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Introduction

Optimal control theory: Optimize sum of a path cost and end cost. Result is
optimal control sequence and optimal trajectory.

Input: Cost function. Output: Optimal trajectory and controls.
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Introduction

Control problems are delayed reward problems:

• Motor control: devise a sequece of motor commands to reach a goal

• finance: devise a sequence of buy/sell commands to maximize profit

• Learning, exploration exploitation
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Types of optimal control problems

Finite horizon (fixed horizon time)

• Dynamics and environment may depend explicitly on time.

• Optimal control depends explicitly on time.
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Types of optimal control problems

Finite horizon (moving horizon)

• Dynamics and environment are static.

• Optimal control is time independent.

Infinite horizon

• discounted reward, Reinforcement learning

• total reward, absorbing states

• average reward

Other issues:

• discrete vs. continuous state

• discrete vs. continuous time

• observable vs. partial observable
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Overview

Lecture 1: Optimal control theory, discrete time
- Introduction of delayed reward problem in discrete time;
- Dynamic programming solution and deterministic Bellman equations;
- Extension to noisy case
- Examples
- Bandits: Optimal exploration by dynamic programming
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Overview

Lecture 2: Optimal control theory, continuous time
- Solution in continuous time and states;
- Example: Mass on a spring
- Pontryagin maximum principle; Notion of an optimal (particle) trajectory
- Again Mass on a spring
- Stochastic differential equations
- Kolmogorov and Fokker-Plack equations
- Hamilton-Jacobi-Bellman equation (continuous state and time)
- LQ control, Ricatti equation;
- Example of LQ control
- Portfolio selection
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Overview

Lecture 3: Stochastic optimal control theory
- Path integral control
- KL control theory and relation to path integral control
- Importance sampling
- Examples: Delayed choice, acrobot robot, racing car
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Overview

Further topics
- Comparison PI control and RL
- Multi agent systems
- Mean field approximation for control: n joint arm, multi agents
(- Risk sensitive control)
(- Inference and control)
(- control of quantum systems)
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Material

• H.J. Kappen. Optimal control theory and the linear Bellman Equation. In Infer-
ence and Learning in Dynamical Models (Cambridge University Press 2010),
edited by David Barber, Taylan Cemgil and Sylvia Chiappa
http://www.snn.ru.nl/˜bertk/control/timeseriesbook.pdf

• S. Thijssen, H.J. Kappen, Path integral control and state-dependent feedback,
PRE 91, 2015 http://link.aps.org/doi/10.1103/PhysRevE.91.032104

• Dimitri Bertsekas, Dynamic programming and optimal control

• http://www.snn.ru.nl/˜bertk/control/cwi2025.html

• http://www.snn.ru.nl/˜bertk/control_theory
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Lecture 1: Optimal control theory: discrete time
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Discrete time control

Consider the control of a discrete time deterministic dynamical system:

xt+1 = xt + f (t, xt, ut), t = 0, 1, . . . ,T − 1

xt describes the state and ut specifies the control or action at time t.

Given xt=0 = x0 and u0:T−1 = u0, u1, . . . , uT − 1, we can compute x1:T .

Define a cost for each sequence of controls:

C(x0, u0:T−1) = φ(xT ) +

T−1∑
t=0

R(t, xt, ut)

The problem of optimal control is to find the sequence u0:T−1 that minimizes
C(x0, u0:T−1).
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Dynamic programming

Find the minimal cost path from A to J.

C(J) = 0,C(H) = 3,C(I) = 4

C(F) = min(6 + C(H), 3 + C(I))
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Discrete time control

The optimal control problem can be solved by dynamic programming. Introduce
the optimal cost-to-go:

J(t, xt) = min
ut:T−1

φ(xT ) +

T−1∑
s=t

R(s, xs, us)


which solves the optimal control problem from an intermediate time t until the fixed
end time T , for all intermediate states xt.

Then,

J(T, x) = φ(x)

J(0, x) = min
u0:T−1

C(x, u0:T−1)
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Discrete time control

One can recursively compute J(t, x) from J(t + 1, x) for all x in the following way:

J(t, xt) = min
ut:T−1

φ(xT ) +

T−1∑
s=t

R(s, xs, us)


= min

ut

R(t, xt, ut) + min
ut+1:T−1

φ(xT ) +

T−1∑
s=t+1

R(s, xs, us)




= min
ut

(R(t, xt, ut) + J(t + 1, xt+1))

= min
ut

(R(t, xt, ut) + J(t + 1, xt + f (t, xt, ut)))

This is called the Bellman Equation.

Computes u as a function of x, t for all intermediate t and all x.
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Discrete time control

The algorithm to compute the optimal control u∗0:T−1, the optimal trajectory x∗1:T and
the optimal cost is given by

1. Initialization: J(T, x) = φ(x)

2. Backwards: For t = T − 1, . . . , 0 and for all x compute

u∗t (x) = arg min
u
{R(t, x, u) + J(t + 1, x + f (t, x, u))}

J(t, x) = R(t, x, u∗t ) + J(t + 1, x + f (t, x, u∗t ))

3. Forwards: For t = 0, . . . ,T − 1 compute

x∗t+1 = x∗t + f (t, x∗t , u
∗
t (x∗t ))

NB: the backward computation requires u∗t (x) for all x.
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Stochastic case

xt+1 = xt + f (t, xt, ut,wt) t = 0, . . . ,T − 1

At time t, wt is a random value drawn from a probability distribution p(w).

For instance,

xt+1 = xt + wt, x0 = 0

wt = ±1, p(wt = 1) = p(wt = −1) = 1/2

xt =

t−1∑
s=0

ws

Thus, xt random variable and so is the cost

C(x0) = φ(xT ) +

T−1∑
t=0

R(t, xt, ut, ξt)

Bert Kappen CWI, March 2025 18



Stochastic case

C(x0) =

〈
φ(xT ) +

T−1∑
t=0

R(t, xt, ut, ξt)
〉

=
∑

w0:T−1

∑
ξ0:T−1

p(w0:T−1)p(ξ0:T−1)

φ(xT ) +

T−1∑
t=0

R(t, xt, ut, ξt)


with ξt, xt,wt random. Closed loop control: find functions ut(xt) that minimizes the
remaining expected cost when in state x at time t. π = {u0(·), . . . , uT−1(·)} is called
a policy.

xt+1 = xt + f (t, xt, ut(xt),wt)

Cπ(x0) =

〈
φ(xT ) +

T−1∑
t=0

R(t, xt, ut(xt), ξt)
〉

π∗ = argminπCπ(x0) is optimal policy.
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Stochastic Bellman Equation

J(t, xt) = min
ut
〈R(t, xt, ut, ξt) + J(t + 1, xt + f (t, xt, ut,wt))〉

J(T, x) = φ(x)

ut is optimized for each xt separately. π = {u0, . . . , uT−1} is optimal a policy.
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Inventory problem

• xt = 0, 1, 2 stock available at the beginning of period t.

• ut stock ordered at the beginning of period t. Maximum storage is 2: ut ≤ 2 − xt.

• wt = 0, 1, 2 demand during period t with p(w = 0, 1, 2) = (0.1, 0.7, 0.2); excess
demand is lost.

• ut is the cost of purchasing ut units. (xt +ut−wt)2 is cost of stock at end of period
t.

xt+1 = max(0, xt + ut − wt)

C(x0, u0:T−1) =

〈 t=2∑
t=0

ut + (xt + ut − wt)2
〉

Planning horizon T = 3.
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Inventory problem
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Apply Bellman Equation

Jt(xt) = min
ut
〈R(xt, ut,wt) + Jt+1( f (xt, ut,wt))〉

R(x, u,w) = u + (x + u − w)2

f (x, u,w) = max(0, x + u − w)

Start with J3(x3) = 0,∀x3.
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Dynamic programming in action

Assume we are at stage t = 2 and the stock is x2. The cost-to-go is what we order
u2 and how much we have left at the end of period t = 2.

J2(x2) = min
0≤u2≤2−x2

u2 +
〈
(x2 + u2 − w2)2

〉
= min

0≤u2≤2−x2

(
u2 + 0.1 ∗ (x2 + u2)2 + 0.7 ∗ (x2 + u2 − 1)2

+ 0.2 ∗ (x2 + u2 − 2)2
)

J2(0) = min
0≤u2≤2

(
u2 + 0.1 ∗ u2

2 + 0.7 ∗ (u2 − 1)2 + 0.2 ∗ (u2 − 2)2
)

u2 = 0 : rhs = 0 + 0.7 ∗ 1 + 0.2 ∗ 4 = 1.5

u2 = 1 : rhs = 1 + 0.1 ∗ 1 + 0.2 ∗ 1 = 1.3

u2 = 2 : rhs = 2 + 0.1 ∗ 4 + 0.7 ∗ 1 = 3.1

Thus, u2(x2 = 0) = 1 and J2(x2 = 0) = 1.3
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Inventory problem

The computation can be repeated for x2 = 1 and x2 = 2, completing stage 2 and
subsequently for stage 1 and stage 0.
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Exercise: Two ovens

A certain material is passed through a sequence of two ovens. Aim is to reach pre-specified final
product temperature x∗ with minimal oven energy.

x0,1,2 are the product temperatures initially, after pasing through oven 1 and after passing through
oven 2. u0,1 are the oven temperatures. The dynamics is

xt+1 = (1 − a)xt + aut t = 0, 1

C = r(x2 − x∗)2 + u2
0 + u2

1

• Find the optimal control solution u0, u1.

• Show that adding mean zero noise to the dynamics (xt+1 = (1 − a)xt + aut + wt with 〈wt〉 = 0),
does not change the optimal control solution.
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Example: Two ovens

End cost-to-go is J(2, x2) = r(x2 − x∗)2.

