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Inleiding Machine Learning

• Course setup

– 3 EC course. Weekly tutorials
– Textbook ”Pattern Recognition and Machine Learning” (C.M Bishop, 2006)
– All other course materials (slides, exercises) via http://www.snn.ru.nl/~bertk/

inl_ml/

– Written exam (open book, no notes/slides/laptop)

• Grading

– 2/3 final exam (≥ 5.0) + 1/3 avg. assignments
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Course contents

Chapter 1 Introduction

• Probability theory

• Model selection

• Curse of dimensionality

• Decision theory

• information theory

Chapter 2: Probability distributions

Chapter 3: Linear models for regression

Chapter 4: Linear models for classification

Chapter 5: Neural networks
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Chapter 1: Introduction

Introduction ML

• General introduction

• Polynomial curve fitting, regression, overfitting, regularization

• Probability theory, decision theory

• Information theory

Bert Kappen 3



1: p.1-4

Recognition of digits

Image is array of pixels xi, each between 0 and 1.
x = (x1, . . . ,xd), d is the total number of pixels. (d = 28× 28).

• Goal = input: pixels → output: correct category 0, . . . , 9

• wide variablity

• hand-made rules infeasible
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1: p.1-4

Machine Learning

• Training set: large set of (pixel array, category) pairs

– input data x, target data t(x)
– category = class

• Machine learning algorithm

– training, learning

• Result: function y(x)

– Fitted to target data
– New input x → output y(x)
– Hopefully: y(x) = t(x)
– Generalization on new examples (test set)
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1: p.1-4

Preprocessing

• transformation of inputs x on training set + on test set

• by hand, rule based

– scaling, centering
– aspect ratio, curvature

• machine learning, unsupervised learning

• feature extraction

– dimension reduction
– reduces variability within class (noise reduction) → easier to learn
– reduces variability between classes (information loss) → more difficult to learn
– trade-off
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1: p.1-4

Types of machine learning tasks

• Supervised learning

– Classification: targets are classes
– Regression: target is continuous

• Unsupervised learning (no targets)

– clustering (similarity between input data)
– density estimation (distribution of input data)
– dimension reduction (preprocessing, visualisation)

• Reinforcement learning

– actions leading to maximal reward
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1.1: p.4-6

1.1. Polynomial curve fitting

x

t

0 1

−1

0

1

• Regression problem

• Given training set of N = 10 data points

– generated by tn = sin(2πx) + noise

• Goal: predict value t for new x (without knowing the curve)
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1.1: p.4-6

We will fit the data using M -th order polynomial

y(x,w) = w0 + w1x+ w2x
2 + . . .+ wMx

M =

M∑
j=0

wjx
j

y(x,w) is nonlinear in x, but linear in coefficients w, ”Linear model”

Training set: (xn, tn), n = 1, . . . , N . Objective: find parameters w, such that

y(xn,w) ≈ tn, for all n

This is done by minimizing the Error function

E(w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

E(w) ≥ 0 and E(w) = 0 ⇔ y(xn,w) = tn

t

x

y(xn,w)

tn

xn
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Minimization of the error function

E(w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

In minimum: gradient ∇wE = 0

Note: y linear in w ⇒ E quadratic in w

⇒ ∇wE is linear in w

⇒ ∇wE = 0: coupled set of linear equations (exercise)
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1.1: p 6-11

Model comparison, model selection

Back to polynomial curve fitting: how to choose M?

x

t
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Which of these models is the best one?
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1.1: p 6-11

Define root-mean-square error on training set and on test set {(x̃n, t̃n)}Ñn=1, respectively:

ERMS =
√

2E(w∗)/N, ERMS =

√√√√ 1

Ñ

Ñ∑
n=1

(
y(x̃n,w∗)− t̃n

)2

M

E
R
M
S

 

 

0 3 6 9
0

0.5

1
Training
Test

Too simple (small M) → poor fit
Too complex (large M) → overfitting (fits the noise)
Note that series expansion of sin contain terms of all orders.

Bert Kappen 12



1.1: p 6-11

M=0 M=1 M=3 M=9
w∗0 0.19 0.82 0.31 0.35
w∗1 -1.27 8 232
w∗2 -25 5321
w∗3 -17 48568
w∗4 -231639
w∗5 640042
w∗6 -10618000
w∗7 10424000
w∗8 -557683
w∗9 -125201
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1.1: p 6-11

Model comparison, model selection

x

t

N = 15
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N = 100
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Same model complexity M = 9 and different data set sizes

Same model complexity: more data ⇒ less overfitting
With more data, more complex (i.e. more flexible) models can be used
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1.1: p 6-11

Regularization

Change the cost function E by adding regularization term Ω(w) to penalize complexity.

Ẽ(w) = E(w) + λΩ(w)

For example,

Ẽ(w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

+
λ

2
||w||2

(here, ||w||2 :=
∑M
m=0w

2
m)

Weight decay = shrinkage = ridge regression

Penalty term independent of number of training data

• small data sets: penalty term relatively large

• large data sets: penalty term relatively small
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1.1: p 6-11

x

t

M = 9

0 1
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ln λ = −18
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ln λ = 0
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lnλ = −∞ lnλ = −18 lnλ = 0

w∗0 0.35 0.35 0.13

w∗1 232 4.74 -0.05

w∗2 5321 - 0.77 -0.06

w∗3 48568 -31.97 -0.05

w∗4 -231639 - 3.89 -0.03

w∗5 640042 55.28 -0.02

w∗6 -10618000 41.32 -0.01

w∗7 10424000 -45.95 -0.00

w∗8 -557683 -91.53 0.00

w∗9 -125201 72.68 0.01

E
R
M
S

 

 

ln λ−35 −30 −25 −20
0

0.5

1
Training
Test

• Training set to optimize (typically many) parameters w

• Validation set to optimize (typically a few) hyperparameters (λ or M)
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1.2: p 12-17

Probability theory

• Consistent framework for quantification and
manipulation of uncertainty
→ Foundation for Bayesian machine learning

• random variable = stochastic variable
Example:

boxes (B = {r, b}) and fruit (F = {a, o}).

• Consider an experiment of (infinitely) many (mentally) repeated trials
(randomly pick a box, then randomly select an item of fruit from that box)

under the same macroscopic conditions
(number of red/blue boxes and apples/oranges balls in the boxes)

but each time with different microscopic details
(arrangements of boxes and fruits in boxes).

Probability of an event (e.g. selecting a orange) is fraction of times that event
occurs in the experiment.

• Notation: p(F = o) = 9/20, etc (or P (. . .), IP(. . .), Prob(. . .), etc.)
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1.2: p 12-17
X can take the values xi, i = 1, . . . ,M .
Y can take the values yj, j = 1, . . . , L.

N : total number of trials (N →∞).
nij: number of trials with X = xi and Y = yj
ci: number of trials with X = xi
rj: number of trials with Y = yj

}

}ci

rjyj

xi

nij
Joint

probability of X = xi and Y = yj:

p(X = xi, Y = yj) =
nij
N

= p(Y = yj, X = xi)

Marginal probability of X = xi:

p(X = xi) =
ci
N

=

∑
j nij

N
=
∑
j

p(X = xi, Y = yj)

Conditional probability of Y = yj given X = xi

p(Y = yj|X = xi) =
nij
ci
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1.2: p 12-17

• Explicit, unambiguous notation: p(X = xi)
• Short-hand notation: p(xi)
• p(X): “distribution“ over the random variable X
• NB: {xi} is assumed to be mutually exclusive and complete

The Rules of Probability

Sum rule p(X) =
∑
Y

p(X,Y )

Product rule p(X,Y ) = p(Y |X)p(X)

Positivity p(X) ≥ 0

Normalization
∑
X

p(X) = 1
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1.2: p 12-17

p(X,Y ) = p(Y |X)p(X) = P (X|Y )p(Y ) ⇒

Bayes’ theorem

p(Y |X) =
p(X|Y )p(Y )

p(X)

(
=

p(X|Y )p(Y )∑
Y p(X|Y )p(Y )

)

Bayes’ theorem = Bayes’ rule
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1.2: p 12-17

p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)
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1.2: p 12-17

Fruits again

Model

p(B = r) = 4/10

p(B = b) = 6/10

p(F = a|B = r) = 1/4

p(F = o|B = r) = 3/4

p(F = a|B = b) = 3/4

p(F = o|B = b) = 1/4

Note that the (conditional) probabilities are normalized:

p(B = r) + p(B = b) = 1

p(F = a|B = r) + p(F = o|B = r) = 1

p(F = a|B = b) + p(F = o|B = b) = 1

p(F = a), p(F = o)? Given F = o what is p(B = r, b|F = o)?
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1.2: p 12-17

• Marginal probability

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1

4
× 4

10
+

3

4
× 6

10
=

11

20

and from normalization,

p(F = o) = 1− p(F = a) =
9

20

• Conditional probability (reversing probabilities):

p(B = r|F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

3

4
× 4

10
× 20

9
=

2

3

• Terminology:
p(B): prior probability (before observing the fruit)
p(B|F ): posterior probability (after observing F )
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1.2: p 12-17

(Conditionally) independent variables

• X and Y are called (marginally) independent if

P (X,Y ) = P (X)P (Y )

This is equivalent to
P (X|Y ) = P (X)

and also to
P (Y |X) = P (Y )

• X and Y are called conditionally independent given Z if

P (X,Y |Z) = P (X|Z)P (Y |Z)

This is equivalent to
P (X|Y,Z) = P (X|Z)

and also to
P (Y |X,Z) = P (Y |Z)
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1.2: p 12-17

two coins

Consider two coins. Coin 1 has probability of head of 1/2, coin 2 has probability of head
1/4.

Given the sequence of coin tosses:

head, tail, tail

What is the probability that I used coin 1?
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1.2: p 12-17

answer

p(D|coin1) =
1 ∗ 1 ∗ 1

2 ∗ 2 ∗ 2
=

1

8
, p(D|coin2) =

1 ∗ 3 ∗ 3

4 ∗ 4 ∗ 4
=

9

64

p(coin1|D) =
p(D|coin1)p(coin1)

p(D)

p(D) = p(D|coin1)p(coin1) + p(D|coin2)p(coin2)

Assume equal priors p(coin1) = p(coin2) = 1
2. Then

p(coin1|D) =
p(D|coin1)

p(D|coin1) + p(D|coin2)
=

8

8 + 9
=

8

17
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1.2.1

Probability densities

• to deal with continuous variables (rather than discrete var’s)

When x takes values from a continuous domain, the probability of any value of x is zero!
Instead, we must talk of the probability that x takes a value in a certain interval

Prob(x ∈ [a, b]) =

∫ b

a

p(x) dx

with p(x) the probability density over x.

p(x) ≥ 0∫ ∞
−∞

p(x) dx = 1 (normalization)

• NB: that p(x) may be bigger than one.

Probability of x falling in interval (x, x+ δx) is p(x)δx for δx→ 0
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1.2.1

Multivariate densities

• Several continuous variables, denoted by the d dimensional vector x = (x1, . . . , xd).
• Probability density p(x): probability of x falling in an infinitesimal volume δx around
x is given by p(x)δx.

Prob(x ∈ R) =

∫
R
p(x) dx =

∫
R
p(x1, . . . , xd)dx1dx2 . . . dxd

and

p(x) ≥ 0∫
p(x)dx = 1

• Rules of probability apply to continuous variables as well,

p(x) =

∫
p(x, y) dy

p(x, y) = p(y|x)p(x)
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1.2.2

Expectations and variances

Expectations

IE[f ] =
〈
f
〉

=
∑
x

p(x)f(x) discrete var’s

IE[f ] =

∫
x

p(x)f(x) dx continuous var’s

Variance:

var[f ] =
〈
f(x)2

〉
−
〈
f(x)

〉2
var[x] =

〈
x2
〉
−
〈
x
〉2
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1.2.2

Covariance

Covariance of two random variables

cov[x, y] = 〈xy〉 − 〈x〉 〈y〉

Covariance matrix of the components of a vector variable

cov[x] ≡ cov[x,x] =
〈
xxT

〉
−
〈
x
〉〈
xT
〉

with components

(cov[x])ij = cov[xi, xj] =
〈
xixj

〉
−
〈
xi
〉〈
xj
〉
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1.2.3

Bayesian probabilities

• Classical or frequentists interpretation: probabilities in terms of frequencies of random
repeatable events

• Bayesian view: probabilities as subjective beliefs about uncertain event

– event not neccessarily repeatable
– Bayesian inference to update belief given observations

Why probability theory?

• Cox: common sense axioms for degree of uncertainty → probability theory
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1.2.3

Cox axioms
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1.2.3

Motivational example: Medical diagnosis

Suppose w = {0, 1} is a disease state (absent/present). The disease is rare, say
P (w = 1) = 0.01. There is a test x = 0, 1 that measures whether the patient has the
disease.

p(x = 1|w = 1) = p(x = 0|w = 0) = 0.9

The test is performed and is positive: x = 1. What is the probability that the patient
has the disease?
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1.2.3

p(w = 1|x = 1) = 0.9∗0.01
0.9∗0.01+0.1∗0.99 = 1

1+0.1∗0.99
0.9∗0.01

= 1
12 = 0.0825
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1.2.3

Maximum likelihood estimation

Given a data set

Data = {x1, . . . ,xN}

and a parametrized distribution

p(x|w), w = (w1, . . . , wM),

find the value of w that best describes the data.

The common approach is to assume that the data that we observe are drawn independently
from p(x|w) (independent and identical distributed = i.i.d.) for some unknown value of
w:

p(Data|w) = p({x1, . . . ,xN}|w) =

N∏
i=1

p(xi|w)
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1.2.3

Then, the most likely w is obtained by maximizing p(Data|w) wrt w:

wML = argmaxwp(Data|w) = argmaxw

N∏
i=1

p(xi|w)

= argmaxw

N∑
i=1

log p(xi|w)

since log is a monotonically increasing function.

wML is a function of the data. This is called an estimator.

Frequentists methods consider a single true w and data generation mechanism p(Data|w
provided by ’Nature’ and study expected value:

EwML =
∑
Data

p(Data|w)wML(Data)

For instance, µ̂ = 1
N

∑
i xi is estimator for the mean of a distribution. If data are

xi ∼ N (µ, σ2) then Eµ̂ = µ.
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1.2.3

Bayesian machine learning

Model parameters w: uncertain

• Prior assumptions and beliefs about model parameters: the prior distribution p(w)
• Observed data = {x1, . . . ,xN} = Data
• Probability of data given w (the likelihood): p(Data|w)

Apply Bayes’ rule to obtain the posterior distribution

p(w|Data) =
p(Data|w)p(w)

p(Data)
∝ p(Data|w)p(w)

p(w) : prior

p(Data|w) : likelihood

p(Data) =

∫
p(Data|w)p(w) dw : evidence

→ p(w|Data) : posterior
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1.2.3

Predictive distribution

Prior to ’learning’, the predictive distribution for new observation x is

p(x) =

∫
p(x|w)p(w) dw

After ’learning’, i.e., after observation of Data, the predictive distribution for new
observation x becomes

p(x|Data) =

∫
p(x|w,Data)p(w|Data) dw

=

∫
p(x|w)p(w|Data) dw
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1.2.3

Bayesian vs frequentists view point

• Bayesians: there is a single fixed dataset (the one observed), and a probability
distribution of model parameters w which expresses a subjective belief including
uncertainty about the ‘true’ model parameters.

- They need a prior belief p(w), and apply Bayes rule to compute p(w|Data).

- Bayesians can talk about frequency that in repeated situations with this data w has
a certain value.

• Frequentists assume a single (unknown) fixed model parameter vector w.

- construct an estimator ŵ that is a function of the data. For instance, the maximum
likelihood estimator

- study statistical properties of estimators in similar experiments, each time with
different datasets drawn from p(Data|w), such as bias and variance.

-They cannot make a claim for this particular data set. This is the price for not having
a ‘prior’.
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1.2.3

Toy example

w is the probability that a coin comes up ’head’. Toss N times with NH outcomes ’head’.

The likelihood of the data p(NH|w,N) =

(
N
NH

)
wNH(1− w)N−NH .

The (frequentist) maximum likelihood estimator:

ŵ = argmaxwp(NH|w,N) = argmaxw [NH logw + (N −NH) log(1− w)] =
NH
N

ŵ is stochastic variable, because it depends on the data set.

