Exercise 1

More about multivariate Gaussians.

The general expression of a univariate Gaussian with mean μ and variance σ^2 is

$$N(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\} \quad (1)$$

The general expression of a multivariate Gaussian over a D dimensional vector x with D dimensional mean vector μ and $D \times D$ covariance matrix Σ is

$$N(x|\mu,\Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \quad (2)$$

where $|\Sigma|$ is the determinant of Σ.

- Now consider a multivariate Gaussian $N(x|\mu,\Sigma)$ in which the covariance matrix Σ is a diagonal matrix, i.e., its elements can be written as $\Sigma_{ij} = \sigma_i^2 I_{ij}$, where I_{ij} are the matrix elements of the identity matrix (so $I_{ij} = 0$ if $i \neq j$ and $I_{ii} = 1$). Show, using (1) and (2) that a multivariate Gaussian with diagonal covariance matrix, $\Sigma_{ij} = \sigma_i^2 I_{ij}$, factorizes into a product of univariate Gaussians

$$N(x|\mu,\Sigma) = \prod_{i=1}^D N(x_i|\mu_i,\sigma_i^2)$$

- Show that for arbitrary positive definite covariance matrix Σ the distribution Eq. 2 is properly normalized. Hint: transform onto the basis of eigenvectors of Σ and use the result of Appendix C on eigenvectors.

Exercise 2

A factory produces products X. 75% is of quality $x = 1$ and the remainder of quality $x = 2$. There is a test Z, which can be a real number z between 0 and 1. The conditional probability density of z, depending on the quality x is

$$p(z|x = 1) = 2(1 - z)$$

$$p(z|x = 2) = 1$$

1. Interpret these equations and compute $p(x|z)$ using Bayes’ rule

2. Compute the Bayes optimal decision to minimize misclassification rate as function of z, i.e. for which z should one classify $x = 1$ and for which z should one classify $x = 2$.

1
3. Suppose we have a loss matrix \(L_{kj} \), expressing the loss for classifying as \(x = j \) while the true class is \(k \). Suppose this matrix is given by

\[
L_{11} = L_{22} = 0, \quad L_{12} = 1, \quad L_{21} = 5
\]

Compute the optimal decision boundary to minimize expected loss.

Exercise 3

The Gaussian distribution in one dimension with mean \(\mu \) and variance \(\sigma^2 \) is

\[
\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{(x-\mu)^2}{2\sigma^2} \right\}
\]

(3)

The Kullback-Leibler divergence \(KL(p||q) \) is defined as

\[
KL(p(x)||q(x)) = -\int p(x) \ln q(x)dx + \int p(x) \ln p(x)dx
\]

(4)

Compute the Kullback-Leibler divergence \(KL(p||q) \) between two Gaussians with the same variance \(\sigma^2 \), but different means \(\mu \) and \(m \). So \(p(x) = \mathcal{N}(x|\mu, \sigma^2) \) and \(q(x) = \mathcal{N}(x|m, \sigma^2) \). Verify that \(KL(p||q) \geq 0 \) and equal if and only if \(\mu = m \).

Exercise 4

Minimize \(f(x, y) = 3x^2 + xy + y^2 \) under constraint \(x + 2y = 3 \).

Exercise 5

Bishop 1.34

Exercise 6

Bishop 1.39. Except "Draw a diagram..."