J(1, x1) = min
u1

(
u2

1 + J(2, x2)
)

= min
u1

(
u2

1 + r((1 − a)x1 + au1 − x∗)2
)

u1 = µ1(x1) =
ra(x∗ − (1 − a)x1)

1 + ra2

J(1, x1) =
r((1 − a)x1 − x∗)2

1 + ra2

J(0, x0) = min
u0

(
u2

0 + J(1, x1)
)

= min
u0

(
u2

0 +
r((1 − a)x1 − x∗)2

1 + ra2

)
= min

u0

(
u2

0 +
r((1 − a)((1 − a)x0 + au0) − x∗)2

1 + ra2

)
u0 = µ0(x0) =

r(1 − a)a(x∗ − (1 − a)2x0)
1 + ra2(1 + (1 − a)2)

J(0, x0) =
r((1 − a)2x0 − x∗)2

1 + ra2(1 + (1 − a)2)
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Comments

• Linear Quadratic Control: Solution can be obtained in closed form because
problem is linear quadratic.

• Certainty equivalence: Optimal control solution is unaffected by noise:

xt+1 = (1 − a)xt + aut + wt t = 0, 1

C = r(x2 − x∗)2 + u2
0 + u2

1

with 〈wt〉 = 0.Then

J(1, x1) = min
u1

(
u2

1 +
〈
r((1 − a)x1 + au1 + w1 − x∗)2

〉)
= min

u1

(
u2

1 + r((1 − a)x1 + au1 − x∗)2 + r 〈w1〉
2
)
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Exploitation versus Exploration: The Single-State Case

The k-armed bandit problem:
The agent is in a room with a collection of k gambling machines (each called a ”one-armed bandit”).
The agent is permitted a fixed number of pulls, h. Any arm may be pulled on each turn. The
machines do not require a deposit to play; the only cost is in wasting a pull playing a suboptimal
machine. When arm i is pulled, machine i pays off 1 or 0, with unknown probability pi. What should
the agent’s strategy be?

Trade-off between
exploration: try many new arms
exploitation: stick with a good arm

The bandit problem is a control problem where the state space is the current belief
about the bandits pay-off.
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Bayesian model

Suppose that arm i is pulled ni times giving wi payoffs 1 and ni−wi payoffs 0. When
pi is known, we can compute the probability

P(wi|pi, ni) =

(
ni

wi

)
pwi

i (1 − pi)ni−wi

But we dont know pi.....

Consider the Beta distribution over the continuous variable 0 ≤ x ≤ 1 parametrized
by α, β > 0 integers:

P(x|α, β) =
(α + β − 1)!

(α − 1)!(β − 1)!
xα−1(1 − x)β−1 〈x〉 =

α

α + β

The complex prefactor ensures normalization
∫ 1

0 dxP(x|α, β) = 1.

We assume a prior distribution P0(pi) = P(pi|α = β = 1) = 1 to model our prior
ignorance of the value of pi (flat prior). All pi are equally likely.
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When pulling arm i ni times giving wi payoffs 1 and ni − wi payoffs 0, the posterior
distribution over pi is given by Bayes rule:

P(pi|ni,wi) =
P(wi|pi, ni)P0(pi)∫

dpiP(wi|pi, ni)P0(pi)
∝ pwi

i (1 − pi)ni−wi

P(pi|ni,wi) = P(pi|α = wi + 1, β = ni − wi + 1)

The evidence (ni,wi) defines our belief in pi (the distribution P(pi|α = wi + 1, β =

ni − wi + 1)). 1

The belief state of the agent at time t is the tuple {n1,w1, . . . , nk,wk} with k the
number of bandits and

∑k
i=1 ni = t.

1Note, that the expected pi is given as

〈pi〉 =
wi + 1
ni + 2

NB if you pull once: ni = wi = 1, the expected return is 2/3.
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Dynamic programming solution

Suppose we can pull in total h times one of the arms. Define t the current iteration,
0 ≤ t ≤ h. At each t we wish to pull the ’best’ arm based on our experience sofar.

We write V∗t (n1,w1, . . . , nk,wk) as the expected remaining payoff at time t =
∑k

i=1 ni,
given that a total of h pulls are available, and we use the remaining pulls optimally.

The number of states is large. We get a rough estimate by noting that for given
n1, . . . , nk the number of possible w1, . . . ,wk is

∏k
i=1(ni + 1) ∝ hk, since ni is of order

h
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Dynamic programming solution

If t =
∑

i ni = h there are no remaining pulls and V∗t=h(n1,w1, . . . , nk,wk) = 0.

If we know V∗t for all states at iteration t, we can compute V∗t−1 for any belief state: 2

V∗t−1(n1,w1, . . . , nk,wk) = max
i∈{1,...,k}

〈
agent takes action i at time t − 1 and optimally from t onwards

〉
= max

i∈{1,...,k}

[
ρi{arm i returns 1 + V∗t (n1,w1, . . . , ni + 1,wi + 1, . . . , nk,wk)}

+ (1 − ρi){arm i returns 0 + V∗t (n1,w1, . . . , ni + 1,wi, . . . , nk,wk)}
]

= max
i∈{1,...,k}

ρi + ρiV∗t (n1,w1, . . . , ni + 1,wi + 1, . . . , nk,wk)

+ (1 − ρi)V∗t (n1,w1, . . . , ni + 1,wi, . . . , nk,wk)

We use ρi = 〈pi〉 =
wi+1
ni+2 as our expected success probability for arm i based on

past experience (and our prior).

2NB: Error in formula on pg. 243 of [1]. Immediate reward term is missing.
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Example

h=4, two bandits. Notation: V∗t (n1,w1, n2,w2) = (n1w1n2w2)

Use Bellman equation to compute backwards all values:

• If t = n1 + n2 = 4 V∗t (n1,w1, n2,w2) = 0

• Consider states with t = n1 + n2 = 3. For instance, 3

(0030) = max(ρ1(00), ρ2(30)) = max
(
1
2
,
1
5

)
=

1
2

= (3000)

(2211) = max(ρ1(22), ρ2(11)) = max
(
3
4
,
2
3

)
=

3
4

= (1122)

(2111) = max(ρ1(21), ρ2(11)) = max
(
2
4
,
2
3

)
=

2
3

= (1121)

. . .

3ρi(nw) = w+1
n+2 . Thus ρ1(00) = ρ(n1 = 0,w1 = 0) = 1

2 . ρ2(30) = ρ(n2 = 3,w2 = 0) = 1
5 .
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• Consider states with t = n1 + n2 = 2. For instance,

(1111) = max
[
ρ1 + ρ1(2211) + (1 − ρ1)(2111), ρ2 + ρ2(1122) + (1 − ρ2)(1121)

]
=

2
3

(
1 +

3
4

)
+

1
3

2
3

= 1.39

with ρ1 = ρ1(11) = 2/3 and ρ2 = ρ2(11) = 2/3.

Matlab results:

t= 3:
(0030)=0.50 (0031)=0.50 (0032)=0.60 (0033)=0.80 (1020)=0.33 (1021)=0.50 (1022)=0.75
(1120)=0.67 (1121)=0.67 (1122)=0.75 (2010)=0.33 (2011)=0.67 (2110)=0.50 (2111)=0.67
(2210)=0.75 (2211)=0.75 (3000)=0.50 (3100)=0.50 (3200)=0.60 (3300)=0.80
t= 2:
(0020)=1.00 (0021)=1.08 (0022)=1.50 (1010)=0.72 (1011)=1.33 (1110)=1.33 (1111)=1.39
(2000)=1.00 (2100)=1.08 (2200)=1.50
t= 1:
(0010)=1.53 (0011)=2.03 (1000)=1.53 (1100)=2.03
t= 0:
(0000)=2.28
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The values V∗t are used to compute the optimal sequence of actions.

• First step: Pull arm 1. Since our prior beliefs are equal it does not matter which
arm we pull.
Suppose we win. Then our state is (1100) and ρ1 = 2/3, ρ2 = 1/2.

• Second step: Determine the optimal pull from state (1100) based on future
expected reward:

argmax (ρ1 + ρ1(2200) + (1 − ρ1)(2100), ρ2 + ρ2(1111) + (1 − ρ2)(1110))

= argmax (2/3 + 2/3 ∗ 1.5 + 1/3 ∗ 1.08, 1/2 + 1/2 ∗ 1.39 + 1/2 ∗ 1.33)

= argmax(2.03, 1.86)

Thus pull arm 1.

• . . .
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Lecture 2: Optimal control theory, continuous time
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Continuous limit

Replace t + 1 by t + dt with dt → 0.

xt+dt = xt + f (xt, ut, t)dt

C(x0, u0→T ) = φ(xT ) +

∫ T

0
dτR(τ, x(τ), u(τ))

Assume J(x, t) is smooth.

J(t, x) = min
u

(R(t, x, u)dt + J(t + dt, x + f (x, u, t)dt))

≈ min
u

(R(t, x, u)dt + J(t, x) + ∂tJ(t, x)dt + ∂xJ(t, x) f (x, u, t)dt)

−∂tJ(t, x) = min
u

(R(t, x, u) + f (x, u, t)∂xJ(x, t))

with boundary condition J(x,T ) = φ(x).
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Continuous limit

−∂tJ(t, x) = min
u

(R(t, x, u) + f (x, u, t)∂xJ(x, t))

with boundary condition J(x,T ) = φ(x).

This is called the Hamilton-Jacobi-Bellman Equation.

Computes the anticipated potential J(t, x) from the future potential φ(x).
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Example: Mass on a spring

The spring force Fz = −z towards the rest position and control force Fu = u.

Newton’s Law
F = −z + u = mz̈

with m = 1.

Control problem: Given initial position and velocity z(0) = ż(0) = 0 at time t = 0,
find the control path −1 < u(0→ T ) < 1 such that z(T ) is maximal.
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Example: Mass on a spring

Introduce x1 = z, x2 = ż, then

ẋ1 = x2

ẋ2 = −x1 + u

The end cost is φ(x) = −x1; path cost R(x, u, t) = 0.