But it has ’nice’ statistical property that on average (over many data sets) ŵ gives the
correct value:

Eŵ =
∑
NH

p(NH|w,N)
NH
N

= w

1

1Use
∑N
NH=0 p(NH|w,N) = 1.
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1.2.3

The Bayesian approach considers one data set and assumes a prior p(w) and compute
the posterior

p(w|NH, N) =
p(w)p(NH|w,N)

p(NH, N)

Given N coin tosses and NH head, what is the probability that the next toss is head?
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1.2.3

Bayesian vs frequentists

• Prior: inclusion of prior knowledge may be useful. True reflection of knowledge, or
convenient construct? Bad prior choice can overconfidently lead to poor result.

• Bayesian integrals cannot be calculated in general. Only approximate results possible,
requiring intensive numerical computations.

• Frequentists methods of ‘resampling the data’, (crossvalidation, bootstrapping) are
appealing

• Bayesian framework transparent and consistent. Assumptions are explicit, inference is
a mechanstic procedure (Bayesian machinery) and results have a clear interpretation.

This course place emphasis on Bayesian approach.
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1.2.4: p.24-25

Gaussian distribution

Normal distribution = Gaussian distribution

N (x|µ, σ2) =
1√

2πσ2
exp

{
− (x− µ)2

2σ2

}
Specified by µ and σ2

N (x|µ, σ2)

x

2σ

µ
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1.2.4: p.24-25

Gaussian is normalized, ∫ ∞
−∞
N (x|µ, σ2) dx = 1

The mean (= first moment), second moment, and variance are:

IE[x] = 〈x〉 =

∫ ∞
−∞

xN (x|µ, σ2) dx = µ

〈
x2
〉

=

∫ ∞
−∞

x2N (x|µ, σ2) dx = µ2 + σ2

var[x] =
〈
x2
〉
− 〈x〉2 = σ2
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1.2.4: p.24-25

Multivariate Gaussian

In D dimensions

N (x|µ,Σ) =
1

(2π)D/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
x, µ are D-dimensional vectors.

Σ is a D ×D covariance matrix, |Σ| is its determinant.
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1.2.4: p.24-25

Mean vector and covariance matrix

IE[x] = 〈x〉 =

∫
xN (x|µ,Σ) dx = µ

cov[x] =
〈
(x− µ)(x− µ)T

〉
=

∫
(x− µ)(x− µ)TN (x|µ,Σ) dx = Σ

We can also write this in component notation:

µi = 〈xi〉 =

∫
xiN (x|µ,Σ) dx

Σij = 〈(xi − µi)(xj − µj)〉 =

∫
(xi − µi)(xj − µj)N (x|µ,Σ) dx

N (x|µ,Σ) is specified by its mean and covariance, in total D(D+1)/2+D parameters.
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math recap

Transformation of variables (1-d)

Often it is easier to do the multidimensional integral in another coordinate frame. Suppose
we want to do the integration ∫ d

y=c

f(y) dy

but the function f(y) is easier expressed as a f(y(x)) which is a function of x. So we
want to use x as integration variable. If y and x are related via invertible differentiable
mappings y = y(x) and x = x(y) and the end points of the interval (y = c, y = d) are
mapped to (x = a, x = b), (so c = y(a), etc) then we have the equality∫ d

y=c

f(y) dy =

∫ d

y(x)=c

f(y(x)) dy(x)

=

∫ b

x=a

f(y(x))y′(x) dx

The derivative y′(x) comes in as the ratio between the lengths of the differentials dy and
dx,

dy = y′(x) dx
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math recap

Several variables

With several variables, the substitution rule is generalized as follows. We have the
invertible mapping y = y(x). Let us also assume that the region of integration of R is
mapped by to S, (so S = y(R)), then we have the equality

∫
y∈S

f(y) dy =

∫
y(x)∈S

f(y) dy(x)

=

∫
x∈R

f(y(x))

∣∣∣∣det

(
∂y(x)

∂x

)∣∣∣∣ dx

The factor det
(
∂y(x)
∂x

)
is called the Jacobian of the coordinate transformation. Written

out in more detail

det

(
∂y(x)

∂x

)
=

∣∣∣∣∣∣∣∣∣∣

∂y1(x)
∂x1

∂y1(x)
∂x2

. . . ∂y1(x)
∂xn

∂y2(x)
∂x1

∂y2(x)
∂x2

. . . ∂y2(x)
∂xn

. . . . . . . . . . . .
∂yn(x)
∂x1

∂yn(x)
∂x2

. . . ∂yn(x)
∂xn

∣∣∣∣∣∣∣∣∣∣
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math recap

The absolute value 2 of the Jacobian comes in as the ratio between that the volume
represented by the differential dy and the volume represented by the differential dx, i.e.,

dy =

∣∣∣∣det

(
∂y(x)

∂x

)∣∣∣∣ dx

As a last remark, it is good to know that

det

(
∂x(y)

∂y

)
= det

((
∂y(x)

∂x

)−1
)

=
1

det
(
∂y(x)
∂x

)

2In the single-variable case, we took the orientation of the integration interval into account (
∫ b
a f(x) dx = −

∫ a
b f(x) dx).

With several variables, this is awkward. Fortunately, it turns out that the orientation of the mapping of the domain always
cancels to the ’orientation’ of the Jacobian (= sign of the determinant). Therefore we take a positive orientation and the
absolute value of the Jacobian
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math recap

Polar coordinates

Example: compute the area of a disc.

Consider a two-dimensional disc with radius R

D = {(x, y)|x2 + y2 < R2}

Its area is ∫
D

dxdy

This integral is easiest evaluated by going to ‘polar-coordinates’. The mapping from polar
coordinates (r, θ) to Cartesian coordinates (x, y) is

x = r cos θ (1)

y = r sin θ (2)

Since In polar coordinates, the disc is described by 0 ≤ r < R (since x2 + y2 = r2) and
0 ≤ θ < 2π.
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math recap

The Jacobian is

J =

∣∣∣∣ ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ + sin2 θ) = r

In other words,
dxdy = rdrdθ

The area of the disc is now easily evaluated.

∫
D

dxdy =

∫ 2π

θ=0

∫ R

r=0

rdrdθ = πR2
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1.2.1: p.18

Transformation of densities

When f(y) = py(y) a normalized probability density, then

∫
f(y) dy =

∫
f(y(x))

∣∣∣∣det

(
∂y(x)

∂x

)∣∣∣∣ dx∫
py(y) dy =

∫
px(x) dx

Probability densities:
• py(y)dy: probability that point falls in volume element δy around y
• px(x)dx: same probability, now in terms of x

px(x) = py(y(x))
∣∣∣ det

(∂y
∂x

)∣∣∣
• Maximum of a probability density depends on choice of variable (see exercise 1.4).
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1.2.1: p.18

Gaussian integral

How to compute ∫ ∞
−∞

exp(−x2)dx

(∫ ∞
−∞

exp(−x2)dx
)2

=

∫ ∞
−∞

exp(−x2)dx

∫ ∞
−∞

exp(−y2)dy

=

∫ ∞
−∞

∫ ∞
−∞

exp(−x2) exp(−y2)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

exp(−(x2 + y2))dxdy
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1.2.1: p.18

The latter is easily evaluated by going to polar-coordinates,

∫ ∞
−∞

∫ ∞
−∞

exp(−(x2 + y2))dxdy =

∫ 2π

θ=0

∫ ∞
r=0

exp(−r2)rdrdθ

= 2π

∫ ∞
r=0

exp(−r2)rdr

= 2π ×
(
− 1

2
exp(−r2)

)∣∣∣∞
0

= π

So ∫ ∞
−∞

exp(−x2)dx =
√
π
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1.2.4: p.26-28

The likelihood for the 1-d Gaussian

Consider 1-d data Data = x = {x1, . . . , xN}. The likelihood of the data under a Gaussian
model is the probability of the data, assuming each data point is independently drawn
from the Gaussian distribution:

p(x|µ, σ) =

N∏
n=1

N (xn|µ, σ2) =

(
1√
2πσ

)N
exp

(
− 1

2σ2

N∑
n=1

(xn − µ)2

)

x

p(x)

xn

N (xn|µ, σ2)
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1.2.4: p.26-28

Maximum likelihood

Consider the log of the likelihood:

ln p(x|µ, σ) = − 1

2σ2

N∑
n=1

(xn − µ)2 − N
2

lnσ2 − N
2

ln 2π

The values of µ and σ that maximize the likelihood are given by (Ex. B1.11)

µML =
1

N

N∑
n=1

xn σ2
ML =

1

N

N∑
n=1

(xn − µML)2
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1.2.4: p.26-28

Bias in the ML estimates

Note that µML, σ
2
ML are functions of the data. We can take their expectation value,

assuming that xn is from a N (x|µ, σ).

〈µML〉 =
1

N

N∑
n=1

〈xn〉 = µ
〈
σ2
ML

〉
=

1

N

N∑
n=1

〈
(xn − µML)2

〉
= . . . =

N − 1

N
σ2

(a)

(b)

(c)

The variance is estimated too low. This is called a biased estimator. Bias disappears
when N →∞. In complex models with many parameters, the bias is more severe.
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1.2.5: p.28-29

Curve fitting re-visited

Now from a probabilistic perspective.

Target t is Gaussian distributed around mean y(x,w) =
∑M
j=0wjx

j,

p(t|x,w, β) = N (t|y(x,w), β−1)

β = 1/σ2 is the precision.

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)
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1.2.5: p.28-29

Curve fitting re-visited: ML

Training data: inputs x = (x1, . . . , xn), targets t = (t1, . . . , tn). (Assume β is known.)

Likelihood ,

p(t|x,w) =

N∏
n=1

N (tn|y(xn,w), β−1)

Log-likelihood

ln p(t|x,w) = −β
2

N∑
n=1

(y(xn,w)− tn)2 + const(β)

With wML one can make predictions for a new input values x. The predictive distribution
over the output t is:

p(t|x,wML) = N (t|y(x,wML), β−1)
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1.2.5: p.30

Curve fitting re-visited MAP

Bayesian approach.
Prior:

p(w|α) = N (w|α−1I) =
( α

2π

)(M+1)/2

exp
(
−α

2
wTw

)
M is the dimension of w. Variables such as α, controling the distribution of parameters,
are called ‘hyperparameters’.

Posterior using Bayes rule:

p(w|t,x, α, β) ∝ p(w|α)

N∏
n=1

N (tn|y(xn,w), β−1)

− ln p(w|t,x, α, β) =
β

2

N∑
n=1

(y(xn,w)− tn)2 +
α

2
wTw + const(β)

Maximizing the posterior wrt w yields wMAP . Similar as Eq. 1.4. with λ = α/β
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1.2.5: p.30

Bayesian curve fitting

Given the training data x, t we are not so much interested in w, but rather in the
prediction of t for a new x: p(t|x,x, t). This is given by

p(t|x,x, t) =

∫
dwp(t|x,w)p(w|x, t)

It is the average prediction of an ensemble of models p(t|x,w) parametrized by w and
averaged wrt to the posterior distribution p(w|x, t).

All quantities depend on α and β.
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1.2.6

Bayesian curve fitting

Generalized linear model with ‘basis functions’ e.g., φi(x) = xi,

y(x,w) =
∑
i

φi(x)wi = φ(x)Tw

So: prediction given w is

p(t|x,w) = N (t|y(x,w), β−1) = N (t|φ(x)Tw, β−1)

The prediction given x, t is

p(t|x,x, t) =

∫
dwp(t|x,w)p(w|x, t, α, β)

The prior is Gaussian, the likelihood is a product of Gaussians. Thus the posterior is
Gaussian. Thus, the integral can be performed analytically. The predictive distribution is
Gaussian in t).
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1.2.6

Result Bayesian curve fitting

The result is (section 3.3).

p(t|x,x, t) = N (t|m(x), s2(x))

m(x) = βφ(x)TS

N∑
n=1

φ(xn)tn = φ(x)TwMAP

s2(x) = β−1 + φ(x)TSφ(x)

S−1 = αI + β

N∑
n=1

φ(xn)φ(xn)T

Note, s2 depend on x. First term as in ML estimate describes noise in target for fixed w.
Second term describes noise due to uncertainty in w.
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1.2.6

Example

x

t

0 1

−1

0

1

Polynomial curve fitting with M = 9, α = 5× 10−3, β = 11.1. Red: m(x)± s(x). Note√
β−1 = 0.3
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1.3

Model selection

Q: If we have different models to describe the data, which one should we choose?

M

E
R
M
S

 

 

0 3 6 9
0

0.5

1
Training
Test
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1.3

Model selection/Cross validation

Q: If we have different models to describe the data, which one should we choose?

A1: If data is plenty, use separate validation set to select model with best generalization
performance, and a third independent test set for final evaluation.

A2: Small validation set: use S-fold cross validation.

run 1

run 2

run 3

run 4

A3: Information criteria: penalty for complex models
• Akaike IC (AIC): ln p(D|wML)−M
• Bayesian IC (BIC): Bayesian + crude approximations (section 4.4.1)
• Full Bayesian → penalties arises automatically (section 3.4)
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1.4: pp. 34–35

High-dimensional data/Binning

Sofar, we considered x one-dimensional. How does pattern recognition work higher
dimensions?

x6

x7

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

x6

x7

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

Two components of 12-dimensional data that describe gamma ray measurements of a mixture of oil, water

and gas. The mixture can be in three states: homogenous (red), annular (green) and laminar (blue).

Classification of the ’x’ can be done by puting a grid on the space and assigning the class
that is most numerous in the particular box.
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1.4: p. 35

High-dimensional data/Binning

Q: What is the disadvantage of this approach?
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1.4: p. 35

Curse of dimensionality/Binning

Q: What is the disadvantage of this approach?
A: This approach scales exponentially with dimensions.

x1

D = 1
x1

x2

D = 2

x1

x2

x3

D = 3

In D dimensions: grid with length n consists of . . . hypercubes.
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1.4: p. 35

Curse of dimensionality/Binning

Q: What is the disadvantage of this approach?
A: This approach scales exponentially with dimensions.

x1

D = 1
x1

x2

D = 2

x1

x2

x3

D = 3

In D dimensions: grid with length n consists of nD hypercubes.
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1.4: p. 36

Curse of dimensionality/Polynomials

The polynomial function considered previously becomes in D dimensions:

y(x,w) = w0 +

D∑
i=1

wixi +

D∑
i=1

D∑
j=1

wijxixj +

D∑
i=1

D∑
j=1

D∑
k=1

wijkxixjxk

(here up to order M = 3).

The number of coefficients scales as . . . (unpractically large).
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1.4: p. 36

Curse of dimensionality/Polynomials

The polynomial function considered previously becomes in D dimensions:

y(x,w) = w0 +

D∑
i=1

wixi +

D∑
i=1

D∑
j=1

wijxixj +

D∑
i=1

D∑
j=1

D∑
k=1

wijkxixjxk

(here up to order M = 3).

The number of coefficients scales as DM (unpractically large).

Bert Kappen 72



1.4: p. 37

Curse of dimensionality/Spheres

Q: In a 10-dimensional hypersphere with radius R = 1: what is the volume fraction lying
in the outer “shell” between r = 0.5 and r = 1?
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1.4: p. 37

Curse of dimensionality/Spheres

Q: In a 10-dimensional hypersphere with radius R = 1: what is the volume fraction lying
in the outer “shell” between r = 0.5 and r = 1?

A: More than 0.999!

ε

vo
lu

m
e 

fr
ac

tio
n

D = 1

D = 2

D = 5

D = 20

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

VD(r) = KDr
D VD(1)− VD(1− ε)

VD(1)
= 1− (1− ε)D

Spheres in high dimension have most of their volume on the boundary.

So in high dimensions, almost all other data points are at more or less the same distance!
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1.4: p. 37

Curse of dimensionality/Gaussians

D = 1

D = 2

D = 20

r

p(
r)

0 2 4
0

1

2

In high dimensions, the distribution of the radius of a Gaussian with variance σ is
concentrated around a thin shell r ≈ σ

√
D − 1.

1

Z
e−(x2

1+...,+x2
n)/2σ2

=
1

Z
|det

dxi
d(r, φj)

|e−r2/2σ2
=

1

Z
rn−1e−r

2/2σ2

d

dr

(
− r2

2σ2
+ (n− 1) log r

)
= 0→ r = σ

√
n− 1
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1.4: p. 38

Curse of dimensionality

Is machine learning even possible in high dimensions?

