of the message passing equation

mi j(x j) ∝
∑

xi

ψi j(xi, x j)ψi(xi)
∏

k∈N(i)\ j

mki(xi)

Each message mi j(x j) can be treated as a probability distribution over a single binary
variable and is therefore fully defined by a single number. Convenient parametrizations
are

mi j(x j) =
1
2

(1 + µi jx j) ∝ eai j x j

µi j =
∑

x j
x jmi j(x j) is the expected value and ai j is the parameter if we write mi j(x j) as

a exponential distribution. It is easy to show that µi j = tanh(ai j). In terms of ai j the BP
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equation becomes

mi j(x j) =
∑

xi

exp

wi jxix j + θixi +
∑

k∈N(i)\ j

akixi

 (1)

= 2 cosh

wi jx j + θi +
∑

k∈N(i)\ j

aki

 (2)

Note, that mi j(x j) defined in this way is not yet normalized. Thus, we obtain 1

ai j = tanh−1(µi j) = tanh−1
(

mi j(x j = 1) − mi j(x j = −1)
mi j(x j = 1) + mi j(x j = −1)

)
=

1
2

log
mi j(x j = 1)

mi j(x j = −1)
(3)

Thus, the BP solution is computed as a fixed point iteration in the matrix a. That is
to say, in each iteration, the entire matrix is updated. The pseudo code looks like

1: Start with a random initial n × n matrix a
2: da = 1
3: while da > 1 × 10−13 do
4: aold = a
5: compute matrix mi j(x j = 1) and mi j(x j = −1) according to Eq. 2
6: compute matrix a according to Eq. 3
7: da = max(max(abs(a − aold)))
8: end while
9: mi = tanh

(
θi +

∑
j a ji

)
. BP approximation for mean spin values

Exercises
1. You are required to write your own code in your preferred language. I have pro-

vided a Matlab template main.m that contains the definition of the Ising model
and its parameters and the code for the exact computation. Write your code for
the MF approximation and the BP approximation.

2. Consider the fully connected Ising model (c = 1) with n = 20, J0 = 0, Jth = J =

β.

(a) Compute the RMS error in the mean values 〈xi〉 as RMF =

√
1
n
∑n

i=1

(
mex

i − mmf
i

)2

with mex
i = 〈xi〉 the exact spin expectation values and mMF

i their MF ap-
proximations, and similar for BP. For each β, estimate the RMS errors in
multiple random instances of the Ising model and compute the mean and
standard deviation. Plot the RMS errors (mean and standard deviation) as
a function of β for 0 < β ≤ 2. You should find that the algorithms converge
in several hundred iterations using smoothing η = 0.5. You should find that
the MF and BP results look somewhat like fig. 1.

(b) Compute the RMS error in the correlations χi j =
〈
xix j

〉
−〈xi〉

〈
x j

〉
using the

MF approximation with linear response correction χLR
i j and χBP

i j from BP.
The latter is computed as follows. After convergence, the joint probability

1In the last step we use the identity 1
2 log 1+m

1−m = tanh−1(m).
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Figure 1: Accuracy of MF and BP approximation for fully connected model with
n = 20 versus β. Left: RMS errors in mean mi. Middle: number of iterations until
convergence. Right: RMS error in connected correlations χ. Smoothing η = 0.5.
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Figure 2: Errors and number of iterations for MF and BP on sparse model versus
connectivity c. n = 20, θ = 0.1, β = 0.2, smoothing for both MF and BP is η = 0.5

of two nodes xi, x j is

bi j(xi, x j) =
1
Z

exp

wi jxix j + θixi + θ jx j +
∑

k∈N(i)\ j

akixi +
∑

l∈N( j)\i

al jx j


Z =

∑
xi,x j

exp

wi jxix j + θixi + θ jx j +
∑

k∈N(i)\ j

akixi +
∑

l∈N( j)\i

al jx j


and χBP

i j =
∑

xi,x j
xix jbi j(xi, x j) − mBP

i mBP
j . For each β, estimate the RMS

errors between χLR
i j and the exact values χex

i j , and between χBP
i j and the exact

values χex
i j in multiple random instances of the Ising model and compute

the mean and standard deviation. Plot the RMS errors (mean and standard
deviation) as a function of β for 0 < β ≤ 2. See fig. 1.

3. Consider the sparse Ising model with n = 20 and sparsity c with non-zero cou-
plings w = ±β. 2 Put all threshold values equal to θ > 0. Plot the RMS errors
(mean and standard deviation) as a function of c, β for 0 < c ≤ 1 and 0 < β ≤ 1
and for various θ. 3 You should find that the BP results are more accurate than
MF for sparse networks. For instance see fig. 2

2I used the Matlab command w=sprandsym(n,c). This should give a symmetric weight matrix w with
c ∗ n2 non-zero elements. However, I find that the average fraction of non-zero elements in w tends to be
lower. For instance c = 1 in fig. 2 actually corresponds to approximately 60 % non-zero elements in w.

3Do not present 3d plots (c, β,R) because these tend to be hard to interpret. It is usually clearer to present
dependence on β for various c and dependence on c for various β.
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