The HJB takes the form:

−∂tJ = min
u

(
x2
∂J
∂x1
− x1

∂J
∂x2

+
∂J
∂x2

u
)

= x2
∂J
∂x1
− x1

∂J
∂x2
−

∣∣∣∣∣ ∂J
∂x2

∣∣∣∣∣ , u = −sign
(
∂J
∂x2

)
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Example: Mass on a spring

We try J(t, x) = ψ1(t)x1+ψ2(t)x2+α(t). The HJBE reduces to the ordinary differential
equations

ψ̇1 = ψ2

ψ̇2 = −ψ1

α̇ = −|ψ2|

These equations must be solved for all t, with final boundary conditions ψ1(T ) =

−1, ψ2(T ) = 0 and α(T ) = 0.

Note, that the optimal control only requires ∂xJ(x, t), which in this case is ψ(t) and
thus we do not need to solve α. The solution for ψ is

ψ1(t) = − cos(t − T )

ψ2(t) = sin(t − T )

Bert Kappen CWI, March 2025 42



Example: Mass on a spring

The optimal control is

u(x, t) = −sign(ψ2(t)) = −sign(sin(t − T ))

As an example consider T = 2π. Then, the optimal control is

u = −1, 0 < t < π

u = 1, π < t < 2π

0 2 4 6 8
−2

−1

0

1

2

3

4

t

x
1

x
2
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Pontryagin minimum principle

The HJB equation is a PDE with boundary condition at future time. The PDE is
solved using discretization of space and time.

The solution is an optimal cost-to-go for all x and t. From this we compute the
optimal trajectory and optimal control.

An alternative approach is a variational approach that directly finds the optimal
trajectory and optimal control.
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Pontryagin minimum principle

We can write the optimal control problem as a constrained optimization problem
with independent variables u(0→ T ) and x(0→ T )

min
u(0→T ),x(0→T )

φ(x(T )) +

∫ T

0
dtR(x(t), u(t), t)

subject to the constraint
ẋ = f (x, u, t)

and boundary condition x(0) = x0.

Introduce the Lagrange multiplier function λ(t):

C = φ(x(T )) +

∫ T

0
dt

[
R(t, x(t), u(t)) − λ(t)( f (t, x(t), u(t)) − ẋ(t))

]
= φ(x(T )) +

∫ T

0
dt[−H(t, x(t), u(t), λ(t)) + λ(t)ẋ(t))]

−H(t, x, u, λ) = R(t, x, u) − λ f (t, x, u)
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Derivation PMP

The solution is found by extremizing C. This gives a necessary but not sufficient
condition for a solution.

If we vary the action wrt to the trajectory x, the control u and the Lagrange multiplier
λ, we get:

δC = φx(x(T ))δx(T )

+

∫ T

0
dt[−Hxδx(t) − Huδu(t) + (−Hλ + ẋ(t))δλ(t) + λ(t)δẋ(t)]

= (φx(x(T )) + λ(T )) δx(T )

+

∫ T

0
dt

[
(−Hx − λ̇(t))δx(t) − Huδu(t) + (−Hλ + ẋ(t))δλ(t)

]
For instance, Hx =

∂H(t,x(t),u(t),λ(t))
∂x(t) .

We can solve Hu(t, x, u, λ) = 0 for u and denote the solution as

u∗(t, x, λ)
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Assumes H convex in u.

The remaining equations are

ẋ = Hλ(t, x, u∗(t, x, λ), λ)

λ̇ = −Hx(t, x, u∗(t, x, λ), λ)

with boundary conditions

x(0) = x0 λ(T ) = −φx(x(T ))

Mixed boundary value problem.
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Again mass on a spring

Problem

ẋ1 = x2, ẋ2 = −x1 + u

R(x, u, t) = 0 φ(x) = −x1

Hamiltonian

H(t, x, u, λ) = −R(t, x, u) + λT f (t, x, u) = λ1x2 + λ2(−x1 + u)

H∗(t, x, λ) = λ1x2 − λ2x1 − |λ2| u∗ = −sign(λ2)

The Hamilton equations

ẋ =
∂H∗

∂λ
⇒ ẋ1 = x2, ẋ2 = −x1 − sign(λ2)

λ̇ = −
∂H∗

∂x
⇒ λ̇1 = λ2, λ̇2 = −λ1

with x(t = 0) = x0 and λ(t = T ) = (1, 0).
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Example

Consider the control problem:

dx = udt

C =
α

2
x(T )2 +

∫ T

t0
dt

1
2

u(t)2

with initial condition x(t0).

Solve the control problem using the PMP formalism.
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Solution

The PMP recipe is

1. Construct the Hamiltonian

H(t, x, u, λ) = −R(t, x, u) + λ f (t, u, x) = −
1
2

u2 + λu

2. Construct the optimized Hamiltonian

H∗(t, x, λ) = H(t, x, u∗, λ) =
1
2
λ2 u∗ = λ

3. Solve the Hamilton equations of motion

dx
dt

=
∂H∗

∂λ
= λ

dλ
dt

= −
∂H∗

∂x
= 0
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with boundary conditions x(t0) and λ(t = T ) = −αx(T )4. The solution for λ is
constant λ(t) = λ = −αx(T ). The solution for x(t) is

x(t) = x(t0) + λ(t − t0)

Combining these two results, we get λ = −αx(T ) = −α(x(t0) + λ(T − t0)), or

λ =
−αx(t0)

1 + α(T − t0)

Since u∗ = λ, this is the optimal control law.

4Note, that φ(x) = α
2 x2 so that φx = αx.
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Brownian bridge

Due to certainty equivalence, this is also the optimal control law for

dx = udt + dξ

C =

〈
α

2
x(T )2 +

∫ T

t0
dt

1
2

u(t)2
〉

For α→ ∞ the process is known as a Brownian bridge.

The control law and dynamics becomes

dx = udt + dξ

u =
−x(t0)
T − t0

x(T )→ 0 w.p. 1.
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Relation to classical mechanics

The equations look like classical mechanics

ẋ = Hλ(t, x, u∗(t, x, λ), λ) x(0) = x0

λ̇ = −Hx(t, x, u∗(t, x, λ), λ) λ(T ) = −φx(x(T ))

In classical mechanics H is called the Hamiltonian. Consider the time evolution of
H:

Ḣ = Ht + Huu̇ + Hx ẋ + Hλλ̇ = Ht

H(t, x, u, λ) = −R(t, x, u) + λ f (t, u, x)

So, for problems where R, f do not explicitly depend on time, H is a constant of the
motion.
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Example

Consider the control problem:

dx = udt

C =

∫ T

t0
dt

1
2

u(t)2 + V(x(t))

with initial condition x(t0).

1. H(x, u, λ) = −1
2u2 − V(x) + λu

2. u∗ = λ, H∗(x, λ) = 1
2λ

2 − V(x)

3.

ẋ =
∂H∗

∂λ
= λ λ̇ = −

∂H∗

∂λ
=
∂V(x)
∂x

Control cost V play role of minus potential energy.
Control solution has constant difference of kinetic energy and state cost
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Comments

The HJB method gives a sufficient (and often necessary) condition for optimality.
The solution of the PDE is expensive.

The PMP method provides a necessary condition for optimal control. This means
that it provides candidate solutions for optimality.

The PMP method is computationally less complicated than the HJB method be-
cause it does not require discretization of the state space.

Optimal control in continuous space and time contains many complications related
to the existence, uniqueness and smoothness of the solution, particular in the ab-
sence of noise. In the presence of noise many of these intricacies disappear.

HJB generalizes to the stochastic case, PMP does not (at least not easy).

Bert Kappen CWI, March 2025 55



Stochastic differential equations

Consider the random walk on the line:

xt+1 = xt + ξt ξt = ±1

with x0 = 0. We can compute

xt =

t∑
i=1

ξi

Since xt is a sum of random variables, xt becomes Gaussian distributed with

〈xt〉 =

t∑
i=1

〈ξi〉 = 0

〈
x2

t

〉
=

t∑
i, j=1

〈
ξiξ j

〉
=

t∑
i=1

〈
ξ2

i

〉
+

t∑
i, j=1, j,i

〈
ξiξ j

〉
= t

Note, that the fluctuations ∝
√

t.
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Stochastic differential equations

In the continuous time limit we define

dxt = xt+dt − xt = dξ

with dξ an infinitesimal mean zero Gaussian variable with
〈
dξ2

〉
= νdt.

Then

d
dt
〈x〉 = lim

dt→0

〈xt+dt − xt

dt

〉
= lim

dt→0

〈
dξ
dt

〉
= 0

d
dt

〈
x2

〉
= lim

dt→0

〈
x2

t+dt − x2
t

dt

〉
= lim

dt→0

〈
(xt + dξ)2 − x2

t

dt

〉
= lim

dt→0

〈
dξ2

dt

〉
= ν

So for initial state x0, 〈x〉 (t) = x0 and
〈
x2

〉
(t) = νt which fully specifies the Gaussian

distribution:

ρ(x, t|x0, 0) =
1
√

2πνt
exp

(
−

(x − x0)2

2νt

)
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Consider the stochastic differential equation

x(t + dt) = x(t) + f (x(t), t)dt + ξ(t)

ξ is a Wiener process with 〈ξ〉 = 0,
〈
ξ2

〉
= νdt.

The probability to find the particle at y at time t + dt given that it was at x at time t
is given by

p(y, t + dt|x, t) = 〈δ(y − x − f (x, t)dt − ξ)〉ξ

where 〈〉ξ is expectation wrt the Wiener process.
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Kolmogorov backward equation

Define ψ(x, t) = p(z,T |x, t) the probability to reach a future state z at time T , given
that it is currently at x, t. Clearly,

ψ(x, t) = p(z,T |x, t) =

∫
dyp(z,T |y, t + dt)p(y, t + dt|x, t)

=

∫
dyψ(y, t + dt) 〈δ(y − x − f (x, t)dt − ξ)〉ξ

= 〈ψ(x + f (x, t)dt + ξ, t + dt)〉ξ
= ψ(x, t) + dt∂tψ(x, t) + 〈 f (x, t)dt + ξ〉ξ ∇ψ(x, t)

+
1
2

〈
( f (x, t)dt + ξ)2

〉
ξ
∇2ψ(x, t)

Thus,

−∂tψ(x, t) = f (x, t)∇ψ(x, t) +
1
2
ν∇2ψ(x, t) ψ(x,T ) = δ(z − x)

This equation is known as the Kolmogorov backwards equation.
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Fokker Plank (forward) equation

We can similarly derive a forward equation for the quantity ρ(x, t) = p(x, t|x0, 0).