Data often in low dimensional subspace: only a few dimensions are relevant.

• Images of objects are N -dimensional, with N the number of pixels.

• not all pixels independent:

– Smoothness, nearby pixels are similar
– changing an object (position, orientation in 3d, or lighting) changes pixels in

corralated way.

Effectively the data are on a � N -dimensional manifold (curved subspace)
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1.5

Decision theory

Inference: given pairs (x, t), learn p(x, t) and estimate p(x, t) for new value of x (and
possibly all t).

Decision: for new value of x estimate ’best’ t.

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).
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1.5

Decision theory

Inference: given pairs (x, t), learn p(x, t) and estimate p(x, t) for new value of x (and
possibly all t).

Decision: for new value of x estimate ’best’ t.

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

Bayes’ theorem:

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)

p(Ck) is the prior probability of class Ck. p(Ck|x) is the posterior probability of class Ck
after seeing the image x.
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1.5.1

Decision theory

A classifier is specified by defining regions Rk, such that all x ∈ Rk are assigned to class
Ck. In the case of two classes, the probability that this classifier gives the correct answer
is

p(correct) = p(x ∈ R1, C1) + p(x ∈ R2, C2) =

∫
R1

p(x, C1)dx+

∫
R2

p(x, C2)dx

R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x

p(correct) is maximized when the regions Rk are chosen such that

k = argmaxkp(x, Ck) = argmaxkp(Ck|x)
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1.5.1

Decision theory/Example

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

Q: Suppose p(C1) = 0.01 and p(C1|x) = 0.3 according to our model. Do we decide that
the patient has cancer and therefore start treatment?
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1.5.1

Decision theory/Example

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

Q: Suppose p(C1) = 0.01 and p(C1|x) = 0.3 according to our model. Do we decide that
the patient has cancer and therefore start treatment?

A: If we want to maximize the chance of making the correct decision, we have to pick k
such that p(Ck|x) is maximal.
Because p(C1|x) = 0.3 and p(C2|x) = 0.7, the answer is no: we decide that the patient
does not have cancer.
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1.5.2

Decision theory/Expected loss

Typically, not all classification errors are equally bad: classifying a healthy patient as sick,
is not as bad as classifying a sick patient as healthy.

C1 C2

C1 0 1000
C2 1 0

Lkj =

(
0 1000
1 0

)

Rows (k) are true classes (cancer, normal); columns (j) are assigned classes (cancer, normal).

The probability to assign an x to class j while to belongs to class k is p(x ∈ Rj, Ck).
Thus the total expected loss is

〈L〉 =
∑
k

∑
j

Lkjp(x ∈ Rj, Ck) =
∑
j

∫
Rj

∑
k

p(x, Ck)Lkjdx

〈L〉 is minimized if each x is assigned to class j such that
∑
k Lkjp(x, Ck) is minimal, or

equivalently, such that
∑
k Lkjp(Ck|x) is minimal.
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1.5.2

Decision theory/Example

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

C1 C2

C1 0 1000
C2 1 0

Lkj =

(
0 1000
1 0

)

Rows (k) are true classes (cancer, normal); columns (j) are assigned classes (cancer, normal).

Q: Suppose p(C1) = 0.01 and p(C1|x) = 0.3 according to our model. Do we decide that
the patient has cancer and therefore start treatment?
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1.5.2

Decision theory/Example

Example: in a medical application, x is an X-ray image and t a class label that indicates
whether the patient has cancer (t = C1) or not (t = C2).

C1 C2

C1 0 1000
C2 1 0

Lkj =

(
0 1000
1 0

)

Rows (k) are true classes (cancer, normal); columns (j) are assigned classes (cancer, normal).

Q: Suppose p(C1) = 0.01 and p(C1|x) = 0.3 according to our model. Do we decide that
the patient has cancer and therefore start treatment?

A: If we want to minimize the expected loss, we have to pick j such that
∑
k Lkjp(Ck|x)

is minimal.
For j = 1, this yields

∑
k Lkjp(Ck|x) = 0× 0.3 + 1× 0.7 = 0.7,

for j = 2, this yields
∑
k Lkjp(Ck|x) = 1000× 0.3 + 0× 0.7 = 300.

Therefore, we now decide that the patient has cancer (better safe than sorry).
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1.5.3

Decision theory/Reject option

It may be that maxj p(Cj|x) is small, indicating that it is unclear to which class x
belongs.

In that case, a different decision can be taken: the “reject” or “don’t know” option.

x

p(C1|x) p(C2|x)

0.0

1.0
θ

reject region

This can be done by introducing a threshold θ ∈ [0, 1] and only classify those x for which
maxj p(Cj|x) > θ (and answer “don’t know” otherwise).
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1.5.4

Decision theory/Discriminant functions

Instead of first learning a probability model and then making a decision, one can also
directly learn a decision rule (a classifier) without the intermediate step of a probability
model.

A set of approaches:

• Learn a model for the class conditional probabilities p(x|Ck). Use Bayes’ rule to
compute p(Ck|x) and construct a classifier using decision theory. This approach is the
most complex (section 4.2).

• Learn the inference problem p(Ck|x) directly and construct a classifier using decision
theory. This approach is simpler, since no input model p(x) is learned (see figure)
(section 4.3)

• Learn f(x), called a discriminant function, that maps x directly onto a class label
0, 1, 2, . . .. Even simpler, only decision boundary is learned. But information on the
expected classification error is lost (section 4.1, not treated).
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1.5.4

Decision theory/Discriminant functions

p(x|C1)

p(x|C2)

x

cl
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x

p(C1|x) p(C2|x)
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1

1.2

Example that shows that detailed structure in the joint model need not affect class conditional probabilities.

Learning only the decision boundary is the simplest approach.

Approaches that model the distribution of both inputs and outputs are called generative
models, approaches that only model the conditional distribution of the output given the
input are called discriminative models.
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1.5.5

Loss functions for regression

Decision theory generalizes straightforwardly to continuous variables: the loss matrix Ljk
becomes a loss function L(t, y(x)).

L measures the ’cost’ when the model outputs y(x) whereas the correct output is t.

Examples:

y − t

|y
−
t|q

q = 0.3

−2 −1 0 1 2
0

1

2

y − t

|y
−
t|q

q = 1

−2 −1 0 1 2
0

1

2

y − t

|y
−
t|q

q = 2

−2 −1 0 1 2
0

1

2

y − t

|y
−
t|q

q = 10

−2 −1 0 1 2
0

1

2

Minkowski loss function Lq = |y − t|q for various values of q.
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1.5.5

Loss functions for regression/Quadratic loss

The average/expected loss is:

〈L〉 =

∫
L
(
t, y(x)

)
p(x, t) dx dt

For the quadratic loss function L2

(
t, y(x)

)
=
(
t−y(x)

)2
one can derive that the expected

loss is minimized by taking
y(x) = Et[t|x]

i.e., by the mean of the conditional distribution p(t|x). (The minimum of 〈L1〉 is obtained
by the conditional median.)

t

xx0

y(x0)

y(x)

p(t|x0)
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1.6: pp. 48–49

Information theory

Information is a measure of the ’degree of surprise’ that a certain value gives us.
Unlikely events are informative, likely events less so. Certain events give us no additional
information. Thus, information decreases with the probability of the event.

Let us denote h(x) the information of x. Then if x, y are two independent events:
h(x, y) = h(x) + h(y). Since p(x, y) = p(x)p(y) we see that

h(x) = − log2 p(x)

is a good candidate to quantify the information in x.

If x is observed repeatedly then the expected information is

H[x] := 〈− log2 p〉 = −
∑
x

p(x) log2 p(x)

is the entropy of the distribution p.
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1.6: p. 50

Information theory

Example 1: x can have 8 values with equal probability, then H(x) = −8 × 1
8 log 1

8 = 3
bits.

Example 2: x can have 8 values with probabilities (1
2,

1
4,

1
8,

1
16,

1
64,

1
64,

1
64,

1
64). Then

H(x) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

16
log

1

16
− 4

64
log

1

64
= 2bits

which is smaller than for the uniform distribution.

Noiseless coding theorem: Entropy is a lower bound on the average number of bits needed
to transmit a random variable (Shannon 1948).

Q: How can we transmit x in example 2 most efficiently?
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1.6: p. 50

Information theory

Example 1: x can have 8 values with equal probability, then H(x) = −8 × 1
8 log 1

8 = 3
bits.

Example 2: x can have 8 values with probabilities (1
2,

1
4,

1
8,

1
16,

1
64,

1
64,

1
64,

1
64). Then

H(x) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

16
log

1

16
− 4

64
log

1

64
= 2bits

which is smaller than for the uniform distribution.

Noiseless coding theorem: Entropy is a lower bound on the average number of bits needed
to transmit a random variable (Shannon 1948).

A: We can encode x as a 3 bit binary number, in which case the expected code length is
3 bits. We can do better, by coding likely x smaller and unlikely x larger, for instance 0,
10, 110, 1110, 111100, 111101, 111110, 111111. Then

Av.codelength =
1

2
× 1 +

1

4
× 2 +

1

8
× 3 +

1

16
× 4 +

4

64
× 6 = 2bits
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1.6: p. 52

Information theory

pr
ob

ab
ili

tie
s

H = 1.77

0

0.25

0.5

pr
ob

ab
ili

tie
s

H = 3.09

0

0.25

0.5

When x has values xi, i = 1, . . . ,M , then

H[x] = −
∑
i

p(xi) log p(xi)

When p is sharply peaked (p(x1) = 1, p(x2) = . . . = p(xM) = 0) then the entropy is

H[x] = −1 log 1− (M − 1)0 log 0 = 0

When p is flat (p(xi) = 1/M) the entropy is maximal

H[x] = −M 1

M
log

1

M
= logM
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1.6: pp. 53–54

Information theory/Maximum entropy

For p(x) a distribution density over a continuous value x we define the (differential)
entropy as

H[x] = −
∫
p(x) log p(x)dx

Suppose that all we know about p is its mean µ and its variance σ2.

Q: What is the distribution p with mean µ and variance σ2 that is as uninformative as
possible, i.e., which maximizes the entropy?
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1.6: pp. 53–54

Information theory/Maximum entropy

For p(x) a distribution density over a continuous value x we define the (differential)
entropy as

H[x] = −
∫
p(x) log p(x)dx

Suppose that all we know about p is its mean µ and its variance σ2.

Q: What is the distribution p with mean µ and variance σ2 that is as uninformative as
possible, i.e., which maximizes the entropy?

A: The Gaussian distribution N (x|µ, σ2) (exercise 1.34 and 1.35).
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Appendix E

Lagrange multipliers

Minimize f(x) under constraint: g(x) = 0.

Fancy formulation: define Lagrangian,

L(x, λ) = f(x) + λg(x)

λ is called a Lagrange multiplier.

The constraint minimization of f w.r.t x equivalent to unconstraint minimization of
maxλL(x, λ) w.r.t x. The maximization w.r.t to λ yields the following function of x

max
λ

L(x, λ) = f(x) if g(x) = 0

max
λ

L(x, λ) =∞ otherwise
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Appendix E

Lagrange multipliers

Under certain conditions, in particular f(x) convex (i.e. the matrix of second derivatives
positive definite) and g(x) linear,

min
x

max
λ

L(x, λ) = max
λ

min
x
L(x, λ)

Procedure:

1. Minimize L(x, λ) w.r.t x, e.g. by taking the gradient and set to zero. This yields a
(parametrized) solution x(λ).

2. Maximize L(x(λ), λ) w.r.t. λ. The solution λ∗ is precisely such that g(x(λ∗)) = 0.

3. The solution of the constraint optimization problem is

x∗ = x(λ∗)
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Appendix E

Example

g(x1, x2) = 0

x1

x2

(x?
1, x

?
2)

Maximize

f(x1, x2) = 1− x2
1 − x2

2 and constraint g(x1, x2) = x1 + x2 − 1 = 0

Lagrangian:
L(x1, x2, λ) = 1− x2

1 − x2
2 + λ(x1 + x2 − 1)

Maximize L w.r.t. xi gives x1(λ) = x2(λ) = 1
2λ.

Plug into constraint: x1(λ) + x2(λ)− 1 = λ− 1 = 0.

So λ = 1 and x∗1 = x∗2
1
2
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Appendix E

Some remarks

• Works as well for maximization (of concave functions) under constraints. The
procedure is essentially the same.

• The sign in front of the λ can be chosen as you want:

L(x, λ) = f(x) + λg(x) or L(x, λ) = f(x)− λg(x)

work equally well.

• More constraints? For each constraint gi(x) = 0 a Lagrange multiplier λi, so

L(x, λ) = f(x) +
∑
i

λigi(x)

• Similar methods apply for inequality constraints g(x) ≥ 0 (restricts λ).
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1.6.1

Information theory/KL-divergence

Relative entropy or Kullback-Leibler divergence or KL-divergence:

KL(p||q) = −
∑
i

pi ln qi −
(
−
∑
i

pi ln pi
)

= −
∑
i

pi ln
{qi
pi

}
• Additional amount of information required to specify i when q is used for coding rather

than the true distribution p.

• Divergence between ‘true’ distribution p and ‘approximate’ distribution q.

• KL(p||q) 6= KL(q||p)

• KL(p||q) ≥ 0, KL(p||q) = 0⇔ p = q (use convex functions)

• with continuous variables: KL(p||q) = −
∫
p(x) ln

{q(x)
p(x)

}
dx
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1.6.1: p. 56

Convex functions

xa bxλ

chord

xλ

f(x)

Convex function: every chord lies on or above the function.

f is convex ⇐⇒ f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b) ∀λ ∈ [0, 1],∀a, b

• Examples: f(x) = ax+ b, f(x) = x2, f(x) = − ln(x) and f(x) = x ln(x) (exercise).

• Convex: ∪ shaped. Concave: ∩ shaped.

• Convex ⇐ second derivative non-negative.
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1.6.1: p. 56

Convex functions/Jensen’s inequality

Convex functions satisfy Jensen’s inequality

f

(
M∑
i=1

λixi

)
≤

M∑
i=1

λif(xi)

where λi ≥ 0,
∑
i λi = 1, for any set points xi.

In other words:
f(〈x〉) ≤ 〈f(x)〉

Example: to show that KL(p||q), we apply Jensen’s inequality with λi = pi, making use
of the fact that − ln(x) is convex:

KL(p||q) = −
∑
i

pi ln

(
qi
pi

)
≥ − ln

(∑
i

pi
qi
pi

)
= − ln

(∑
i

qi

)
= 0
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1.6.1: p. 57

Information theory and density estimation

Relation with maximum likelihood:

Empirical distribution :

p(x) =
1

N

N∑
n=1

δ(x− xn)

Approximating distribution (model) : q(x|θ)

KL(p||q) = −
∫
p(x) ln q(x|θ)dx−

∫
p(x) ln p(x)dx

= − 1

N

N∑
n=1

ln q(xn|θ) + const.

Thus, minimizing the KL-divergence between the empirical distribution p(x) and the
model distribution q(x|θ) is equivalent to maximum likelihood (i.e., maximizing the
likelihood of i.i.d. data with respect to the the model parameters θ).
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1.6.1: pp. 57–58

Information theory/mutual information

Mutual information between x and y: KL divergence between joint distribution p(x,y)
and product of marginals p(x)p(y),

I[x,y] ≡ KL(p(x,y)||p(x)p(y))

= −
∫ ∫

p(x,y) ln
(p(x)p(y)

p(x,y)

)
dxdy

• I(x,y) ≥ 0, equality iff x and y independent

Relation with conditional entropy

I[x,y] = H[x]−H[x|y] = H[y]−H[y|x]
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2

Chapter 2

Probability distributions

• Ch 2.1 Bayesian inference with binary variables (Bernouiil distribution)

• Ch 2.2 Bayesian inference with multinomial variables (Dirichlet distribution)

• Ch 2.3 Gaussian distribution

– Bayesian inference
– Some properties of high dimensional Gaussians
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2.1

Binary variables / Bernoulli distribution

x ∈ {0, 1}

p(x = 1|µ) = µ,

p(x = 0|µ) = 1− µ

Bernoulli distribution:
Bern(x|µ) = µx(1− µ)1−x

Mean and variance:

IE[x] = µ

var[x] = µ(1− µ)
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2.1

Binary variables / Bernoulli distribution

Data set (i.i.d) D = {x1, . . . , xn}, with xi ∈ {0, 1}.