ρ(y, t + dt) =

∫
dxp(y, t + dt|x, t)ρ(x, t)

=

∫
dx 〈δ(y − x − f (x, t)dt − ξ)〉ξ ρ(x, t)

=
1

1 + f ′(y, t)dt
〈ρ(y − f (y, t)dt − ξ, t)〉ξ

=
1

1 + f ′(y, t)dt
〈ρ(y, t) − ( f (y, t)dt + ξ)∇ρ(y, t)〉

+

〈
1
2

( f (y, t)dt + ξ)2∇2ρ(y, t)
〉
ξ

= ρ(y, t) − ∇( f (y, t)ρ(y, t))dt +
1
2
ν∇2ρ(y, t)dt
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Thus,

∂tρ(x, t) = −∇( f (x, t)ρ(x, t)) +
1
2
ν∇2ρ(x, t), ρ(x, 0) = δ(x − x0)
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Example: Brownian motion

dx = dξ
〈
dξ2

〉
= νdt

ρ(x, t) = p(x, t|x0, 0) =
1
√

2πνt
exp

(
−

(x − x0)2

2νt

)
ψ(x, t) = p(z,T |x, t) =

1
√

2πν(T − t)
exp

(
−

(x − z)2

2ν(T − t)

)
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Forward and backward drift

For

dx = f (x, t)dt + ξ

The expected forward drift is

〈dx〉 = f (x, t)dt

The expected backward drift given x(t+dt) = y can be computed using Bayes’ rule:

p(y, t − dt|x, t) =
p(x, t|y, t − dt)ρ(y, t − dt)

ρ(x, t)
p(x, t|y, t − dt) = 〈δ(x − y − f (y, t − dt)dt − ξ)〉ξ
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〈x(t) − y(t − dt)〉x(t)=x =

∫
dy(x − y)p(y, t − dt|x, t)

=

∫
dy(x − y) 〈δ(x − y − f (y, t − dt)dt − ξ)〉

ρ(y, t − dt)
ρ(x, t)

=
1

ρ(x, t)

〈
1

1 + f ′(x, t)dt
( f (x, t)dt + ξ)ρ(x − f (x, t)dt − ξ, t − dt)

〉
+ O(dt2)

=
1

ρ(x, t)
1

1 + f ′(x, t)dt
〈
( f (x, t)dt + ξ)(ρ(x, t) − ξρ′(x, t)

〉
+ O(dt2)

= f (x, t)dt − ν∇ log ρ(x, t)dt + O(dt2) ≡ f̃ (x, t)dt

We see that the forward and backward drifts are different: given that we are at time
t at location x the expected future drift is given by f (x, t). The expected past drift
into x is given by f̃ (x, t) = f (x, t) − ν∇ log ρ(x, t).
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Example: Brownian motion

dx = dξ x(0) = 0
〈
dξ2

〉
= νdt

ρ(x, t) =
1
√

2πνt
exp

(
−

x2

2νt

)
f (x, t) = 0

f̃ (x, t) = −
x
t
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Stochastic optimal control

Consider a stochastic dynamical system

dx = f (t, x, u)dt + dξ

dξ Gaussian noise
〈
dξidξ j

〉
= νi j(t, x, u)dt.

The cost becomes an expectation:

C(t, x, u(t → T )) =

〈
φ(x(T )) +

∫ T

t
dτR(t, x(t), u(t))

〉
over all stochastic trajectories starting at x with control path u(t → T ).

Note, that u(t) as part of u(t → T ) is used at time t. Next move to x + dx and repeat
the optimization.
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Stochastic optimal control

We obtain the Bellman recursion

J(t, xt) = min
ut

R(t, xt, ut) + 〈J(t + dt, xt+dt)〉

〈J(t + dt, xt+dt)〉 =

∫
dxt+dtN(xt+dt|xt, νdt)J(t + dt, xt+dt)

= J(t, xt) + dt∂tJ(t, xt) + 〈dx〉 ∂xJ(t, xt) +
1
2

〈
dx2

〉
∂2

xJ(t, xt)

〈dx〉 = f (x, u, t)dt〈
dx2

〉
= ν(t, x, u)dt

Thus,

−∂tJ(t, x) = min
u

(
R(t, x, u) + f (x, u, t)∂xJ(x, t) +

1
2
ν(t, x, u)∂2

xJ(x, t)
)

with boundary condition J(x,T ) = φ(x).
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Linear Quadratic control

The dynamics is linear

dx = [A(t)x + B(t)u + b(t)]dt +

m∑
j=1

(C j(t)x + D j(t)u + σ j(t))dξ j,
〈
dξ jdξ j′

〉
= δ j j′dt

The cost function is quadratic

φ(x) =
1
2

xTGx

R(x, u, t) =
1
2

xT Q(t)x + uT S (t)x +
1
2

uT R(t)u

In this case the optimal cost-to-go is quadratic in x:

J(t, x) =
1
2

xT P(t)x + αT (t)x + β(t)

u(t) = −Ψ(t)x(t) − ψ(t)
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Substitution in the HJB equation yields ODEs for P, α, β:

−Ṗ = PA + AT P +

m∑
j=1

CT
j PC j + Q − Ŝ T R̂−1Ŝ

−α̇ = [A − BR̂−1Ŝ ]Tα +

m∑
j=1

[C j − D jR̂−1Ŝ ]T Pσ j + Pb

β̇ =
1
2

∣∣∣∣∣ √R̂ψ
∣∣∣∣∣2 − αT b −

1
2

m∑
j=1

σT
j Pσ j

R̂ = R +

m∑
j=1

DT
j PD j

Ŝ = BT P + S +

m∑
j=1

DT
j PC j

Ψ = R̂−1Ŝ

ψ = R̂−1(BTα +

m∑
j=1

DT
j Pσ j)

with P(t f ) = G and α(t f ) = β(t f ) = 0.
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Example

Find the optimal control for the dynamics

dx = (x + u)dt + dξ,
〈
dξ2

〉
= νdt

with end cost φ(x) = 0 and path cost R(x, u) = 1
2(Qx2 + Ru2).

The Ricatti equations reduce to

−Ṗ = 2P + Q − R−1P2

−α̇ = (1 − R−1P)α = 0

β̇ =
1
2

R−1α2 −
1
2
νP = −

1
2
νP

with P(T ) = α(T ) = β(T ) = 0 and

u(x, t) = −P(t)x
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The solution is

P(t) = R
exp(2

√
1 + R−1Q(T − t)) − 1

1

1+
√

1+R−1Q
exp(2

√
1 + R−1Q(T − t)) − 1

1−
√

1+R−1Q

The optimal control is u(x, t) = −R−1P(t)x.
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Comments

Note, that in the last example the optimal control is independent of ν, i.e. optimal
stochastic control equals optimal deterministic control.

In general:

• If C j = D j = 0 (only ’additive noise’) Ṗ, α̇ independent of noise σ, β̇ depends
on σ, but control independent of β. Thus control independent of σ (certainty
equivalence)

• If C j , 0 or D j , 0, control depends on C j,D j, σ j (no certainty equivalence)

Bert Kappen CWI, March 2025 72



Example: Portfolio selection

5 Consider a market with p stocks and one bond. The bond price process is subject
ot the following deterministic ordinary differential equation:

dP0(t) = r(t)P0(t)dt, P0(0) = p0 > 0 (1)

The other assets have price processes Pi(t), i = 1, . . . , p satisfying stochastic dif-
ferential equations

dPi(t) = Pi(t)

bi(t)dt +

m∑
j=1

σi j(t)dξ j(t)

 , Pi(0) = pi > 0 (2)

Consider an investor whose total wealth at time t is denoted by x(t)

x(t) =

p∑
i=0

Ni(t)Pi(t) (3)

5This section is from [2] section 6.8 (pg. 335).
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with Ni the number of stocks/bond of type i. Then

dx(t) =

r(t)x(t) +

p∑
i=1

(bi(t) − r(t))ui(t)

 dt +

p∑
i=1

m∑
j=1

σi j(t)ui(t)dξ j(t) (4)

with ui(t) = Ni(t)Pi(t), i = 1, . . . , p the portfolio of the investor.

The objective of the investor is to maximize the mean terminal wealth
〈
x(t f )

〉
and

minimize at the same time the variance

Σ2 =
〈
x(t f )2

〉
−

〈
x(t f )

〉2

This is a multi-objective optimization problem with an efficient frontier of optimal
solutions: for each given mean there is a minimial variance.

These pairs can be found by minimizing the single objective criterion

µΣ2 −
〈
x(t f )

〉
(5)

for different values of the weighting factor µ.
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This objective, however, is not an expectation value of some stochastic quantity
due to the 〈·〉2 term. Consider a slightly different problem, minimizing the objective〈

µx(t f )2 − λx(t f )
〉

(6)

which is of the standard stochastic optimization form. One can show that one can
construct a solution of Problem 5 by solving problem 6 for suitable λ(µ). 6

Our goal is thus to minimize eq. 6 subject to the stochastic dynamics eq. 4.

This is an LQ problem. The solution is computed from the Ricatti equations

ui(x, t) = ψi(t)x + φi(t)

As an example we consider the simplest possible case: p = m = 1 and r, b, σ
independent of time.