Likelihood:
p(D|µ) =

∏
n

p(xn|µ) = µm(1− µ)N−m

where m =
∑
n xn, the total number of xn = 1.

Log likelihood

ln p(D|µ) =
∑
n

ln p(xn|µ) =
∑
n

xn lnµ+ (1− xn) ln(1− µ)

= m lnµ+ (N −m) ln(1− µ)

Maximization w.r.t µ gives maximum likelihood solution:

µML =
m

N
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2.1.1

The beta distribution

Distribution for parameters µ. Conjugate prior for Bayesian treatment for problem.

p(µ|a, b) = Beta(µ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µa−1(1− µ)b−1 0 ≤ µ ≤ 1

Is called conjugate because prior p(µ|a, b) has same form as likelihood.

Normalisation (Ex. 2.5) ∫ 1

0

µa−1(1− µ)b−1 =
Γ(a)Γ(b)

Γ(a+ b)

Mean and variance (Ex. 2.6)

IE[µ] =
a

a+ b

var[µ] =
ab

(a+ b)2(a+ b+ 1)
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2.1.1

The beta distribution

µ

a = 0.1

b = 0.1
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2.1.1

Bayesian inference with binary variables

Prior:
p(µ) = Beta(µ|a, b) ∝ µa−1(1− µ)b−1

Likelihood – Data set (i.i.d) D = {x1, . . . , xN}, with xi ∈ {0, 1}.
Assume m ones and l zeros, (m+ l = N)

p(D|µ) =
∏
n

p(xn|µ) =
∏
n

µxn(1− µ)1−xn

= µm(1− µ)l

Posterior

p(µ|D) ∝ p(D|µ)p(µ)

= µm(1− µ)l × µa−1(1− µ)b−1

= µm+a−1(1− µ)l+b−1 ∝ Beta(µ|a+m, b+ l)
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2.1.1

Bayesian inference with binary variables

Interpretation: Hyperparameters a and b effective number of ones and zeros.

Data: increments of these parameters.

Conjugacy:
(1) prior has the same form as likelihood function.
(2) this form is preserved in the product (the posterior)
(3) sequential learning

µ

prior

0 0.5 1
0

1

2

µ

likelihood function

0 0.5 1
0

1

2

µ

posterior

0 0.5 1
0

1

2

Prior p(µ|a = 2, b = 2), likelihood N = m = 1(l = 0) p(D|µ) = µ, posterior p(µ|a = 3, b = 2).
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2.1.1

Bayesian inference with binary variables

Prediction of next data point given data D:

p(x = 1|D) =

∫ 1

0

p(x = 1|µ)p(µ|D)dµ =

∫ 1

0

µp(µ|D)dµ = IE[µ|D]

with posterior p(µ|D = Beta(µ|a+m, b+ l), and IE[µ|a, b] = a/(a+ b) we find

p(x = 1|D) =
m+ a

m+ a+ l + b

Toss a coin once and shows ’head’. Thus, m = 1, l = 0.

• the frequentist answer is p(x = 1|D) = 1.

• the Bayesian answer assuming ’flat’ prior (a = b = 1) is p(x = 1|D) = 2
3.
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2.2

Multinomial variables

Alternative representation: x ∈ {v1, v2}, parameter vector: µ = (µ1, µ2), where µ1+µ2 =
1.

p(x = vk|µ) = µk

In fancy notation:

p(x|µ) =
∏
k

µ
δxvk
k

Generalizes to multinomial variables: x ∈ {v1, . . . , vK},

µ = (µ1, . . . , µK)
∑
k

µk = 1
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2.2

Multinomial variables: Maximum likelihood

Likelihood:

p(D|µ) =
∏
n

p(xn|µ) =
∏
n

∏
k

µ
δxnvk
k

=
∏
k

µ
∑
n δxnvk

k

=
∏
k

µ
mk
k

with mk =
∑
n δxnvk, the total number of datapoints with value vk. Log likelihood

ln p(D|µ) =
∑
k

mk lnµk

Maximize with contraint
∑
k µk = 1 using Lagrange multipliers.
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2.2.1

Dirichlet distribution

Dir(µ|α) ∝
∏
k

µ
αk
k

Probability distribution on the simplex:

SK = {(µ1, . . . , µK)|0 ≤ µk ≤ 1,

K∑
k=1

µk = 1} µ1

µ2

µ3

Bayesian inference: Prior Dir(µ|α) + data counts m

→ Posterior Dir(µ|α+ m)

Parameters α: ‘pseudocounts’.
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2.2.1

Dirichlet distribution

Left: αk = 0.1, Middle: αk = 1, Right: αk = 10
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2.2.1

Example: text modeling

Consider a text corpus with k = 1, . . . ,K different words. Build a multivariate word
model p(k|µ) with µ = (µ1, . . . , µK) the probability of word occurence.

Prior: Dir(µ|α) with α pseudo counts and α0 =
∑K
k=1αk

Data: vector of m of word counts and m0 =
∑K
k=1mk total number of words

Posterior: Dir(µ|α+m)

The posterior probability of a new word is

p(k|m,α) =

∫
dµp(k|µ)p(µ|m,α) = . . . =

mk + αk
m0 + α0

(see ex. 2.10). The uncertainty in k can also be estimated.

Given models for different text domains (sports, fashion, politics) labeled by a. The
likelihood of the text is

p(text|a) =
∏

k∈text

p(k|a)

a new text can be classified to the most likely domain.
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2.3

Gaussian

Gaussian distribution

N (x|µ, σ2) =
1√

2πσ2
exp

{
− (x− µ)2

2σ2

}
Specified by µ and σ2

In d dimensions

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

Bert Kappen 118



2.3

Central limit theorem

Sum of large number of independent random variables is approximately Gaussian
distributed.

Let Xi be random variables with mean µ and variance σ2. Define the mean YN =
1
N (X1 + . . .+XN)

We have

EYN = µ VYN =
σ2

N

Central limit theorem: Distribution of

ZN =

√
N

σ
(YN − µ)

converges to Gaussian ZN ∼ N (0, 1)
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2.3

N = 1
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Appendix C

Symmetric matrices

Symmetric matrices:
Aij = Aji, AT = A

Inverse of a matrix is a matrix A−1 such that A−1A = AA−1 = I, where I is the identity
matrix.

A−1 is also symmetric:

I = IT = (A−1A)T = AT (A−1)T = A(A−1)T

Thus, (A−1)T = A−1.
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Appendix C

Eigenvalues

A symmetric real-valued d× d matrix has d real eigenvalues λk and d eigenvectors uk:

Auk = λkuk, k = 1, . . . , d

or
(A− λkI)uk = 0

Solution of this equation for non-zero uk requires λk to satisfy the characteristic equation:

det(A− λI) = 0

This is a polynomial equation in λ of degree d and has thus d solutions 3 λ1, . . . , λd.

3In general, the solutions are complex. It can be shown that with symmetric matrices, the solutions are in fact real.
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Appendix C

Eigenvectors

Consider two different eigenvectors k and j. Multiply the k-th eigenvalue equation by uj
from the left:

uTj Auk = λku
T
j uk

Multiply the j-th eigenvalue equation by uk from the left:

uTkAuj = λju
T
kuj = λju

T
j uk

Subtract
(λk − λj)uTj uk = 0

Thus, eigenvectors with different eigenvalues are orthogonal
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Appendix C

If λk = λj then any linear combination is also an eigenvector:

A(αuk + βuj) = λk(αuk + βuj)

This can be used to choose eigenvectors with identical eigenvalues orthogonal.

If uk is an eigenvector of A, then αuk is also an eigenvector of A. Thus, we can make
all eigenvectors the same length one: uTkuk = 1.

In summary,
uTj uk = δjk

with δjk the Kronecker delta, is equal to 1 if j=k and zero otherwise.

The eigenvectors span the d-dimensional space as an orthonormal basis.
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Appendix C

Orthogonal matrices

Write U = (u1, . . . ,ud).

U is an orthogonal matrix 4 , i.e.

UTU = I

For orthogonal matrices,

UTUU−1 = U−1 = UT

So UUT = 1, i.e. the transposed is orthogonal as well (note that U is in general not
symmetric).

Furthermore,

det(UUT ) = 1⇒ det(U) det(UT ) = 1

⇒ det(U) = ±1

4

Uij = (uj)i, (U
T
U)ij =

∑
k

(U
T

)ikUkj =
∑
k

UkiUkj =
∑
k

(ui)k(uj)k = u
T
i · uj = δij

Bert Kappen 125



Appendix C

Orthogonal matrices implement rigid rotations, i.e. length and angle preserving.

x̄1 = Ux1 x̄2 = Ux2

then
x̄T1 x̄2 = xT1 U

TUx2 = xT1 x2
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Appendix C

Diagonalization

The eigenvector equation can be written as

AU = A(u1, . . . ,ud) = (Au1, . . . , Aud) = (λ1u1, . . . , λdud)

= (u1, . . . ,ud)

 λ1 . . . 0
... ...
0 . . . λd


= UΛ

By right-multiplying by UT we obtain the important result

A = UΛUT

which can also be written as ’expansion in eigenvectors’

A =

d∑
k=1

λkuku
T
k
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Appendix C

Applications

A = UΛUT ⇒ A2 = UΛUTUΛUT = UΛ2UT

An = UΛnUT A−n = UΛ−nUT

Determinant is product of eigenvalues:

det(A) = det(UΛUT ) = det(U) det(Λ) det(UT ) =
∏
k

λk
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Appendix C

Basis transformation

We can represent an arbitrary vector x in d dimensions on a new basis U as

x = UUTx =

d∑
k=1

uk(u
T
kx)

The numbers x̄k = (uTkx) are the components of x on the basis uk, k = 1, . . . , d, i.e. on
the new basis, the vector has components (UTx). If the matrix A is the representation
of a linear transformation on the old basis, the matrix with components

A′ = UTAU

is the representation on the new basis.

For instance if y = Ax, x̄ = UTx, ȳ = UTy, then

A′x̄ = UTAUUTx = UTAx = UTy = ȳ
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Appendix C

So a matrix is diagonal on a basis of its eigenvectors:

A′ = UTAU = UTUΛUTU = Λ
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2.3

Multivariate Gaussian

In d dimensions

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
µ = 〈x〉 =

∫
xN (x|µ,Σ) dx

Σ =
〈
(x− µ)(x− µ)T

〉
=

∫
(x− µ)T (x− µ)N (x|µ,Σ) dx

We can also write this in component notation:

µi = 〈xi〉 =

∫
xiN (x|µ,Σ) dx

Σij = 〈(xi − µi)(xj − µj)〉 =

∫
(xi − µi)(xj − µj)N (x|µ,Σ) dx
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2.3, p. 80

Multivariate Gaussian

Spectral (eigenvalue) representation of Σ:

Σ = UΛUT =
∑
k

λkuku
T
k

Σ−1 = UΛ−1UT =
∑
k

λ−1
k uku

T
k

(x− µ)TUTUΣ−1UTU(x− µ) = yTΛ−1y

x1

x2

λ
1/2
1

λ
1/2
2

y1

y2

u1

u2

µ
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2.3, p. 81

Multivariate Gaussian

Explain the normalization: use transformation y = U(x− µ) = Uz∫
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
dx

=

∫
exp

(
−1

2
zTΣ−1z

)
dz =

∫ ∣∣∣∣det

(
∂z

∂y

)∣∣∣∣ exp

(
−1

2
yTΛ−1y

)
dy

=

∫
exp

(
− 1

2λ1
y2

1

)
dy1 . . .

∫
exp

(
− 1

2λd
y2
d

)
dyd

=
√

2πλ1 . . .
√

2πλd = (2π)d/2
(∏

i

λi
)1/2

= (2π)d/2 det(Σ)1/2

The multivariate Gaussian becomes a product of independent factors on the basis of
eigenvectors.
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2.3, p. 82

Multivariate Gaussian

Compute the expectation value : use shift-transformation z = x− µ
Take Z as normalisation constant.

Use symmetry f(z) = −f(−z)⇒
∫
f(z)dz = 0

IE[x] =
1

Z

∫
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
xdx

=
1

Z

∫
exp

(
−1

2
zTΣ−1z

)
(z + µ)dz

= µ
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2.3, p. 82

Multivariate Gaussian

Second order moment: First, shift by z = x− µ

IE[xxT ] =

∫
N (x|µ,Σ)xxTdx

=

∫
N (z|0,Σ)(z + µ)(z + µ)Tdz

=

∫
N (z|0,Σ)(zzT + zµT + µzT + µµT )dz

=

∫
N (z|0,Σ)zzTdz + µµT
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2.3, p. 82

Multivariate Gaussian

Now use transformation y = Uz, and use Σ = UTΛU∫
N (z|0,Σ)zzTdz =

∫
N (y|0,Λ)UTyyTUdy

= UT
∫
N (y|0,Λ)yyTdyU

Component-wise computation shows
∫
N (y|0,Λ)yyTdy = Λ:

i 6= j →
∫
N (y|0,Λ)yiyjdy =

∫
N (yi|0, λi)yidyi

∫
N (yj|0, λj)yjdyj = 0

i = j →
∫
N (y|0,Λ)y2

i dy =

∫
N (yi|0, λi)y2

i dyi = λi

So ∫
N (z|0,Σ)zzTdz = UTΛU = Σ

Bert Kappen 136



2.3, p. 82

Multivariate Gaussian

So, second moment is
IE[xxT ] = Σ + µµT

Covariance
cov[x] = IE[xxT ]− IE[x]IE[x]T = Σ
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2.3, p. 84

Multivariate Gaussian

Gaussian covariance has d(d+ 1) parameters, mean has d parameters.

Number of parameters quadratic in d which may be too large for high dimensional
applications.

x1

x2

(a)

x1

x2

(b)

x1

x2

(c)

Common simplifications: Σij = Σiiδij (2d parameters) or Σij = σ2δij (d + 1
parameters).
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2.3.2

Marginal and conditional Gaussians

Marginal and conditional of Gaussians are also Gaussian

xa

xb = 0.7

xb

p(xa, xb)

0 0.5 1
0

0.5

1

xa

p(xa)

p(xa|xb = 0.7)

0 0.5 1
0

5

10

1. (Proof next slides)

p(xa|xb) = N (xa|µa|b,Σa|b)
Σa|b = Σaa − ΣabΣ

−1
bb Σba µa|b = µa + ΣabΣ

−1
bb (xb − µb)

2. (Proof: look at the moments)

p(xa) = N (xa|µa,Σaa)
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2.3.1

Conditional of Gaussian is Gaussian

Exponent in Gaussian N (x|µ,Σ): quadratic form

−1

2
(x− µ)TΣ−1(x− µ) = −1

2
xTΣ−1x+ xTΣ−1µ+ c = −1

2
xTKx+ xTKµ+ c

Precision matrix K = Σ−1.

Write x = (xa,xb). We wish to compute the conditional

p(xa|xb) =
p(xa,xb)

p(xb)
∝ p(xa,xb)

Exponent of conditional: collect all terms with xa, ignore constants, regard xb as
constant, and write in quadratic form as above

−
1

2
x
T
Kx+ x

T
Kµ = −

1

2
x
T
aKaaxa + x

T
aKaaµa − xTaKab(xb − µb)

= −
1

2
x
T
aKaaxa + x

T
aKaa(µa −K−1

aaKab(xb − µb)) = −
1

2
x
T
aΣ
−1
a|bxa + x

T
aΣ
−1
a|bµa|b

= −
1

2
(xa − µa|b)TΣ

−1
a|b(xa − µa|b) Σa|b = K

−1
aa µa|b = µa −K−1

aaKab(xb − µb)
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2.3.1
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2.3.1

Some matrix identities

We now need to relate K−1
aa ,Kab to the components Σ.

(
A B
C D

)−1

=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)
with M =

(
A−BD−1C

)−1
.

(
Kaa Kab

Kba Kbb

)
=

(
Σaa Σab
Σba Σbb

)−1

=

(
M −MΣabΣ

−1
bb

−Σ−1
bb ΣbaM Σ−1

bb + Σ−1
bb ΣbaMΣabΣ

−1
bb

)

with M =
(
Σaa − ΣabΣ

−1
bb Σba

)−1
. Thus, Kaa = M and

Σa|b = K−1
aa = Σaa − ΣabΣ

−1
bb Σba

µa|b = µa −K−1
aaKab(xb − µb) = µa +M−1MΣabΣ

−1
bb (xb − µb)

= µa + ΣabΣ
−1
bb (xb − µb)
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2.3.3, p. 93

Bayes’ theorem for linear Gaussian model

Given marginal Gaussian on x and linear relation y = Ax + b + ξ:

p(x) = N (x|µ,Λ−1)

p(y|x) = N (y|Ax+ b,L−1)

Then (see next slide):

p(y) = N (y|Aµ+ b,L−1 +AΛ−1AT )

p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ)

Σ = (Λ +ATLA)−1

We will use these relations for Bayesian linear regression in section 3.3.
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2.3.3, p. 93

Details computation p(y)

p(x) = N (x|µ,Λ−1) Ex = µ Vx = Λ−1

p(y|x) = N (y|Ax+ b,L−1)

We write y = Ax+ b+ ε with Eε = 0,Vε = L−1.

x,y is jointly Gaussian (product of Gaussians). y is Gaussian (marginal of Gaussian).

Ey = E (Ax+ b+ ε) = Aµ+ b

Vy = V (ax+ b+ ε) = VAx+ Vε = VAx+L−1

VAx = E (Ax−Aµ) (Ax−Aµ)
T

= AE (x− µ) (x− µ)
T
AT = AΛ−1AT

Thus,

p(y) = N
(
y|Aµ+ b,AΛ−1AT +L−1

)
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2.3.3, p. 93

Details computation p(x|y)

Write all relevant terms that occur in exponential of the joint Gaussian p(x,y):

−1

2
(x− µ)TΛ−1(x− µ)− 1

2
(y −Ax− b)TL−1(y −Ax− b)

Collect all quadratic and linear terms in x:

−1

2
xT
(
Λ−1 +ATL−1A

)
x+ xT

(
Λ−1µ+ATL−1(y − b)

)
Define Σ−1 = Λ−1 +ATL−1A,Σ−1m = Λ−1µ+ATL−1(y − b), then

−1

2
xTΣ−1x+ xTΣ−1m ∝ −1

2
(x−m)TΣ−1(x−m)

Thus

p(x|y) = N
(
x|Σ

(
Λ−1µ+ATL−1(y − b)

)
,Σ
)
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2.3.6

Bayesian inference for the Gaussian

Aim: inference of unknown parameter µ. Assume σ given.

Likelihood of µ with one data point:

p(x|µ) = N (x|µ, σ) =
1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)

Likelihood of µ with the data set:

p({x1, . . . , xN}|µ) =

N∏
n=1

p(xn|µ) =

(
1√
2πσ

)N
exp

(
− 1

2σ2

∑
n

(xn − µ)2

)

= exp

(
−Nµ

2

2σ2
+
µ

σ2

∑
n

xn + const.

)
= exp

(
− N

2σ2
µ2 +

Nx̄

σ2
µ+ const.

)
= exp

(
− N

2σ2
(µ− x̄)2 + const.

)
with x̄ =

1

N

∑
n

xn

ML: µ = x̄
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2.3.6

Bayesian inference for the Gaussian

Likelihood:

p(Data|µ) = exp

(
− N

2σ2
(µ− x̄)2 + const.

)
Prior:

p(µ) = N (µ|µ0, σ0) =
1√

2πσ0

exp

(
− 1

2σ2
0

(µ− µ0)2

)

µ0, σ0 hyperparameters. Large σ0 = large prior uncertainty in µ.

p(µ|Data) ∝ p(Data|µ)p(µ)
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2.3.6, pp. 97-98

Posterior is proportional to the product of two Gaussian potentials.

p(Data|µ) ∝ N (µ|x̄, 1

N
σ2)

p(µ) = N (µ|µ0, σ
2
0)

p(µ|Data) = N (µ|µN , σ2
N)

with (Ex. 2.38)

µN =
Nσ2

0x̄+ σ2µ0

Nσ2
0 + σ2

=
Nx̄+N0µ0

N +N0

1

σ2
N

=
N +N0

σ2

Interpretation: µ0 mean of pseudodata; N0 = σ2

σ2
0

is effective number of pseudocounts
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2.3.6, pp. 98-99

N = 0

N = 1

N = 2

N = 10

−1 0 1
0

5

For N →∞: µN → x̄, σ2
N → 0

i.e., posterior distribution is a peak around ML solution
so Bayesian inference and ML coincides.
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2.3.6, pp. 98-99

D dimensional case

Likelihood is Gaussian

p(D|µ,Σ) =
∏
n

p(xn|µ,Σ) ∝ exp

(
−1

2

∑
n

(xn − µ)TΣ−1(xn − µ)

)

∝ exp

(
−N

2
µTΣ−1µ+

∑
n

µTΣ−1xn

)

= exp

(
−N

2
µTΣ−1µ+NµTΣ−1m

)
∝ exp

(
−N

2
(µ−m)TΣ−1(µ−m)

)
∝ N (µ|m, 1

N
Σ)

with m = 1
N

∑
n x

n the mean of the data. Likelihood concentrates on the mean.

Prior is Gaussian N (µ|µ0,Λ
−1). Posterior is Gaussian

p(µ|D) ∝ exp

(
−1

2
µT
(
NΣ−1 + Λ−1

)
µ+

(
mTNΣ−1 + µT0 Λ−1

)
µ

)
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2.3.6, pp. 98-99

multivariate generalization of previous case.
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3

Chapter 3

Linear Models for Regression
Regression: . . . ?
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3

Chapter 3

Linear Models for Regression
Regression: predicting the value of continuous target/output variables given values of the
input variables.

In other words: given a training set of input/output pairs, constructing a function that
maps input values to continuous output values.
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3.1

Linear Basis Function Models

Linear regression:

y(x,w) = w0 + w1x1 + w2x2 + · · ·+ wDxD = w0 +

D∑
j=1

wjxj

Linear in parameters w and in input x.

Generalize this to models that need not be linear in input x

y(x,w) = w0 +

M−1∑
j=1

wjφj(x)

where φ1(x), . . . , φM−1(x) are basis functions or feature functions. Defining φ0(x) = 1,
we can write it more compactly:

y(x,w) =

M−1∑
j=0

wjφj(x) = wTφ(x)

Note: still linear in parameters w! Examples of basis functions?
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3.1

Linear Basis Function Models

Polynomials: φj(x) = xj

Gaussians: φj(x) = exp(−β(x− µj)2)
Sigmoids: φj(x) = σ(β(x− µj))
Fourier: φj(x) = exp(ijx)
Wavelets: ...

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
0   

0.25

0.5 

0.75

1   

−1 0 1
0

0.25

0.5

0.75

1
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3.1.1

Adding some noise

Let’s make some noise. . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).

Q: what is the distribution of t, given x,w, β?
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3.1.1

Adding some noise

Let’s make some noise. . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).

Q: what is the distribution of t, given x,w, β?

p(t|x,w, β) = N (t|y(x,w), β−1)

Q: what is the conditional mean IE(t|x,w, β)?
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3.1.1

Adding some noise

Let’s make some noise. . . and assume the following model:

t = y(x,w) + ε, y(x,w) = wTφ(x)

where we added Gaussian noise ε ∼ N (0, β−1).

Q: what is the distribution of t, given x,w, β?

p(t|x,w, β) = N (t|y(x,w), β−1)

Q: what is the conditional mean IE(t|x,w, β)?

IE(t|x,w, β) =

∫
tp(t|x) dt = y(x,w)
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3.1.1

Maximum likelihood: least squares

Q: What is the likelihood of a data set {(xn, tn)}Nn=1?
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3.1.1

Maximum likelihood: least squares

Q: What is the likelihood of a data set {(xn, tn)}Nn=1?

p(t|X,w, β) =

N∏
n=1

N
(
tn|wTφ(xn), β−1

)

Q: How does the log-likelihood depend on the parameters w?
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3.1.1

Maximum likelihood: least squares

Q: What is the likelihood of a data set {(xi, ti)}Nn=1?

p(t|X,w, β) =

N∏
n=1

N
(
tn|wTφ(xn), β−1

)

Q: How does the log-likelihood depend on the parameters w?

ln p(t|X,w, β) = C − 1

2
β

N∑
n=1

(
tn −wTφ(xn)

)2
︸ ︷︷ ︸

sum-of-squares error function

Q: How to optimize the log-likelihood with respect to parameters w?
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3.1.1

Maximum likelihood: least squares

Q: What is the likelihood of a data set {(xi, ti)}Ni=1?

p(t|X,w, β) =

N∏
n=1

N
(
tn|wTφ(xn), β−1

)
Q: How does the log-likelihood depend on the parameters w?

ln p(t|X,w, β) = C − 1

2
β

N∑
n=1

(
tn −wTφ(xn)

)2
︸ ︷︷ ︸

sum-of-squares error function

Q: How to optimize the log-likelihood with respect to parameters w?
A: differentiate with respect to w and set to zero:

∇w ln p(t|X,w, β) = −β
N∑
n=1

(
tn −wTφ(xn)

)
φ(xn)T = 0
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3.1.1

Maximum likelihood: least squares

Rewriting:

0 =

N∑
n=1

tnφ(xn)T −wT

(
N∑
n=1

φ(xn)φ(xn)T

)
Solving for w:

wML = (ΦTΦ)−1ΦT t

where Φ is an N ×M matrix, the design matrix, with elements Φnj = φj(xn):

Φ =


φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

... ... . . . ...
φ0(xN) φ1(xN) . . . φM−1(xN)


The matrix ΦTΦ is M ×M . If N < M the inverse does not exist.
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3.1.1

Also, one can derive:5

β−1
ML =

1

N

N∑
n=1

(
tn −wT

MLφ(xn)
)2
.

Since

t = y(x,w) + ε, ε ∼ N (0, β−1)

β−1
ML estimates the unexplained variance in t.

5

ln p(t|X,w, β) =
N

2
log

β

2π
−

1

2
β

N∑
n=1

(
tn −wTφ(xn)

)2

∂ ln p(t|X,w, β)

∂β
=

N

2β
−

1

2

N∑
n=1

(
tn −wTφ(xn)

)2
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3.1.1

Example: One dimensional linear regression

M = 2, φ0 = 1, φ1 = x. Then

y = w0 + w1x+ ε

Given data {(xn, tn), n = 1, . . . ,M}, find w0, w1, β.

Step 1: find Φ, t.
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3.1.1

Example: One dimensional linear regression

M = 2, φ0 = 1, φ1 = x. Then

y = w0 + w1x+ ε

Given data {(xn, tn), n = 1, . . . ,M}, find w0, w1, β.

Φ =


φ0(x1) φ1(x1)
φ0(x2) φ1(x2)

... ...
φ0(xN) φ1(xN)

 =


1 x1

1 x2
... ...
1 xN

 t =


t1
t2
...
tN


Step 2: find ΦTΦ,ΦT t:
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3.1.1

Example: One dimensional linear regression

M = 2, φ0 = 1, φ1 = x. Then

y = w0 + w1x+ ε

Given data {(xn, tn), n = 1, . . . ,M}, find w0, w1, β.

Φ =


φ0(x1) φ1(x1)
φ0(x2) φ1(x2)

... ...
φ0(xN) φ1(xN)

 =


1 x1

1 x2
... ...
1 xN

 t =


t1
t2
...
tN



ΦTΦ =

(
N

∑
n xn∑

n xn
∑
n x

2
n

)
ΦT t =

( ∑
n tn∑

n xntn

)
wML =

(
ΦTΦ

)−1
ΦT t βML = . . .
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3.1.1

Geometry of least squares

M ≤ N :

S
t

yϕ1

ϕ2

t = (t1, . . . , tN) is vector in RN .

φj = (φj(x1), . . . , φj(xN)), j = 1, . . . ,M are M vectors in RN that span M dimensional
linear subspace S

y =
∑M
j=1wjφj is in S for any w.

The optimal w minimizes the quadratic error ‖t− y‖ and is the ortho-normal projection.

M > N : vectors φj are over complete bases of RN . Therefore, there are multiple

solutions w to solve t =
∑M
j=1wjφj. The regression problem is ill-posed.

Bert Kappen 168



3.1.4

Regularized least squares

To avoid overfitting, we can add a regularization term to the log-likelihood, e.g. weight
decay :

ln p(t|X,w, β) + λEW (w) = C − 1

2
β

N∑
i=1

(
tn −wTφ(xn)

)2
︸ ︷︷ ︸

sum-of-squares error function

− 1

2
λwTw︸ ︷︷ ︸

regularizer

Maximizing with respect to w now gives the following optimum:

w = (λI + ΦTΦ)−1ΦT t

NB: adding the diagonal makes the matrix of maximal rank.
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3.1.4

Other regularizers

ln p(t|X,w, β) + λEW (w) ∝ −1

2
β

N∑
i=1

(
tn −wTφ(xn)

)2 − 1

2
λ

M−1∑
j=0

|wj|q

q = 0.5 q = 1 q = 2 q = 4

the LASSO with q = 1. This gives a sparse solution (wj = 0 for many, but a few, j’s).
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3.1.4

Other regularizers

w1

w2

w?

w1

w2

w?

Regularization is equivalent to constrained optimization

argminwf(w) + λ

M−1∑
j=0

|wj|q ⇔ argminwf(w) + λ

M−1∑
j=0

|wj|q − η


Fix η and find λ(η) rather than fix λ.

Shows that q ≤ 1 finds sparse solutions.
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3.2

Bias-Variance Decomposition

Complex models tend to overfit. Simple models tend to be too rigid. Number of terms
in polynomial, weight decay constant λ.

When learning with a finite data set D, the solution y(x|D) that minimizes the quadratic
loss depends D.

L =
∑
µ∈D

(y(xµ)− tµ)2 → y(x;D)

This solution scatters around the true (infinite date) solution h(x) = E(t|x). We write

L =
∑
µ∈D

(y(x;D)− h(x))2 + 2
∑
µ∈D

(y(x;D)− h(x))(h(x)− tµ) +
∑
µ∈D

(h(x)− tµ)2

The expected value is

EL =
∑
µ∈D

(y(x;D)− h(x))2 + E
∑
µ∈D

(h(x)− tµ)2

︸ ︷︷ ︸
noise

Bert Kappen 172



3.2

We can estimate the first term. Consider the thought experiment that a large number of
data sets D are given. Then we can construct the average solution ȳ(x) = IED(y(x|D)),
and (

y(x;D)− h(x)
)2

=
(
y(x;D)− ȳ(x)

)2
+
(
ȳ(x)− h(x)

)2
+ 2

(
y(x;D)− ȳ(x)

)(
ȳ(x)− h(x)

)
IED
(
y(x;D)− h(x)

)2
= IED

(
y(x;D)− ȳ(x)

)2︸ ︷︷ ︸
variance

+ IED
(
ȳ(x)− h(x)

)2︸ ︷︷ ︸
bias2

Substitution in expected square loss EL:

EDEL = IED
(
y(x;D)− ȳ(x)

)2︸ ︷︷ ︸
variance

+ IED
(
ȳ(x)− h(x)

)2︸ ︷︷ ︸
bias2

+E
∑
µ∈D

(h(x)− tµ)2

︸ ︷︷ ︸
noise

Variance: scatter of individual solutions y(x;D) around their mean ȳ(x).
Bias: difference between mean solution ȳ(x) and h(x).
Noise: scatter of the data points t around true solution h(x).

Objective is to minimize bias2+variance. Noise cannot be optimized.
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3.2

100 data sets, each with 25 data points from t = sin(2πx) + noise. y(x) as in Eq. 3.3-4.

Parameters optimized using

L =
1

2

N∑
i=1

(
tn −wTφ(xn)

)2
+

1

2
λwTw

for different λ. Top shows variance, bottom shows bias.

x

t
ln λ = 2.6

0 1

−1

0

1

x

t
ln λ = −0.31

0 1

−1

0

1

x

t
ln λ = −2.4

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

Difference models make different trade-off of bias and variance:
- Flexible/complex model (low λ): low bias, high variance

- Rigid/simple model (high λ): high bias, low variance

Best model strikes the best balance.
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3.2

Bias-Variance Decomposition

ln λ

 

 

−3 −2 −1 0 1 2
0

0.03

0.06

0.09

0.12

0.15

(bias)2

variance

(bias)2 + variance
test error

Sum of bias, variance and noise yields expected error on test set. Optimal λ is trade-off between bias and

variance.