6and finding λ from
λ = 1 + µ

〈
x(t f )

〉
(λ, µ)

([2] Theorem 8.2 pg. 338)
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Efficient boundary
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Parameter values are: p = m = 1. Trading period is one year weekly. annual bond rate 5 %
(r = 0.0009758), annual expected stock rate is 10 % (b = 0.0019), volatility σ = 2b. x0 = 2. Shows
var x versus 〈x〉 scatter plot for various values of µ. Small µ corresponds to risky investments with
high expected return and large fluctuation. µ→ ∞ corresponds to riskless investment in bond only
and a return of 5 %.

µ = 10 corresponds to 〈x〉 = 3 and
√

var = 0.2.
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Making money
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Simulation of optimal control with µ = 10, The optimal strategy is to borrow many stocks and sell
them as soon as the objective is achieved.

Indeed, 〈x〉 = 3 as expected. The strategy to get at this 50 % increase in wealth is
to buy many stocks and hope they will give the expected wealth increase. As soon
as this occurs, all stocks are sold and the money is put in the bank.
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Lecture 3: Path integral control theory
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Path integral control theory

General idea:
- Express the control problem as an inference problem
- Use efficient state-of-the-art inference methods
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Lecture 3: Path integral control theory

General idea:
- Express the control problem as an inference problem
- Use efficient state-of-the-art inference methods

For instance:
- For LQ control problems the optimal control computation is equivalent to ’Kalman smoothing’.
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Lecture 3: Path integral control theory

General idea:
- Express the control problem as an inference problem
- Use efficient state-of-the-art inference methods

Variational inference:
p(x1:n) = π(x1:n)/Z is a probability distribution, compute

p(x1) =
∑
x2:n

p(x1:n)
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Lecture 3: Path integral control theory

General idea:
- Express the control problem as an inference problem
- Use efficient state-of-the-art inference methods

Variational inference:
p(x1:n) = π(x1:n)/Z is a probability distribution, compute

p(x1) =
∑
x2:n

p(x1:n)

Define free energy

F(q) =
∑
x1:n

q(x1:n) log
q(x1:n)
π(x1:n)

F is minimized by q = p.

Bert Kappen CWI, March 2025 82



Lecture 3: Path integral control theory

General idea:
- Express the control problem as an inference problem
- Use efficient state-of-the-art inference methods

Variational inference:
p(x1:n) = π(x1:n)/Z is a probability distribution, compute

p(x1) =
∑
x2:n

p(x1, x2:n)

Define free energy

F(q) =
∑
x1:n

q(x1:n) log
q(x1:n)
π(x1:n)

F is minimized by q = p.

Restrict minimization to simple distributions q(x1:n) = q1(x1) . . . qn(xn) and minimize

p(x1) ≈ q1(x1)

Bert Kappen CWI, March 2025 83



Lecture 3: Path integral control theory

General idea:
- Express the control problem as an inference problem
- Use efficient state-of-the-art inference methods

Efficient inference:
- Variational inference, TAP
- Belief propagation, EP, Cluster Variation Method, Survey propagation
- convex relaxations
- Monte Carlo Sampling
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Lecture 3: Path integral control theory

General idea:
- Express the control problem as an inference problem
- Use efficient state-of-the-art inference methods

In particular:
- Consider a class of control problems for which the Bellman equation can be transformed in a
linear pde (using a log transform)
- ’Solve’ as a Feynman-Kac path integral

Bert Kappen CWI, March 2025 85



Lecture 3: Path integral control theory

General idea:
- Express the control problem as an inference problem
- Use efficient state-of-the-art inference methods

The log transform first used in QM:

~i∂tΨ = HΨ H(x, t) = V(x, t) −
~2

2
∂2

x

Write

Ψ =
√
ρ exp

(
i
S
~

)
then

−∂tS =
1
2

(∇xS )2 −
1
2
~2∂

2
x
√
ρ

√
ρ

+ V

−∂tρ = ∇x(ρ∇xS )

Later used in Burgers Equation, and by Fleming and Mitter for control.

Bert Kappen CWI, March 2025 86



Lecture 3: Path integral control theory

General idea:
- Express the control problem as an inference problem
- Use efficient approximate inference methods

In particular:
- Consider a class of control problems for which the Bellman equation looks like the Mandelung
equation
- Use the log transform to convert it into a Schrödinger-like backward equation
- Identify this equation as a Kolmogorov backward equation.
- Identify the corresponding forward diffusion process
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Path integral control

dxi = fi(x, t)dt +
∑

j

gia(x, t)(uadt + dξa)

C(t, x, u(t → T )) =

〈
φ(x(T )) +

∫ T

t
dsV(x, t) +

1
2

∑
ab

Rabuaub

〉

with 〈dξadξb〉 = νabdt.

The cost is an expectation over all stochastic trajectories starting at x with control
path u(t → T ).

The stochastic HJB equation becomes

−∂tJ = min
u

(
1
2

uT Ru + V + (∇J)T ( f + gu) +
1
2

Tr
(
gνgT∇2J

))
which we need to solve with end boundary condition J(x, t f ) = φ(x).
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Path integral control

Minimization wrt u yields: 7

u = −R−1gT∇J

−∂tJ = −
1
2

(∇J)T gR−1gT (∇J) + V + (∇J)T f +
1
2

Tr
(
gνgT∇2J

)
(our ’Mandelung equation’)

Define ψ(x, t) through J(x, t) = −λ logψ(x, t) and impose a relation between R and
ν:

R = λν−1

with λ a positive number.

7ua = −
∑

b
(
R−1

)
ab

gib(x, t)∂J(x,t)
∂xi
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The relation R = λν−1

dxi = fi(x)dt +
∑

a

gia(x)(uadt + dξa)

C =

〈
φ(x(T )) +

∫ T

t
dsV(x) +

1
2

∑
ab

Rabuaub

〉

Noise and control act in the same sub-space. Directions where noise is large,
control is cheap and visa versa.

Bert Kappen CWI, March 2025 90



The relation R = λν−1

dxi = fi(x)dt +
∑

a

gia(x)(uadt + dξa)

C =

〈
φ(x(T )) +

∫ T

t
dsV(x) +

1
2

∑
ab

Rabuaub

〉

Noise and control act in the same sub-space. Directions where noise is large,
control is cheap and visa versa.

Can be alternatively understood as a KL divergence between controlled and un-
controlled trajectories:

∑
τ

p(τ|u) log
p(τ|u)
p(τ|0)

=

∫ T

0
dt

1
2

uTν−1u

λ plays the role of temperature.
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Path integral control

Then the HJB becomes linear in ψ

∂tψ =

(
V
λ
− f T∇ −

1
2

Tr
(
gνgT∇2

))
ψ

with end condition ψ(x,T ) = exp(−φ(x)/λ) (our Kolmogorov backward equation) 8

8We sketch the derivation for g = 1.

−
1
2

(∇J)T R−1(∇J) +
1
2

Tr
(
ν∇2J

)
= −

1
2

∑
i j
∇iJR−1

i j ∇ jJ +
1
2
λ
∑
i j

R−1
i j ∇i jJ

=
1
2

∑
i j

R−1
i j

(
−∇iJ∇ jJ + λ∇i jJ

)

=
1
2

∑
i j

R−1
i j

(
−λ2 1

ψ
∇i jψ

)

since

−∇iJ∇ jJ = −λ2 1
ψ2∇iψ∇ jψ

∇i jJ = −λ∇i∇ j logψ = −λ∇i

(
1
ψ
∇ jψ

)
= λ

1
ψ2∇iψ∇ jψ − λ

1
ψ
∇i jψ
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Path integral control

The linearity allows us to revers the direction of time.

We identify ψ(x, t) ∝ p(z,T |x, t), then the Bellman equation

∂tψ =

(
V
λ
− f T∇ −

1
2

Tr
(
gνgT∇2

))
ψ

can be interpreted as a Kolmogorov backward equation for the process

dxi = fi(x, t)dt +
∑

a

gia(x, t)dξa

x(t) = † with probability V(x, t)dt/λ

x(T ) = † with probability φ(x)/λ
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Path integral control

The correspondong forward equation is

∂tρ = −
V
λ
ρ − ∇( fρ) +

1
2

Tr∇2gνgTρ

with ρ(x, t) = p(x, t|z, 0) and ρ(x, 0) = δ(x − z).
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Feynman-Kac formula

Denote Q(τ|x, s) the distribution over uncontrolled trajectories that start at x, t:

dx = f (x, t)dt + g(x, t)dξ

with τ a trajectory x(t → T ). Then

ψ(x, t) =

∫
dQ(τ|x, t) exp

(
−

S (τ)
λ

)
S (τ) = φ(x(T )) +

∫ T

t
dsV(x(s), s)

ψ can be computed by forward sampling the uncontrolled process.
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Posterior distribution over optimal trajectories

ψ(x, t) can be interpreted as a partition sum for the distribution over paths under
optimal control:

P(τ|x, t) =
1

ψ(x, t)
Q(τ|x, t) exp

(
−

S (τ)
λ

)

The optimal cost-to-go is a free energy:

J(x, t) = −λ log
∫

dQ(τ|x, t) exp
(
−

1
λ

S (τ))
)

The optimal control is an expectation wrt P:

u(x, t)dt = −R−1gT (x, t)∇xJ(x, t)dt =

∫
dP(τ)dξ(τ) = 〈dξ〉P
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KL control theory

x denotes state of the agent and x1:T is a path through state space from time t = 1
to T .

q(x1:T |x0) denotes a probability distribution over possible future trajectories given
that the agent at time t = 0 is is state x0, with

q(x1:T |x0) =

T∏
t=0

q(xt+1|xt)

q(xt+1|xt) implements the allowed moves.

V(x1:T ) =
∑T

t=1 V(xt) is the total cost when following path x1:T .

The KL control problem is to find the probability distribution p(x1:T |x0) that mini-
mizes

C(p|x0) =
∑
x1:T

p(x1:T |x0)
(
log

p(x1:T |x0)
q(x1:T |x0)

+ V(x1:T )
)

= KL(p||q) + 〈V〉p
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KL control theory

p(x1:T |x0) and q(x1:T |x0) distributions over trajectories.