Decomposition of total error in bias, variance and noise terms usually not known because
h(x) is not known.
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3.3

Bayesian linear regression

Let’s go back to the linear basis function model:

t = y(x,w) + ε, y(x,w) = wTφ(x), ε ∼ N (0, β−1)

p(t|x,w, β) = N (t|wTφ(x), β−1)

Training data: X = (x1, . . . ,xN) and t = (t1, . . . , tN).

Likelihood:

p(t|x,w, β) =

N∏
n=1

N (tn|wTφ(xn), β−1) = N (t|Φw, β−1I).

Q: what prior p(w) can we choose?

Bert Kappen 176



3.3

Bayesian linear regression

Let’s go back to the linear basis function model:

t = y(x,w) + ε, y(x,w) = wTφ(x), ε ∼ N (0, β−1)

p(t|x,w, β) = N (t|wTφ(x), β−1)

Training data: X = (x1, . . . ,xN) and t = (t1, . . . , tN).

Likelihood:

p(t|x,w, β) =

N∏
n=1

N (tn|wTφ(xn), β−1) = N (t|Φw, β−1I).

Q: what prior p(w) can we choose?
A: We make life easy by choosing a conjugate prior, which is a Gaussian

p(w) = N (w|m0, S0)
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3.3

Bayesian linear regression

Then, the posterior will also be Gaussian. Prior and likelihood:

p(w) = N (w|m0, S0)

p(t|w) = N (t|Φw, β−1I)

Then, by applying 2.113 + 2.114⇒ 2.116, we get the posterior (Ex. 3.7):

p(w|t) = N (w|mN , SN)

with

mN = SN(S−1
0 m0 + βΦT t)

S−1
N = S−1

0 + βΦTΦ

When S−1
0 → 0 (broad prior) mN → (ΦTΦ)−1ΦT t which is the ML solution.

ΦTΦ ∝ N 6. Therefore SN → 0 when N large.
6(ΦTΦ)ij =

∑
n(ΦT )inΦnj =

∑
nΦniΦnj =

∑
n φi(xn)φj(xn)
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3.3

Details

Correspondence with (2.113-114):

p(x) = N (x|µ,Λ−1) p(w) = N (w|m0, S0)

p(y|x) = N (y|Ax+ b,L−1) p(t|w) = N (t|Φw, β−1I)

µ = m0,Λ
−1 = S0,A = Φ, b = 0,L = βI.

Thus from (2.116), posterior p(w|t) = N (w|mN , SN) with

mN = SN(βΦT t+ S−1
0 m0)

S−1
N = S−1

0 + βΦTΦ
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3.3

Bayesian linear regression in 1 dimension

Generate N data points tn = a0 + a1xn+ εn
with a0 = −0.3 and a1 = 0.5, xn ∈ U(−1, 1)
and εn ∼ N (ε|0, β−1) with σ = 0.2. Aim:
estimate a0, a1 from data.

Likelihood model: y(x,w) = w0 + w1x;
p(t|x,w, β) = N (t|y(x,w), β−1), β =
1/σ2 = 25;
Prior model p(w|α) = N (w|0, α−1I), α =
2.
α, β assumed known.

Posterior variance reduces with N .
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3.3

Predictive distribution

What is the predictive distribution p(t∗|x∗) for new data point x∗? We know:

p(t∗|w, x∗) = N (t∗|φT (x∗)w, β−1)

p(w|t,x) = N (w|mN , SN)

p(t∗|x∗, t,x) =

∫
dwp(t∗|w, x∗)p(w|t,x)

Write t∗ = φT (x∗)w + ε with Vε = β−1 and w given by posterior:

Et∗ = φT (x∗)mN , Vt∗ = V
(
φT (x∗)w

)
+ Vε = φT (x∗)V (w)φ(x∗) + β−1

p(t∗|x∗, t,x) = N (t∗|φT (x∗)mN , σ
2
N(x∗))

where
σ2
N(x∗) = β−1 + φ(x∗)TSNφ(x∗)

When N →∞ SN → 0 and σ2
N(x∗)→ β−1
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3.3

Bayesian linear regression: Example

x
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1

Data points from t = sin(2πx) + noise. y(x) as in Eq. 3.3-4. Red is φ(x∗)TmN ± σN(x∗). Data

set size N = 1, 2, 4, 25.
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3.3

Bayesian linear regression: Example

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

Same data and model. Curves y(x,w) with w from posterior p(w|t) = N (w|mN , SN).
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3.3.3

Equivalent kernel

The output y for the mean posterior prediction w = mN = βSNΦT t (assume m0 = 0)
is

y(x,mN) = φ(x)TmN = βφ(x)TSNΦ(x)T t = β

N∑
n=1

φ(x)TSNφ(xn)tn

=

N∑
n=1

k(x, xn)tn

Mean output is linear combination of outputs at training points. Weighting is localized
around x.

Kernel k(x, x′) for Gaussian basis function (fig. 3.1). Data are 200 equally spaced xn ∈ [−1, 1] and

measured targets tn.
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3.3.3

Equivalent kernel

−1 0 1

0

0.02

0.04

−1 0 1

0

0.02
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Kernels k(x, x′) for polynomial and sigmoid basis functions (fig 3.1) are localized.
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3.3.3

Equivalent kernel

The outputs at two different inputs are correlated:

Cov (y(x), y(x′)) = Cov(φ(x)Tw,wTφ(x′)) = φ(x)TVwφ(x′) = φ(x)TSNφ(x′)

= β−1k(x, x′)

Nearby points are highly correlated, and distant points are uncorrelated.

One can specify a regression problem in terms of a kernel directly instead of a linear
combination of basis functions (chapter 6).
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3.4

Bayesian model comparison

Maximum likelihood suffers from overfitting, which requires testing models of different
complexity on separate data.

Bayesian approach allows to compare different models directly on the training data, but
requires integration over model parameters.

Consider L probability models and a set of data generated from one of these models. We
define a prior over models p(Mi), i = 1, . . . , L to express our prior uncertainty.

Given the training data D, we wish to compute the posterior probability

p(Mi|D) ∝ p(D|Mi)p(Mi)

p(D|Mi) is called model evidence, also marginal likelihood, since it integrates over model
parameters:

p(D|Mi) =

∫
p(D|w,Mi)p(w|Mi)dw
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3.4

Bayesian model comparison

Consider three models of increasing complexity M1,M2,M3. Consider drawing data
sets from these models: we first sample a parameter vector w from the prior p(w|Mi)
and then generate iid data points according to p(x|w,Mi). The resulting distribution is
p(D|Mi).

A simple model has less variability in the resulting data sets than a complex model. Thus,
p(D|M1) is more peaked than p(D|M3). Due to normalization, p(D|M1) is necessarily
higher than p(D|M3).

p(D)

DD0

M1

M2

M3

For the data set D0 the Bayesian approach will select model M2 because model M1 is
too simple (does not explain the data) and model M3 is too complex (can explain too
many data sets). This is known as Bayesian model selection.
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3.5.1

Evidence framework for Bayesian linear regression

The Bayesian linear regression approach assume a prior (3.48)

p(w|α,M) =
( α

2π

)M/2

exp
(
−α

2
wTw

)
and a likelihood (3.10)

p(t|w, β,M) =

(
β

2π

)N/2
exp

(
−β

2
‖t− Φw‖2

)
.

The marginal likelihood is

p(t|α, β,M) =

∫
dwp(w|α,M)p(t|w, β,M)

=
( α

2π

)M/2
(
β

2π

)N/2 ∫
dw exp(−E(w))
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3.5.1

Evidence framework

E(w) =
β

2
(t− Φw)T (t− Φw) +

α

2
wTw =

β

2

(
tT t− 2wTΦT t+wTΦTΦw

)
+
α

2
wTw

=
1

2
wTAw +

β

2
tT t− βwTΦT t =

1

2
wTAw +

β

2
tT t−wTAm

with A = αI + βΦTΦ and Am = βΦT t. Thus,

E(w) =
1

2
(w −m)TA(w −m)− 1

2
mTAm+

β

2
tT t

=
1

2
(w −m)TA(w −m) + E(m)

With
∫
dw exp(−E(w)) = exp(−E(m))(2π)−M/2|A|−1/2:

log p(t|α, β,M) =
M

2
logα+

N

2
log β − E(m)− 1

2
log |A| −M

2
log 2π

7. Note that |A| = ∏λi, thus log |A| = O(M).
7NB typo Eq. 3.86 −N2 log 2π
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3.5.1

Evidence framework

M
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Evidence framework comparing different M for fixed α, β. M = 1 improves over M = 0. M = 2 does

not improve over M = 1. M = 3 improves over M = 2. Models M = 3− 8 have different likelihood

but increasing complexity.
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Handout Perceptrons

The Perceptron

Relevant in history of pattern recognition and neural networks.

• Perceptron learning rule + convergence, Rosenblatt (1962)

• Perceptron critique (Minsky and Papert, 1969) → ”Dark ages of neural networks”

• Revival in the 80’s: Backpropagation and Hopfield model. Statistical physics entered.

• 1995. Bayesian methods take over. Start of modern machine learning. NN out of
fashion.

• 2006 Deep learning, big data.
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Handout Perceptrons

The Perceptron

y(x) = sign(wTφ(x))

where

sign(a) =

{
+1, a ≥ 0
−1, a < 0.

and φ(x) is a feature vector (e.g. hard wired neural network).
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Handout Perceptrons

The Perceptron

Ignore φ, ie. consider inputs xµ and outputs tµ = ±1
Define wTx =

∑n
j=1wjxj + w0. Then, the learning condition becomes

sign(wTxµ) = tµ, µ = 1, . . . , P

We have
sign(wTxµtµ) = 1 or wTzµ > 0

with zµj = xµj t
µ.
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Handout Perceptrons

Linear separation

Classification depends on sign of wTx. Thus, decision boundary is hyper plane:

0 = wTx =

n∑
j=1

wjxj + w0

Perceptron can solve linearly separable problems.

AND problem is linearly separable.

XOR problem and linearly dependent inputs not linearly separable.
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Handout Perceptrons

Perceptron learning rule

Learning succesful when
wTzµ > 0, all patterns

Learning rule is ’Hebbian’:

wnew
j = wold

j + ∆wj

∆wj = ηΘ(−wTzµ)xµj t
µ = ηΘ(−wTzµ)zµj

η is the learning rate.

Depending on the data, there may be many or few solutions to the learning problem (or
non at all)
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Handout Perceptrons

The quality of the solution is determined by the worst pattern. Since the solution does
not depend on the size of w:

D(w) =
1

|w|min
µ
wTzµ

Acceptable solutions have D(w) > 0.

The best solution is given by Dmax = maxwD(w).
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Handout Perceptrons

Dmax > 0 iff the problem is linearly separable.
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Handout Perceptrons

Convergence of Perceptron rule

Assume that the problem is linearly separable, so that there is a solution w∗ with
D(w∗) > 0.

At each iteration, w is updated only if w · zµ < 0. Let Mµ denote the number of times
pattern µ has been used to update w. Thus,

w = η
∑
µ

Mµzµ

Consider the quanty

−1 <
w · w∗
|w||w∗| < 1

We will show that
w · w∗
|w||w∗| ≥ O(

√
M),

with M =
∑
µM

µ the total number of iterations.

Therefore, M can not grow indefinitely. Thus, the perceptron learning rule converges in
a finite number of steps when the problem is linearly separable.
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Handout Perceptrons

Proof:

w · w∗ = η
∑
µ

Mµzµ · w∗ ≥ ηM min
µ
zµ · w∗

= ηMD(w∗)|w∗|
∆|w|2 = |w + ηzµ|2 − |w|2 = 2ηw · zµ + η2|zµ|2

≤ η2|zµ|2 = η2N

|w| ≤ η
√
NM

Thus,

1 ≥ w · w∗
|w||w∗| ≥

√
M
D(w∗)√

N

Number of weight updates:

M ≤ N

D2(w∗)
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Handout Perceptrons

Capacity of the Perceptron

Consider P patterns in N dimensions in general position:
- no subset of size less than N is linearly dependent.

- general position is necessary for linear separability

Question: What is the probability that a problem of P samples in N dimensions is linearly
separable?
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Handout Perceptrons

Define C(P,N) the number of linearly separable colorings on P points in N dimensions,
with separability plane through the origin. Then (Cover 1966):

C(P,N) = 2

N−1∑
i=0

(
P − 1
i

)

When P ≤ N small, then C(P,N) = 2
∑P−1
i=0

(
P − 1
i

)
= 2(1 + 1)P−1 = 2P

When P = 2N , then 50 % is linearly separable: C(P,N) = 2
∑N−1
i=0

(
2N − 1

i

)
=∑2N−1

i=0

(
2N − 1

i

)
= 22N−1 = 2P−1
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Handout Perceptrons

Proof by induction.

Add one point X. The set C(P,N) consists of
- colorings with separator through X (A)

- rest (B)

Thus,

C(P + 1, N) = 2A+B = C(P,N) +A

= C(P,N) + C(P,N − 1)

Yields

C(P,N) = 2

N−1∑
i=0

(
P − 1
i

)
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Handout Perceptrons

Linear unitsInput-output behaviour:

yµ = w0 +

n∑
j=1

wjx
µ
j =

n∑
j=0

wjxj x0 = 1

Desired behaviour: yµ = tµ, µ = 1, . . . , P .

Define a learning ruls as gradient descent on a cost function:

E(w) =
1

2

P∑
µ=1

tµ − n∑
j=0

wjx
µ
j

2

∆wi = −η ∂E
∂wi

= η
∑
µ

tµ −∑
j

wjx
µ
j

xµi

wi = wi + ∆wi
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Handout Perceptrons

Gradient descent optimization

The simplest procedure to optimize E is to start with a random w and iterate

wτ+1 = wτ − η∇E(wτ)

This is called batch learning, where all training data are included in the computation of
∇E.

Does this algorithm converge? Yes, if ε is ”sufficiently small” and E bounded from below.

Proof: Denote ∆w = −η∇E.

E(w + ∆w) ≈ E(w) + (∆w)T∇E = E(w)− η
∑
i

( ∂E
∂wi

)2 ≤ E(w)

In each gradient descent step the value of E is lowered. Since E bounded from below,
the procedure must converge asymptotically.
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Handouts Ch. Perceptrons

Convergence of gradient descent in a quadratic well

E(w) =
1

2

∑
i

λiw
2
i

∆wi = −η ∂E
∂wi

= −ηλiwi

wnew
i = wold

i + ∆wi = (1− ηλi)wi

Convergence when |1− ηλi| < 1. Oscillations when 1− ηλi < 0.

Optimal learning parameter depends on curvature of each dimension.
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4.3

Logistic regression

Two class classification

p(C1|φ) = σ(wTφ) σ(x) = 1/(1 + exp(−x))

M dimensional feature space.

x1

x2

−1 0 1

−1

0

1

φ1

φ2

0 0.5 1

0

0.5

1

Left: Data from two classes in two dimensions (x1, x2) and two two Gaussian basis functions φ1(x), φ2(x)

(green). Right: Data after transformation (x1, x2) → φ1(x1, x2), φ2(x1, x2) are linearly separable

(black line). Corresponding to black circle in left figure.

Problems that are not linearly separable in x might be linearly separable in φ(x).
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4.3

Data (xn, tn), n = 1, . . . , N , tn ∈ {0, 1}. Maximum likelihood to determine parameters
w:

p(t1, . . . , tN |w, x1, . . . , xN) =
∏
n

σ(wTφn)tn[1− σ(wTφn)]1−tn =
∏
n

ytnn (1− yn)1−tn

with φn = φ(xn) and yn = σ(wTφn) i.e.,

E(w) = − ln p = −
∑
n

[tn ln yn + (1− tn) ln(1− yn)]

NB: entropic error function for classification, rather than squared error.
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4.3

Logistic regression

∂E(w)

∂wi
=
∑
n

(yn − tn)φi(xn)

(Ex. 4.13) No closed form solution.

yn − tn with is ’error’ in sample n.

Overfitting risk when data is linearly separable: w →∞ (i.e. σ → step function).
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Newtons method

One can also use Hessian information for optimization. As an example, consider a
quadratic approximation to E around w0:

E(w) = E(w0) + bT (w −w0) +
1

2
(w −w0)H(w −w0)

bi =
∂E(w0)

∂wi
Hij =

∂2E(w0)

∂wi∂wj

∇E(w) = b+H(w −w0)

We can solve ∇E(w) = 0 and obtain

w = w0 −H−1∇E(w0)

This is called Newtons method.

Quadratic approximation is exact when E is quadratic, so convergence in one step.

Quasi-Newton: Consider only diagonal of H.
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4.3.3

Iterative least squares

Minimize learning error by Newton-Raphson method

w(new) = w(old) −H−1∇E(w)

with

Hij =
∂2E

∂wi∂wj
=

∂

∂wj

∂E

∂wi
=

∂

∂wj

∑
n

(yn − tn)φi(xn)

=
∑
n

φj(xn)yn(1− yn)φi(xn) =
(
ΦTRΦ

)
ij

∇iE(w) =
∑
n

(yn − tn)φi(xn) =
(
ΦT (y − t)

)
i

with Φnj = φj(xn) and Rn,n′ = yn(1− yn)δn,n′.

H(w) is positive definite for all w thus E(w) is convex, thus unique optimum (Ex. 4.15).

w(new) = w(old) −
(
ΦTRΦ

)−1
ΦT (y − t)
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6.4.2

Gaussian processes

(Regression setting). Data set {xn, tn}n=1:N Assume a model

tn = yn + εn t = y + ε

with ε ∼ N (ε|β−1IN) and

y ∼ N (y|0,K)

K is a N ×N covariance matrix that depends on the entire input data xN = x1:N with
components

Kn,n′ = θ0 exp

(
−θ1

2
‖xn − xn′‖2

)
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6.4.2

Since tN = y + ε we get p(tN) = N (tN |0, CN) (with tN = t1:N):

EtN = 0 CN = VtN = Vy + Vε = K + β−1I

Same holds when we add extra data point x, t: tN+1 = (tN , t) and xN+1 = (xN ,x):

p(tN+1) = N (tN+1|0, CN+1)

p(tN+1) = p(tN , t) is Gaussian. We can compute the marginal p(t|tN) using results Eqs.
2.81-82

p(xa,xb) = N (xa,xb|µ,Σ) µ = (µa, µb), Σ =

(
Σaa Σab
Σba Σbb

)
p(xa|xb) = N (xa|µa|b,Σa|b)

Σa|b = Σaa − ΣabΣ
−1
bb Σba µa|b = µa + ΣabΣ

−1
bb (xb − µb)
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6.4.2

xa = t,xb = tN , µa = µb = 0 and

Σ = CN+1 =

(
c kT

k CN

)

with c = K(x,x) + β−1 and kn = K(xn,x), n = 1, . . . , N

Thus,

p(t|tN) = N (t|µN+1, σ
2
N+1), µN+1 = kTC−1

N tN σ2
N+1 = c− kTC−1

N k

NB: µN+1 and σ2
N+1 depend on x.
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6.4.2

t1

t2

m(x2)
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Left: Computation of p(t2|t1) from joint distribution p(t1, t2) which has mean zero and covariance

depending on x1, x2. Right: Marginal p(t|tN) versus x
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6.4.3

Learning the parameters

The GP depends on the choice of the kernel K and in particular on its parameter values
θ. Given data xN , tN we can learn the parameters by maximum likelihood.

Since p(tN |θ) is Gaussian the data likelihood

log p(tN |θ) = −1

2
log |CN | −

1

2
tTNC

−1
N tN −

N

2
log 2π CN = K(θ) + β−1I

can be maximized by gradient ascent.
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6.4.4

Automatic relevance determination

Choose different length scales for different dimensions

K(x,x′) = θ0 exp

(
−1

2

d∑
i=1

ηi(xi − x′i)2

)

−1

0

1

−1

0

1
−1

0

1

−1

0

1

−1

0

1
−1

0

1

Samples of prior functions. Left η1 = η2 = 1. Right η1 = 1, η2 = 0.01.

Learn ηi (and θ0) to discover relevant dimensions.

Bert Kappen 217



6.4.4

Example of ARD

Input is three dimensional x = (x1, x2, x3).
x1, x3 sampled from a Gaussian. Output t = sin(2πx1) + ε.
x2 = x1 + ε1

0 20 40 60 80 100
10

−4

10
−2

10
0

10
2

η1 (red), η2 (green) and η3 (blue) versus learning iteration
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Sharp et al. 2015

Population variance explained by GWAS

Trait/Disease H2 Pedigree Studies h2 GWAS hits
Type I diabetes 0.9 0.6
Type II diabetes 0.3-0.6 0.05-0.1
Obesity (BMI) 0.4-0.6 0.01-0.02
Crohn’s disease 0.6-0.8 0.1

Multiple Sclerosis 0.3-0.8 0.1
Schizophrenia 0.7-0.8 0.01

Bipolar disorder 0.6-0.7 0.02
ADHD 0.6-1.0 0

Source: Visscher et al. 2012 (ADHD: Stergiakouli et al. 2011)
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Sharp et al. 2015

Features of the regression problem

• Sparse

– More dimensions than data samples
– Low number of significant SNPs

• Unknown mechanism

– Possible interaction models are of unknown order and complexity.

• Common approaches

– linear univariate or pairwise
– path ways
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Sharp et al. 2015

Bayesian GP regression with sparse ARD

Data tN ,xN and ARD kernel K(η).

p(tN |η) = N (tN , CN) Cn = K(η) + β−1I

is Gaussian.

Sparse prior over lenght scales η1:D: p(η|θ) by proper choice of hyper parameters θ.

Compute Bayesian posterior

p(η|tN , θ) ∝ p(tN |η)p(η|θ)

Estimate Eηi =
∫
dηηip(η|tN , θ) and variance by Monte Carlo sampling.
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Sharp et al. 2015

Simulation Data

• Construct 500 genotype samples with 5000 snps from IMAGE-1

• Construct phenotype model

– Randomly choose model snps
– Generate phenotype from 5-way interaction model
∗ λ = 0 linear/additive model
∗ λ = 1 non-linear (AND5) model
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Sharp et al. 2015

Monte Carlo

GP posterior computation uses Hamiltonian Monte Carlo sampling

• Run times hours to days.

• Multi-modality: hard to find high density region
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105 snps and 2000 samples in 20 seconds on GPU. Approx 300 times speed-up over CPU
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Sharp et al. 2015

Classification performance

Compute feature strength for each SNP ((E τk)
−1 in case of GP)

Classify SNPs with highest strength as positive and rest as negative.
Construct ROC curve and compute AUC.
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Sharp et al. 2015

Significance - λ = 1

Univariate
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Sharp et al. 2015

Finding missing heritability in Yeast (Bloom et al., Nat. 2013.)

• 1008 genetically distinct inbred cell-lines. 46 different phenotypes

• Pairwise interactions explain additional 3 % median genetic variance per trait.
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Sharp et al. 2015

Identifying important variants - Zeocin

GPR - marginal posteriors
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• red: GP and linear agree. dark blue: GP only

• SNP 16 found relevant by GPR, but has no additive effect.

• All missing heritability ∼ 35% apparently explained by GPR
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7.1

Support vector machines

Kernel methods (for classification): Training data {xn, tn = ±1}n=1:N

y(x) =

N∑
n=1

antnK(x,xn) class(x) = sign(y(x))

select a subset of an ≥ 0. This is a convex optimization.

−2 0 2

−2

0

2

Number of SVs increases with data
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5.2

Network training

Regression: tn continue valued, h2(x) = x and one usually minimizes the squared error
(one output)

E(w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

= − log

N∏
n=1

N (tn|y(xn,w), β−1) + . . .

Classification: tn = 0, 1 , h2(x) = σ(x), y(xn,w) is probability to belong to class 1.

E(w) = −
N∑
n=1

{tn log y(xn,w) + (1− tn) log(1− y(xn,w))}

= − log

N∏
n=1

y(xn,w)tn(1− y(xn,w))1−tn
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5.2

Network training

More than two classes: consider network with K outputs. tnk = 1 if xn belongs to class
k and zero otherwise. yk(xn,w) is the network output

E(w) = −
N∑
n=1

K∑
k=1

tnk log pk(xn,w)

pk(x,w) =
exp(yk(x,w))∑K
k′=1 exp(yk′(x,w))
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5.2

Parameter optimization

w1

w2

E(w)

wA wB wC

∇E

E is minimal when ∇E(w) = 0, but not vice versa!

As a consequence, gradient based methods find a local minimum, not necessary the global
minimum.
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5.2

Gradient descent optimization

The simplest procedure to optimize E is to start with a random w and iterate

wτ+1 = wτ − η∇E(wτ)

This is called batch learning, where all training data are included in the computation of
∇E.

Does this algorithm converge? Yes, if ε is ”sufficiently small” and E bounded from below.

Proof: Denote ∆w = −η∇E.

E(w + ∆w) ≈ E(w) + (∆w)T∇E = E(w)− η
∑
i

( ∂E
∂wi

)2 ≤ E(w)

In each gradient descent step the value of E is lowered. Since E bounded from below,
the procedure must converge asymptotically.

Bert Kappen 232



Handouts Ch. Perceptrons

Convergence of gradient descent in a quadratic well

E(w) =
1

2

∑
i

λiw
2
i

∆wi = −η ∂E
∂wi

= −ηλiwi

wnew
i = wold

i + ∆wi = (1− ηλi)wi

Convergence when |1− ηλi| < 1. Oscillations when 1− ηλi < 0.

Optimal learning parameter depends on curvature of each dimension.
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Handouts Ch. Perceptrons

Learning with momentum

One solution is adding momentum term:

∆wt+1 = −η∇E(wt) + α∆wt

= −η∇E(wt) + α (−η∇E(wt−1) + α (−η∇E(wt−2) + . . .))

= −η
t∑

k=0

αk∇E(wt−k)

Consider two extremes:

No oscillations all derivative are equal:

∆wt+1 ≈ −η∇E
t∑

k=0

αk = − η

1− α
∂E

∂w

results in acceleration
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Handouts Ch. Perceptrons

Oscillations all derivatives are equal but have opposite sign:

∆w(t+ 1) ≈ −η∇E
t∑

k=0

(−α)k = − η

1 + α

∂E

∂w

results in decceleration
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Newtons method

One can also use Hessian information for optimization. As an example, consider a
quadratic approximation to E around w0:

E(w) = E(w0) + bT (w −w0) +
1

2
(w −w0)H(w −w0)

bi =
∂E(w0)

∂wi
Hij =

∂2E(w0)

∂wi∂wj

∇E(w) = b+H(w −w0)

We can solve ∇E(w) = 0 and obtain

w = w0 −H−1∇E(w0)

This is called Newtons method.

Quadratic approximation is exact when E is quadratic, so convergence in one step.

Quasi-Newton: Consider only diagonal of H.
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Line search

Another solution is line optimisation:

w1 = w0 + λ0d0, d0 = −∇E(w0)

λ0 > 0 is found by a one dimensional optimisation

0 =
∂

∂λ0
E(w0 + λ0d0) = d0 · ∇E(w1) = d0 · d1

Therefore, subsequent search directions are orthogonal.
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Conjugate gradient descent

We choose as new direction a combination of the gradient and the old direction

d′1 = −∇E(w1) + βd0

Line optimisation w2 = w1 + λ1d
′
1 yields λ1 > 0 such that d′1 · ∇E(w2) = 0.

The direction d′1 is found by demanding that ∇E(w2) ≈ 0 also in the ’old’ direction d0:

0 = d0 · ∇E(w2) ≈ d0 · (∇E(w1) + λ1H(w1)d′1)

or
d0H(w1)d′1 = 0

The subsequent search directions d0, d
′
1 are said to be conjugate.
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Polak-Ribiere rule

The conjugate directions can be computed without computing the Hessian matrix, for
instance using the Polak-Ribiere rule:8

β =
(∇E(w1)−∇E(w0)) · ∇E(w1)

‖∇E(w0)‖2

For quadratic problems, it can be proven that this rule keeps the last n directions all
mutually conjugate [Press et al., 1996]

dTi Hdj = 0 i, j = 1, . . . , n

8We need 0 = dT0H(w1)d′1. We use ∇E(w0) ≈ ∇E(w1) + (w0 − w1)TH(w1) = ∇E(w1) − λ0d
T
0H(w1) and

d′1 = −∇E(w1) + βd0. Then

0 = λ0d
T
0H(w1)d

′
1 = (∇E(w1)−∇E(w0)) · (−∇E(w1) + βd0) = − (∇E(w1)−∇E(w0)) · ∇E(w1) + β‖∇E(w0)‖2

where in the last step we used that d0 · ∇E(w1) = 0.
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Stochastic gradient descent

One can also consider on-line learing, where only one or a subset of training patterns is
considered for computing ∇E.

E(w) =
∑
n

En(w) wt+1 = wt − αt∇En(wτ)

May be efficient for large data sets. This results in a stochastic dynamics in w that can
help to escape local minima.
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Robbins Monro

Consider the problem to find x such that

M(x) = a, M(x) = 〈N(x, ξ)〉 =

∫
dξp(ξ)Ni(x, ξ)

x, a,M,N are vectors. Ni(x, ξ) some non-linear function, p(ξ is a probability distribution
and ai a constant.

Method of stochastic approximation originally due to Robbins and Monro 1951:
- Initialize x0 random
- For t = 0, . . ., Choose ξt ∼ p(ξ); Update xt+1 = xt + αt(a−N(xt, ξt))

If Mi(x) convex and x∗ the unique solution, then one can prove that ‖xt − x∗‖2 → 0,
provided that

∞∑
t=1

αt =∞
∞∑
t=1

α2
t <∞

For instance αt = 1/t.
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Stochastic gradient descent

Denote training error

E(w) =
1

P

∑
µ

Eµ(w)

we wish to find solution of

∇E(w) =
1

P

∑
µ

∇Eµ(w) = 0

This is an instance of the Robbins-Monro problem with ξ = µ = 1, . . . , P and

p(µ) =
1

P
ai = 0 N(w, µ) = Eµ(w)

The SGD method is
- Choose random a pattern µ ∈ [1, . . . , P ]
- Update wt+1 = wt − ηt∇Eµ(w)

Extensions of SGD and comparisons see [Sohl-Dickstein et al., 2013].
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5.1

Feed-forward Network functions

We extend the previous regression model with fixed basis functions

y(x,w) = f

 M∑
j=1

wjφj(x)


to a model where φj is adaptive:

φj(x) = h(

D∑
i=0

w
(1)
ji xi)
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5.1

Feed-forward Network functions

In the case of K outputs

yk(x,w) = h2

 M∑
j=1

w
(2)
kj h1

(
D∑
i=0

w
(1)
ji xi

)
h2(x) is σ(x) or x depending on the problem. h1(x) is σ(x) or tanh(x).

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

x1

x2

z1

z3

z2

y1

y2

inputs outputs

Left) Two layer architecture. Right) general feed-forward network with skip-layer connections.

If h1, h2 linear, the model is linear. If M < D,K it computes principle components
(Bishop section 12.4.2).
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5.1

Feed-forward Network functions

Two layer NN with 3 ’tanh’ hidden units and linear output can approximate many functions. x ∈ [−1, 1],

50 equally spaced points. From left to right: f(x) = x2, sin(x), |x|,Θ(x). Dashed lines are outputs of

the 3 hidden units.

−2 −1 0 1 2

−2

−1

0

1

2

3

Two layer NN with two inputs and 2 ’tanh’ hidden

units and sigmoid output for classification. Dashed

lines are hidden unit activities.