Given q, find p that minimizes

C(p|x0) = KL(p||q) + 〈V〉p

The solution and the optimal control cost are

p(x1:T |x0) =
1

ψ(x0)
q(x1:T |x0) exp (−V(x1:T ))

C = − logψ(x0)

ψ(x0) =
∑
x1:T

q(x1:T |x0) exp (−V(x1:T ))

NB: ψ(x0) is an integral over paths.
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The optimal control at time t = 0 is given by

p(x1|x0) =
∑
x2:T

p(x2:T |x0) ∝ q(x1|x0) exp(−V(x1))β1(x1)

with βt(x) the backward messages.

xxx

....

x
0 T−2 T−1 T

βT (xT ) = 1

βt−1(xt−1) =
∑

xt

q(xt|xt−1) exp(−V(xt))βt(xt)
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Link to continuous path integral formulation

The previous continuous path integral control can be obtained as a special case of
the KL control formulation.

p(xt+dt|xt, ut) = N(xt+dt|xt + f (xt, t)dt + u(t, xt)dt, ν)

q(xt+dt|xt) = N(xt+dt|xt + f (x, t)dt, ν)

C(p|x0) = KL(p|q) + 〈V〉

=
∑
xdt:T

p(xdt:T |x0)

 T∑
t=dt

1
2

u(t, xt)Tν−1u(t, xt) + V(xt)


∝

〈∫ T

0
dt

1
2

u(t, xt)T Ru(t, xt) + λV(xt)
〉

with λ = Rν.
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Control theory

0 0.5 1 1.5 2
−2

−1

0

1

2

Consider a stochastic dynamical system

dXt = f (Xt, u)dt + dWt E(dWt,idWt. j) = νi jdt

Given X0 find control function u(x, t) that minimizes the expected future cost

C = E

(
φ(XT ) +

∫ T

0
dtV(Xt, u(Xt, t))

)
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Control theory

0.5 1 1.5 2
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−1

0

1

2
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−1

0

1

2

Standard approach: define J(x, t) is optimal cost-to-go from x, t.

J(x, t) = min ut:TEu

(
φ(XT ) +

∫ T

t
dtV(Xt, u(Xt, t))

)
Xt = x

J satisfies a partial differential equation

−∂tJ(t, x) = min
u

(
V(x, u) + f (x, u)∇xJ(x, t) +

1
2
ν∇2

xJ(x, t)
)

J(x,T ) = φ(x)

with u = u(x, t).This is HJB equation. Optimal control u∗(x, t) defines distribution
over trajectories p∗(τ) (= p(τ|x0, 0)).
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Path integral control theory

0 0.5 1 1.5 2
−2

−1

0

1

2

dXt = f (Xt, t)dt + g(Xt, t)(u(Xt, t)dt + dWt) X0 = x0

Goal is to find function u(x, t) that minimizes

C = Eu

(
S (τ) +

∫ T

0
dt

1
2

u(Xt, t)2
)

S (τ) = φ(XT ) +

∫ T

0
V(Xt, t)

Bert Kappen CWI, March 2025 103



Path integral control theory

0 0.5 1 1.5 2
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0
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0
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Equivalent formulation: Find distribution over trajectories p that minimizes

C(p) =

∫
dτp(τ)

(
S (τ) + log

p(τ)
q(τ)

)
q(τ|x0, 0) is distribution over uncontrolled trajectories.

The optimal solution is given by p∗(τ) = 1
ψ
q(τ)e−S (τ)
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Path integral control theory

0 0.5 1 1.5 2
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Equivalent formulation: Find distribution over trajectories p that minimizes

C(p) =

∫
dτp(τ)

(
S (τ) + log

p(τ)
q(τ)

)
q(τ|x0, 0) is distribution over uncontrolled trajectories.

The optimal solution is given by p∗(τ) = 1
ψ
q(τ)e−S (τ) = p(τ|u∗).

Equivalence of optimal control and discounted cost (Girsanov)
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Path integral control theory
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The optimal control cost is C(p∗) = − logψ = J(x0, 0) with

ψ =

∫
dτq(τ)e−S (τ) = Eqe−S

J(x, t) can be computed by forward sampling from q.
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Recap

Control problem:

dx = f dt + g(udt + dξ) C =

〈
φ +

∫ T

t
V +

1
2

uT Ru
〉

R = λν−1

HJB is linear:

∂tψ = Hψ J = −λ logψ

Solution is given by Feynman-Kac formula: ψ =
∫

dQ(τ) exp
(
−

S (τ)
λ

)
.

Q distribution over uncontrolled dynamics (u = 0).

Posterior distribution over optimal controlled trajectories: P(τ) = 1
ψ

Q(τ) exp
(
−

S (τ)
λ

)
.

Optimal control is expectation value: udt = 〈dξ〉P.
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Delayed choice

dx = udt + dξ
〈
ξ2

〉
= νdt

C =

〈
φ(xT ) +

∫ T

0
dt

1
2

u(xt, t)2
〉

φ(x = ±1) = 0 and φ(x) = ∞, else.
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”When the future is uncertain, delay your decisions.”

Bert Kappen CWI, March 2025 108



Estimating ψ = Ee−S

0 0.5 1 1.5 2
−2

−1

0

1

2

ESS = 1.8, C=31.7

Sample N trajectories from uncontrolled dynamics

τi ∼ q(τ) wi = e−S (τi) ψ̂ =
1
N

∑
i

wi

ψ̂ unbiased estimate of ψ.

Sampling efficiency is inversely proportional to variance in (normalized) wi.

ES S =
N

1 + N2Var(w)
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Importance sampling
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ESS = 1.8, C=31.7
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ESS = 3.5, C=5.0
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ESS=9.5, C=2.0

Sample N trajectories from controlled dynamics and reweight yields unbiased es-
timate of cost-to-go:

τi ∼ p(τ) wi = e−S (τi) q(τi)
p(τi)

= e−S u(τi) ψ̂ =
1
N

∑
i

wi

S u(τ) = S (τ) +

∫ T

0
dt

1
2

u(Xt, t)2 +

∫ T

0
u(Xt, t)dWt
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Importance sampling
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ESS = 1.8, C=31.7
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ESS=9.5, C=2.0

S u(τ) = S (τ) +

∫ T

0
dt

1
2

u(Xt, t)2 +

∫ T

0
u(Xt, t)dWt

Thm:
• Better u (in the sense of optimal control) provides a better sampler (in the sense
of effective sample size).
• Optimal u = u∗ (in the sense of optimal control) requires only one sample and
S u(τ) deterministic!

Thijssen, Kappen 2015
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Proof

Control cost is C(p) = Ep

(
S (τ) + log p(τ)

q(τ)

)
Obviously: C(p∗) ≤ C(p) for all p, which is an instance of Jensen’s inequality:

C∗ = − log
∑
τ

q(τ)e−S (τ) = − log
∑
τ

p(τ)e−S (τ)−log p(τ)
q(τ)

≤
∑
τ

p(τ)
(
S (τ) + log

p(τ)
q(τ)

)
= C(p)

The inequality is saturated when S (τ) + log p(τ)
q(τ) has zero variance: left and right

side evaluate to S (τ) + log p(τ)
q(τ) .

This is realized when p = p∗ 9.

9p∗ exists when
∑
τ q(τ)e−S (τ) < ∞
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The Path Integral Cross Entropy (PICE) method

We wish to estimate

ψ =

∫
dτq(τ)e−S (τ)

The optimal (zero variance) importance sampler is p∗(τ) = 1
ψ
q(τ)e−S (τ).

We approximate p∗(τ) with pû(τ), where û(x, t|θ) is a parametrized control function.

Following the Cross Entropy method, we minimise KL(p∗|pû).

KL(p∗|pû) ∝ −Ep∗ log pû = −Epue
−S u log pû

with u(x, t|θ) arbitrary sampling control.

∆θ ∝ −
KL(p∗|pû)

∂θ
∝ −Eûe−S û

∫ T

0
dWt

∂û(Xt, t|θ)
∂θ

where in the last step we set u = û.

[3]
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Adaptive importance sampling
for k = 0, . . . do

datak = generate data(model, uk) % Importance sampler
uk+1 = learn control(datak, uk) % Gradient descent

end for

Parallel sampling
Parallel gradient computation
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Inverted pendulum

Simple 2nd order pendulum with noise, X = (α, α̇)

α̈ = − cosα + u C = E

∫ T

0
dtV(Xt) +

1
2

u(Xt, t)2

Naive grid: u(x) =
∑

k ukδx,xk.
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ES S < 1 due to time discretization, finite sample size effects and u(x, t) = u(x).
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Acrobot

Swing up and stabilize underactuated stochastic double pendulum.

(acrobot dominik2016a.mp4)

Neural network 2 hidden layers, 50 neurons per layer. Input is position and velocity. 2000
iterations, with 30000 rollouts per iteration. 100 cores. 15 minutes
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Coordination of UAVs

Centralized path integral solution computed in real time (simulation) for 10 quadrotors. Objective
is to fly a holding pattern near a fixed location maintaining a minimal velocity and distance to other
drones. Video at: http://www.snn.ru.nl/˜bertk/control_theory/PI_quadrotors.mp4

[4]
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Coordination of UAVs

This behavior was replicated on real quadrotors demonstrating high dimensional
non-linear stochastic optimal control in real-time.

Chao Xu ACC 2017

‘
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Agressive driving

https://www.youtube.com/watch?v=lD_6CLoa4rY

[5]
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Multi Agent cooperative game

Model of cooperation: either hunt a hare alone or a stag together.

Stag Hare
Stag 3, 3 0, 1
Hare 1, 0 1, 1

We define the KL-stag-hunt game as a multi-agent version where agents move on
a grid to hunt stag or hare.
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Approximate inference of the KL-stag-hunt problem

M = 10 agents, N = 400 locations, 1026 states per time slice

Sequential BP. If converges, converges in less than 500 iterations. Trajectories are
marginal beliefs.
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Phase transition (?)
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Other topics

(- RL)
- Relation RL and PI control and exploration
- Variational approximation, n joint arm (Kappen tutorial 2011)
- Coordination of continuous agents using MF and BP (Wiegerinck et al. 2006, van den Broek et
al. 2006)
- Risk sensitive path integral control (van den Broek 2010)
- Inference and control (Kappen tutorial 2011)
- Control of quantum systems
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Reinforcement learning
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Reinforcement learning [1]

”Reinforcement learning is the problem faced by an agent that must learn behavior through trial-
and-error interactions with a dynamic environment.”

Agent’s action a changes the state of the world.
The state of the world s is observed through sensing i and a reinforcement signal (reward) signal r
Behaviour (actions) a(s) or a(i) should be such as to increase the long-run sum of rewards r.
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Formally:
- discrete set of environment states S
- discrete set of agent actions A
- set of scalar reinforcement signals, (0,1) or real

Find optimal policy π : S → A

Environment is
- non-deterministic: taking same action in same state may yield different next state
- stationary: the probability of the new state does not depend on time explicitly

This can be modelled as a Markov process p(s′|s, a) (called Markov decision process).
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Models of optimallity

The finite horizon model:

R =

h∑
t=0

rt

Current time is t = 0. Does not care what happens after t = h.

Two uses:
- Fixed horizon: Take h-step optimal action, (h-1)-step optimal action,. . ., 1-step optimal action
- Receding horizon: Take always h-step optimal action
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Models of optimallity

The infinite horizon discounted model:

R =

∞∑
t=0

γtrt 0 ≤ γ < 1

γ is ”probability to live another step”, and γt to live t more steps.
It is also a good mathematical trick to bound infinite sum.
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Models of optimallity

The average reward model:

R = lim
h→∞

1
h

h∑
t=0

rt

Is identical to the discounted reward model for γ → 1.

Problem with this model is that there is no way to distinguish between two policies,
1. large initial rewards, followed by some policy π
2. small initial rewards, followed by the same policy π
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Models of optimallity

Only single action from start state at t = 0 (upper left circle) with three choices.

Different criteria yield different optimal solutions:
Finite horizon h = 5 model yields for first choice: R =

∑5
t=0 rt = 0 + 0 + 2 + 2 + 2 = 6 and zero for the

other choices.
Discounted reward γ = 0.9 model yields expected rewards

R =

∞∑
t=0

γtrt =

2 ∞∑
t=2

γt, 10
∞∑

t=5

γt, 11
∞∑

t=6

γt

 =
(
2γ2, 10γ5, 11γ6

) 1
1 − γ

= (16.2, 59.0, 58.5)

Selects second choice.

Average reward model yields expected rewards: R = limh→∞
1
h
∑h

t=0 rt = (2, 10, 11). Selects third
choice.
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For the discounted reward case we used
∑∞

t=0 γ
t = 1

1−γ.

Proof: Define S =
∑T

t=0 γ
t. Then

(1 − γ)S =

T∑
t=0

γt −

T∑
t=0

γt+1 =

T∑
t=0

γt −

T+1∑
t=1

γt = 1 − γT+1

∞∑
t=0

γt = lim
T→∞

S = lim
T→∞

1 − γT+1

1 − γ
=

1
1 − γ

And

∞∑
t=2

γt = γ2
∞∑

t=2

γt−2 = γ2
∞∑

t′=0

γt′ =
γ2

1 − γ

with t′ = t − 2. And similar for
∑∞

t=5 γ
t and

∑∞
t=10 γ

t.
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Models of optimallity

γ defines an effective horizon time τ

γt = e−
t
τ τ =

−1
log γ

When γ = 1 − ε with ε small, we get τ ≈ 1
ε
. 10

Small h, τ learns policies that optimize for short term rewards. Large h, τ learns policies that opti-
mizes for long term rewards.

For instance in the discounted reward case:

R =

∞∑
t=0

γtrt =
(
2γ2, 10γ5, 11γ6

) 1
1 − γ

γ = 0.2 : (0.1, 0.004, 0.0009)

γ = 0.9 : (16.2, 59.0, 58.5)

10For γ = (0.5, 0.9, 0.999) we get τ = (1.4, 9.4, 999.5) ≈ (2, 10, 1000).
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Markov Decision Processes

A set of states S, set of actions A, reward function R : S ×A → R.

A state transition function T : S × A → Π(S), with Π(S) is set of probability distributions over S.
We denote T (s′|s, a).

The model is first order Markov because the distribution over next states s′ only depend on current
state and action s, a and no previous history.

We define π : S → A as a policy. Suppose

s0 →π a0 →T s1 →π a1 →T . . .

using policy π. Define the optimal value of a state as

V∗(s) = max
π

〈 ∞∑
t=0

γtR(st, at)
〉

s0=s

For the infinite-horizon discounted model, there exists an optimal deterministic stationary policy
([9]).
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Markov Decision Processes

One can show that the optimal cost-to-go, aka the value function V∗(s) satisfies the Bellman equa-
tion

V∗(s0) = max
a0

R(s0, a0) + γ
∑

s1

T (s1|s0, a0)V∗(s1)

 (7)

The optimal policy is

π∗(s0) = argmaxa0

R(s0, a0) + γ
∑

s1

T (s1|s0, a0)V∗(s1)


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Derivation

First write

V∗(s0) = max
π

∞∑
t=0

γt 〈R(st, at)〉s0

= max
a0

R(s0, a0) + max
a1,a2,...

∞∑
t=1

γt 〈R(st, at)〉s0


with maxπ = maxa0,a1,....

The expectation 〈. . .〉s0
depends on the current state s0 and the sequence of actions a0, a1, . . . , at−1.

Thus,

〈R(st, at)〉s0
=

∑
st

T (st|s0, a0:t−1)R(st, at) =
∑

s1

T (s1|s0, a0)
∑

st

T (st|s1, a1:t−1)R(st, at)

=
∑

s1

T (s1|s0, a0) 〈R(st, at)〉s1

with T (st|s0, a0:t−1) the probability to transit from state s0 to state st when actions a0, . . . , at−1 are
taken.
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max
a1,a2...

∞∑
t=1

γt 〈R(st, at)〉s0
=

∑
s1

T (s1|s0, a0) max
a1,a2...

∞∑
t=1

γt 〈R(st, at)〉s1

= γ
∑

s1

T (s1|s0, a0) max
a1,a2...

∞∑
t=1

γt−1 〈R(st, at)〉s1

= γ
∑

s1

T (s1|s0, a0) max
a1,a2...

∞∑
t=0

γt 〈R(st+1, at+1)〉s1

= γ
∑

s1

T (s1|s0, a0)V∗(s1)

Putting everything together, we get Eq. 7.
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Value iteration

Value iteration converges to V∗ ([9])

Stopping criterion (Williams & Baird 1993):
if maxs |Vt(s) − Vt−1(s)| = ε then maxs |πt(s) − π∗(s)| ≤ 2εγ/(1 − γ)

Computational complexity is O(|S|2|A|), or O(|S||A|) when constant number of next states per state
(sparse T ).

# iterations polynomial in 1/(1 − γ).
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Policy iteration

Manipulates the policy directly, rather than indirectly through the value function:

Vπ is the value of policy π. The policy update is greedy with respect to Vπ.
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Model-free or model based approach

The previous formulas assume that the environment (T (s′|s, a) and R(s, a)) are known in advance.

The RL research is mostly concerned with the situation that the environment is not known.

Model free: Learn a controller without learning a model.
- fast, works well for simple tasks,
- No transfer to other tasks

Model based: first learn a model, and then use it to derive a controller
- slow, but works for more complex tasks
- transfer to other tasks in the same environment

Hybrid: Learn a model and a controller simultaneously
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Exploration

When the model is not known, learning the model requires in principle to visit (physically!) all states.
This holds for both model based and model free approaches.

Visiting all states is not feasible because
- there are too many states
- it takes too much time, in particular for real robots
- it may be dangerous!

One thus needs some exploration approach, that visits only the subset of ’interesting’ high reward
states. Given that the environment is unknown, this is fundamentally impossible.

Most exploration strategies are simply to try random moves. Obviously, this can be inefficient.
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The most naive approach

To understand the complexity of learning the optimal policy, consider the simplest model free
method

1. choose an initial policy π

2. estimate Vπ(s) for given policy π
(a) For each states s, run N sample trajectories of length h:

Vπ(s) =

〈 ∞∑
t=1

γtrt

〉
≈

1
N

N∑
i=1

h∑
t=0

γtri
t

3. Repeat for all policies π or use some smart search strategy over policies.

The problem is hard because there are many states and there are many policies.
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Model free policy iteration TD(0)

A stochastic approximation for policy iteration is obtained as follows:

Consider experience tuple (s, a, r, s′) under policy π.

V(s) := V(s) + αt(r + γV(s′) − V(s))

This stochastic rule is known as temporal difference learning TD(0). On average, TD(0) is equal to
policy iteration 11

When
∑

t αt = ∞ and
∑

t α
2
t < ∞ and all states are visited sufficiently often, this algorithm converges

to the solution Vπ(s) of policy iteration [10].

A possible choice is αt = 1/t.

11Identify r = R(s, π(s)). Multiply both sides by T (s′|s, π(s)) and sum over s′ gives

0 =

R(s, π(s)) + γ
∑
s′

T (s′|s, π(s)V(s′) − V(s)


which is the policy iteration update equation.
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TD(λ)

TD(0) converges but makes poor use of the data: only the immediate previous state is updated.

TD(λ) updates every state according to discount 0 ≤ λ ≤ 1:

dt = rt + γV(st+1) − V(st)

When s1 → s2:

V(s1) := V(s1) + αms1
d1

When s2 → s3:

V(s1) := V(s1) + αms1
λd2

V(s2) := V(s2) + αms2
d2

ms is the number of times state s has been visited.