Feed-forward neural networks have good approximation properties.
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5.1.1

Weight space symmetries

For any solutions of the weights, there are many equivalent solutions due to symmetry:
- for any hidden unit j with tanh activation function, change wji → −wji and wkj →
−wkj: 2M solutions
- rename the hidden unit labels: M ! solutions

Thus a total of M !2M equivalent solutions, not only for tanh activation functions.
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5.3.1

Error backpropagation

Error is sum of error per pattern

E(w) =
∑
n

En(w) En(w) =
1

2
‖y(xn,w)− tn‖2

yk(x,w) = h2

wk0 +

M∑
j=1

wkjh1

(
wj0 +

D∑
i=1

wjixi

)
= h2(ak)

ak = wk0 +

M∑
j=1

wkjh1(aj) =

M∑
j=0

wkjh1(aj) h1(a0) = 1

aj = wj0 +

D∑
i=1

wjixi =

D∑
i=0

wjixi x0 = 1

i labels inputs, j labels hiddens, k labels outputs.
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5.3.1

Error backpropagation

We do each pattern separately, so we consider En

yk(x
n,w) = h2(ank) = h2

 M∑
j=0

wkjh1(anj )

 = h2

 M∑
j=0

wkjh1

(
D∑
i=0

wjix
n
i

)
∂En

∂wkj
= (ynk − tnk)

∂ynk
∂wkj

= (ynk − tnk)h′2(ank)
∂ank
∂wkj

= (ynk − tnk)h′2(ank)h1(anj )

= δnkh1(anj ) δnk = (ynk − tnk)h′2(ank)

∂En

∂wji
=

K∑
k=1

(ynk − tnk)
∂ynk
∂wji

=

K∑
k=1

(ynk − tnk)h′2(ank)
∂ank
∂wji

=

K∑
k=1

δnkwkjh
′
1(anj )

∂anj
∂wji

=

K∑
k=1

δnkwkjh
′
1(anj )xni = δnj x

n
i

δnj = h′1(anj )

K∑
k=1

δnkwkj
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5.3.1

Error backpropagation

zi

zj

δj
δk

δ1

wji wkj

The back propagation extends to arbitrary layers:

1. zni = xni forward propagation all activations znj = h1(anj ) and znk = h2(ank), etc.

2. Compute the δnk for the output units, and back-propagate the δ to obtain δnj each
hidden unit j

3. ∂En/∂wkj = δnkz
n
j and ∂En/∂wji = δnj z

n
i

4. for batch mode, ∂E/∂wji =
∑
n ∂E

n/∂wji

E is a function of O(|w|) variables. In general, the computation of E requires O(|w|)
operations. The computation of ∇E would thus require O(|w|2) operations.

The backpropagation method allows to compute ∇E efficiently, in O(|w|) operations.
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5.5

Regularization

M = 1
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Complexity of neural network solution is controlled by number of hidden units
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sum squared test error for different number of hidden units and different weight initializations. Error is also

affected by local minima.
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Part of the cause of local minima is the saturation of the sigmoid functions tanh(
∑
wijxj).

When wij becomes large, any change in its value hardly affects the output, implying
∇ijE = 0.

One can partly prevent this from happening by

• chosing tanh instead of σ transfer functions and scaling of inputs and outputs with
mean zero and standard deviation one

• proper initialisation of wij with mean zero and standard deviation of order 1/
√
n1,

with n1 the number of inputs to neuron i.

• add regularizer such as
∑
iw

2
i to cost keeps weights small

• dropouts, other transfer functions, adding noise, ....
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MLPs are universal approximators

Consider 2n binary patterns in n dimensions and two classes:

xµ → cµ = ±1, xµi = ±1

Use 2n hidden units, labeled j = 0, . . . , 2n − 1, i labels input. Set

wji = b if ith digit in binary repr. of j is 1

wji = −b else

j binary wj1 wj2
0 00 -b -b

1 01 -b b

2 10 b -b

3 11 b b

x1 x2

∑
iw0ixi w1ixi w2ixi w3ixi

-1 -1 2b 0 0 -2b

-1 1 0 2b -2b 0

1 -1 0 -2b 2b 0

1 1 -2b 0 0 2b
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MLPs are universal approximators

Use threshold of (n − 1)b at each hidden unit. zj = Θ[
∑
iwjixi − (n − 1)b)]. The

remaining problem has p = 2n patterns in 2n dimensions and is linearly separable.

Define c = sign[
∑3
j=0wjzj].

x1 x2 z0 z1 z2 z3 c

-1 -1 1 0 0 0 sign[w0]

-1 1 0 1 0 0 sign[w1]

1 -1 0 0 1 0 sign[w2]

1 1 0 0 0 1 sign[w3]

The combination of linear summation and non-linear functions can create many different
functions.
- The MLP with a single hidden layer can map any continuous function [Cybenko, 1989, Hornik et al., 1989]
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Convolution networks

A special architecture for images using 4 ideas:
local connections: Connect not fully the bipartite graph between two layers.

weight sharing: use the same parameters to different neurons that detect same feature (feature layer)

(max) pooling: down sample each feature map (not adaptive) many layers: repeat many times.

Fukushima 1982, LeCunn 1990
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Imagenet 2012 competition

Imagenet is an annual computer vision competition. Classify images in 1000 classes. 1.2 million training

images, 50,000 validation images, and 150,000 testing images.

Bert Kappen 255



Interpreting images

Vinyals et al. 2014
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Deep learning papers

Fukushima Neocognitron 1982:

https://www.sciencedirect.com/science/article/pii/0031320382900243

LeCunn Convolutional networks 1990:

http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.

pdf

Krizhevsky Imagenet 2012:

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf

Vinyals Interpreting images 2014:http://arxiv.org/abs/1502.03044

LeCunn, Bengio, Hinton. Deep learning 2015:

https://www.nature.com/articles/nature14539.pdf
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[Hinton and Salakhutdinov, 2006]

Deep belief networks
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[Hinton and Salakhutdinov, 2006]

Experiments: MNIST data

784− 1000− 500− 250− 30 autoencoder

60.000 training images and 10.000 test images

Top to bottom: test samples; DBN; logistic PCA with 30 components; PCA with 30 components. The

average squared errors for the last three rows are 3.00, 8.01, and 13.87.

Bert Kappen 259



[Hinton and Salakhutdinov, 2006]

Experiments: MNIST data

DBN yields better visualisation than PCA
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[Hinton and Salakhutdinov, 2006]

Experiments: documents

Each newswire story was represented as a 2000 dimensional vector of common word counts.

Training:

- 2000-500-250-125-2 autoencoder

- 402.207 training documents, 402.207 test documents

Left: 2-dimensional LSA. Right: 2000- 500-250-125-2 DBN autoencoder.
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Salakhutdinov 2015
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Salakhutdinov 2015
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Salakhutdinov 2015
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Salakhutdinov 2015
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Salakhutdinov 2015
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Salakhutdinov 2015
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[Mnih et al., 2015]

Human-level control through deep reinforcement learning

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html#videos
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math recap for 1.1: p.4-6

Partial derivatives, gradient, Nabla symbol

Let f(x1, . . . , xn) = f(x) be a function of several variables. The gradient of f , denoted as ∇f (the

symbol “ ∇” is called ‘nabla’) , is the vector of all partial derivatives:

∇f(x) =

(
∂f

∂x1

, . . . ,
∂f

∂xn

)T
NB, the partial derivative ∂f(x1, . . . , xi, . . . , xn)/∂xi is computed by taking the derivative with respect

to xi while keeping all other variables constant.

Example:
f(x, y, z) = xy

2
+ 3.1yz

Then

∇f(x, y, z) =
(
y

2
, 2xy + 3.1z, 3.1y

)T

At local minima (and maxima, and so-called saddle points) of a differentiable function f , the gradient is

zero, i.e., ∇f = 0.

Example:
f(x, y) = x

2
+ y

2
+ (y + 1)x

So

∇f(x, y) = (2x+ y + 1, 2y + x)
T
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math recap for 1.1: p.4-6

Then we can compute the point (x∗, y∗) that minimizes f by setting ∇f = 0,

2x∗ + y∗ + 1 = 0

2y∗ + x∗ = 0

}
⇒ (x

∗
, y
∗
) = (−

2

3
,
1

3
)
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math recap for 1.1: p.4-6

Chain rule

Suppose f is a function of y1, y2, ..., yk and each yj is a function of x, then we can compute the

derivative of f with respect to x by the chain rule

df

dx
=

k∑
j=1

∂f

∂yj

dyj

dx

Example:
f(y(x), z(x)) = y(x)/z(x)

and y(x) = x4 and z = x2 then

df

dx
=

1

z(x)
y
′
(x)−

y(x)

z(x)2
z
′
(x) = 2x
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math recap for 1.1: p.4-6

Chain rule (2)

Suppose E is a function of y1, y2, ..., yN and each yj is a function of w0, . . . , wM , then we can

compute the derivative of E with respect to wi by the chain rule

∂E

∂wi
=

N∑
j=1

∂E

∂yj

∂yj

∂wi

Example:

E(w) =
1

2

N∑
j=1

(yj(w)− tj)2 ⇒
∂E

∂yj
= yj − tj

and

yj(w) =
M∑
i=0

x
i
jwi ⇒

∂yj

∂wi
= x

i
j

So
∂E

∂wi
=

N∑
j=1

(yj(w)− tj)xij

tj and xjj are parameters in this example.
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math recap, see also app. C

Matrix multiplications as summations

If A is a N ×M matrix with entries Aij and v an M -dimensional vector with entries vi, then w = Av

is a N -dimensional vector with components

wi =

M∑
j=1

Aijvj

Similarly, if B is a M ×K matrix with entries Bij, then C = AB is a N ×K matrix with entries

Cik =

M∑
j=1

AijBjk
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math recap, see also app. C

Dummy indices

The indices that are summed over are ‘dummy’ indices, they are just a label, so e.g.,

M∑
k=1

AikBkj =
M∑
l=1

AilBlj

furthermore, the entries of the vectors and matrices are just ordinary numbers, so you don’t have to worry

about multiplication order. In addition, if the summation of indices is over a range that does not depend

on other indices, you may interchance the order of summation,

N∑
i=1

M∑
j=1

. . . =

M∑
j=1

N∑
i=1

. . .

So e.g, by changing summation order and renaming dummy indices,

wk =

M∑
j=1

N∑
i=1

AijBjk =

N∑
l=1

M∑
i=1

BikAli
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Kronecker delta

The notation δij denotes usually the Kronecker delta symbol, i.e.,{
δij = 1 if i = j

δij = 0 otherwise

It has the nice property that it ‘eats’ dummy indices in summations:

M∑
j=1

δijvj = vi for all 1 ≤ i ≤M (3)

The Kronecker delta can be viewed as the entries of the identity matrix I. In vector notation, (3) is

equivalent to the statement Iv = v. In other words, δij = Iij
9

9Bishop used δ in his previous book, and I in the current book
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Taylor series, 1-d

Assuming that f(x) has derivatives of all orders in x = a, then the Taylor expansion of f around a is

f(a+ ε) =

∞∑
k=0

f (k)(a)

k!
ε
k

= f(a) + εf
′
(a) +

ε2

2
f
′′
(a) + . . .

The prefactors in the Taylor series can be checked by computing the Taylor expansion of a polynomial.

Linearization of a function around a is taking the Taylor expansion up to first order:

f(a+ x) = f(a) + xf
′
(a)
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Taylor series, examples

Examples: check that for small x the following expansions are correct up to second order:

sin(x) = x

cos(x) = 1−
1

2
x

2

exp(x) = 1 + x+
1

2
x

2

(1 + x)
c

= 1 + cx+
c(c− 1)

2
x

2

ln(1 + x) = x−
1

2
x

2
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Taylor expansion in several dimensions

The Taylor expansion of a function of several variables, f(x1, . . . , xn) = f(x) is (up to second order)

f(x) = f(a) +
∑
i

(xi − ai)
∂

∂xi
f(a) +

1

2

∑
ij

(xi − ai)(xj − aj)
∂

∂xi

∂

∂xj
f(a)

or in vector notation, with ε = x− a

f(a + ε) = f(a) + ε
T∇f(a) +

1

2
ε
T
Hε

with H the Hessian, which is the symmetric matrix of partial derivatives

Hij =
∂2

∂xi∂xj
f(x)

∣∣∣∣∣
x=a
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Integration

The integral of a function of several variables x = (x1, x2, . . . , xn)∫
R
f(x)dx ≡

∫
R
f(x1, x2, . . . , xn)dx1dx2 . . . dxn

is the volume of the n+ 1 dimensional region lying ‘vertically above’ the domain of integration R ⊂ IRn

and ’below’ the function f(x).
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Separable integrals

The most easy (but important) case is when we can separate the integration, e.g. in 2-d,∫ b

x=a

∫ d

y=c

f(x)g(y) dxdy =

∫ b

x=a

f(x) dx

∫ d

y=c

g(y) dy

Example, ∫
exp

( n∑
i=1

fi(xi)
)

dx =

∫ n∏
i=1

exp(fi(xi)) dx =

n∏
i=1

∫
exp(fi(xi)) dxi
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Iterated integration

A little more complicated are the cases, in which integration can be done by iteration, ’from inside out’.

Suppose we can write the 2-d region R as the set a < x < b and c(x) < y < d(x) then we can write∫
R
f(y, x) dydx =

∫ b

x=a

[∫ d(x)

y=c(x)

f(y, x) dy

]
dx

The first step is evaluate the inner integral, where we interpret f(y, x) as a function of y with fixed

parameter x. Suppose we can find F such that ∂F (y, x)/∂y = f(y, x), then the result of the inner

integral is ∫ d(x)

y=c(x)

f(y, x) dy = F (d(x), x)− F (c(x), x)

The result, which we call g(x) is obviously a function of x only,

g(x) ≡ F (d(x), x)− F (c(x), x)

The next step is the outer integral, which is now just a one-dimensional integral of the function g,∫ b

x=a

[∫ d(x)

y=c(x)

f(y, x) dy

]
dx =

∫ b

x=a

g(x) dx

Now suppose that the same 2-d regionR can also be written as the set s < y < t and u(y) < x < v(y),
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then we can also choose to evaluate the integral as∫
R
f(y, x) dxdy =

∫ t

y=s

[∫ v(y)

x=u(y)

f(y, x) dx

]
dy

following the same procedure as above. In most regular cases the result is the same (for exceptions, see

handout (*)).

Integration with more than two variables can be done with exactly the same procedure, ‘from inside out’.

In Machine Learning, integration is mostly over the whole of x space, or over a subspace. Iterated

integration is not often used.
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Dirac’s delta-function

Dirac’s delta function δ(x) is defined such that

δ(x) = 0 if x 6= 0 and

∫ ∞
−∞

δ(x)dx = 1

It can be viewed as the limit ∆→ 0 of the function

f(x,∆) =
1

∆
if |x| ≤

∆

2
and f(x,∆) = 0 elsewhere
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The Dirac delta δ(x) is a spike (a peak, a point mass) at x = 0. The function δ(x− x0) as a function

of x is a spike at x0. As a consequence of the definition, the delta function has the important property∫ ∞
−∞

f(x)δ(x− x0)dx = f(x0)

(cf. Kronecker delta
∑

j δijvj = vi ).

The multivariate deltafunction factorizes over the dimensions

δ(x−m) =

n∏
i=1

δ(xi −mi)
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Dirac’s delta-function / delta-distribution

The Dirac delta is actually a distribution rather than a function:

δ(αx) =
1

α
δ(x)

This is true since

• if x 6= 0 left and right-handside are both zero.

• after transformation of variables x′ = αx, dx′ = αdx we have∫
δ(αx)dx =

1

α

∫
δ(x

′
)dx

′
=

1

α
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Functionals vs functions

Function y: for any input value x, returns output value f(y).

Functional F : for any function y, returns an output value F [y].

Example (linear functional):

F [y] =

∫
p(x)y(x) dx

(Compare with f(y) =
∑

i piyi).

Other (nonlinear) example:

F [y] =

∫
1

2
(y
′
(x) + V (x))

2
dx
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References

References

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superposition of a sigmoidal function. Math.

Control Signals Systems, Vol. 2, pages 303–314.

[Hinton and Salakhutdinov, 2006] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the

dimensionality of data with neural networks. Science, 313(5786):504–507.

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks

are universal approximators. Neural Networks, 2:359–366.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through

deep reinforcement learning. Nature, 518(7540):529–533.

[Press et al., 1996] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1996).

Numerical recipes in C, volume 2. Cambridge university press Cambridge.

[Sohl-Dickstein et al., 2013] Sohl-Dickstein, J., Poole, B., and Ganguli, S. (2013). Fast large-scale

optimization by unifying stochastic gradient and quasi-newton methods. arXiv preprint arXiv:1311.2115.

Bert Kappen 287