Bert Kappen CWI, March 2025 145



TD(λ)

In general at iteration t:12

dt = rt + γV(st+1) − V(st)

ε(s) =

t∑
k=1

λt−kδs,sk ∀s

V(s) := V(s) + αmsdtε(s) ∀s

Note, that all past states are updated, not only the current state, proportional to their eligibility ε(s)
that decays over time

t state ε(s)
1 1 (λ0, 0, 0)
2 2 (λ1, λ0, 0)
3 3 (λ2, λ1, λ0)
4 1 (λ3 + λ0, λ2, λ1)

T D(λ) converges under similar conditions as T D(0) [11].

12NB Error in Kaelbling formula
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Adaptive Heuristic Critic [12]

AHC is adaptive version of policy iteration
- Critic: compute estimate of Vπ for policy π using stochastic policy iteration
- Actor: optimise π′ based on (the current best estimate of) Vπ.

NB: Only version with full convergence of ’inner loop’ critic for fixed policy can be guaranteed to
converge to optimal policy.
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Q learning [13]

Denote Q(s, a) the optimal expected value of state s when taking action a and then proceeding
optimally. That is

Q(s, a) = R(s, a) + γ
∑

s′
T (s′|s, a) max

a′
Q(s′, a′)

and V∗(s) = maxa Q(s, a).

Using stochastic approximation, we obtain
- Generate s′ from environment T (s′|s, a)
- Update

Q(s, a) = Q(s, a) + αt(r + γmax
a′

Q(s′, a′) − Q(s, a))

- Generate a′ either random or argmax Q(s′, a′).

Q learning converges when states are visited infinitely often and Robbins-Munro criteria.
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Dyna

Idea: combine model based and model free.

Sutton 1990
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Dyna example

Maze:
- In each of the 46 states there are 4 actions (N,E,S,W) which take the agent to the corresponding
state. When movement is blocked by obstacle, no movement results.
- reward is zero for all states and transitions except into the goal state G.
- after reaching the goal state the episode ends. agent returns to start state S .
- γ = 0.95 (discount rate), α = 0.1 (learning rate), ε = 0.1 (epsion-greedy exploration rate).

Bert Kappen CWI, March 2025 150



Dyna example

Number of steps to reach the goal versus learning episodes (average over 30 runs). First episode
requires 1700 steps.

Policies found by non-planning k = 0 (denoted by N = 0 in the figure caption) and planning
(k = 50) Dyna halfway through the second episode. k = 0 solution(=normal Q-learning) has only

updated policy for next-to-goal state. k = 50 Dyna has learned environment model from first
episode which is used to learn policies for all states.
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Dyna larger example

3277 states shortest path problem formulated as discounted RL problem. Goal state (upper right
corner) has reward 1, all other states have reward 0. Start state is lower right corner. Dyna (and
prioritised sweeping) used N = 200 backups per transition.
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Generalizations

A shortcoming of the Dyna method is that the planning steps are done at random.
- improvement can be made by prioritized sweeping (Moore & Atkenson 1993) by updating the
states with highest priority.

Combining Dyna with Monte-Carlo tree search yields state-of-the-art performance on 9×9 computer
Go [14]
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A comparison between RL and PI control
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Reinforcement learning

We consider a stochastic dynamics given by a first order Markov process, that assigns a probability
to the transition of x to x′ under action u: p0(x′|x, u). We assume that x and u are discrete, as is
usually done.

We introduce a reward that depends on our current state x , our current action u and the next state
x′: R(x, u, x′). The expected reward when we take action u in state x is given as

R(x, u) =
∑

x′
p0(x′|x, u)R(x, u, x′)

We define a policy π(u|x) as the conditional probability to take action u given that we are in state
x. Given the policy π and given that we start in state xt at time t, the probability to be in state xs at
time s > t is given by

pπ(xs; s|xt; t) =
∑

us−1,xs−1,...,ut+1,xt+1,ut

p0(xs|xs−1, us−1) . . .

. . . π(ut+1|xt+1)p0(xt+1|xt, ut)π(ut|xt).
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pπ is a stationary Markov process i.e. pπ(x′; t + s|x; t) is independent of t, we can write

pπ(x′; t + s|x; t) = pπ(x′|x; s − t)

The expected future discounted reward in state x is defined as:

Jπ(x) =

∞∑
s=0

∑
x′,u′

π(u′|x′)pπ(x′|x; s)R(x′, u′)γs (8)

with 0 < γ < 1 the discount factor.
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We can write a recursive relation for Jπ 13

Jπ(x) =
∑

u

π(u|x)Aπ(x, u) Aπ(x, u) =
∑

x′
p0(x′|x, u)[R(x, u, x′) + γJπ(x′)

Given Jπ for the current policy π we construct a new deterministic policy

π′(u|x) = δu,u(x), u(x) = arg max
u

Aπ(x, u) (9)

It can be shown (see [15]) that the solution for Jπ′ is as least as good as the solution Jπ in the sense
that

Jπ′(x) ≥ Jπ(x),∀x
13

Jπ(x) =
∑

u
π(u|x)R(x, u) +

∞∑
s=1

∑
x′,u′

π(u′|x′)pπ(x′|x; s)R(x′, u′)γs

=
∑

u
π(u|x)R(x, u) + γ

∞∑
s=1

∑
x′,u′

∑
x′′,u′′

π(u′|x′)pπ(x′|x′′; s − 1)p0(x′′|x, u′′)π(u′′|x)R(x′, u′)γs−1

=
∑
u,x′

π(u|x)p0(x′|x, u)[R(x, u, x′) + γJπ(x′)] =
∑

u
π(u|x)Aπ(x, u)
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Policy iteration:
π0 → Jπ0 → π1 → Jπ1 → π2 . . .

Policy iteration converges to a stationary value function J∗(x) that is a fixed point of the above
procedure, but maybe a local optimum.
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Receding horizon problem
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14

For γ = 0.9 the optimal policy is to ’stay put’.

For γ = 0.99, policy iteration develops a local minimum. The value of the policy ’always move left’
is better. Thus, for γ = 0.99 the optimal policy is to ’move left’.

The local minima problem of policy iteration persists at larger γ but is resolved when using Q-
learning (γ = 0.9, 0.99 and 0.999). 15

14The state space is discretized in 100 bins with −2 < x < 3. The actions are u = ±dx. The dynamics is deterministic:
p0(x′|x, u) = δx′,x+u. The reward is given by R(x, u, x′) = −V(x′). γ controls the effective horizon time T ≈ −1/ log γ.
We use policy iteration.

15The number of value iterations scales as 1/(1 − γ) and thus can become quite large. The number of policy
improvement steps in this simple example is only 1. Smoothing the policy updates (π← απ+ (1−α)πnew increases the
number of policy improvement steps, but does not change fixed points of the algorithm.
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Path integral control

dx = udt + dξ

C(x, u) = 〈S (τ)〉 S (τ) =

∫ t+T

t
dt

R
2

u(t)2 + Ru(t)dξ(t) + V(x(t))

with τ = xt:t+T a trajectory

The optimal cost-to-go is given by

J(x) = −λ log
∫

dyρ(y, t + T |x, t) = −λ log
∫

dτe−S (τ)/λ

with ρ the solution of the Fokker-Planck equation.

Note, that C, ρ and J(x), u(x) do not depend on t.
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We use the MC sampling method and the Laplace approximation to find approximate solutions.
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Figure 1: T = 3. Left: Laplace trajectories. Middle: ν = 0.01. Right: idem for ν = 1.
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Figure 2: T = 10. Left: Laplace trajectories. Middle: ν = 0.01. Right: idem for ν = 1.

The Laplace approximation is accurate for low noise. The MC appoximation is accurate when
√
νT

is large compared to the exploration area. This is true for high noise and for low noise when the
’stay’ policy happens to be optimal. The results of RL and PI control qualitatively agree.
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Exploration

What to do in unknown environment?

Model-based: first learn the environment and then compute the optimal control.

Model-free: interleave exploration (learning the environment) and exploitation (behave optimally in
this environment).

The model-free approach leads to the exploration-exploitation dilemma:
- The computed controls are optimal for the limited environment that has been explored, but are of
course not the true optimal controls.
- These controls can be used to optimally exploit the known environment, but in general give no
insight how to explore.
- The issue of optimal exploration is not addressable within the context of optimal control theory (or
RL!).

An exception to this is when one has prior knowledge about the environment:
- when the costs is a smooth function of the state variables, one can extrapolate a learned cost
model to unknown parts
- when the environment and cost are drawn from some known probability distribution (k-armed
bandit).
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Exploration

Thus optimal exploration is random.

Consider the previous 1 d problem. We sample one long (Ndt � T = ndt) trajectory xi, i = 1, . . . ,N
with states as xi+1 = xi + dξi.

We estimate ψ(x) for all x from this single trajectory:

ψ(xi, 0) = exp

−dt
λ

j=i+n∑
j=i+1

V(x j)


16

16We can compute this expression on-line by maintaining running estimates of ψ(x j) values of recently visited loca-
tions x j. At iteration i we initialize ψ(xi) = 1 and update all recently visited ψ(x j) values with the current cost:

ψ(xi) = 1

ψ(x j) ← ψ(x j) exp
(
−

dt
λ

V(xi)
)
, j = i − n + 2, . . . , i − 1

Bert Kappen CWI, March 2025 163



−10 0 10
0

10

20

30

40

50

60

70

x

−4 −2 0 2 4
1

1.1

1.2

1.3

1.4

1.5

x

J
T=3

J
T=10

V

Figure 3: Sampling of J(x) for all x and different T with one trajectory of N = 8000 iterations
starting at x = 0. Left: Histogram of states visited (300 bins). Right: In each bin x, ψ(x) and J(x)
are estimated for different T . Time discretization dt = 0.02, ν = 1,R = 1.
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A neural implementation

The brain represents the environment in terms of neural maps. These maps are topologically orga-
nized, in the sense that nearby neurons represent nearby locations in the environment. Examples
of such maps are found in sensory areas as well as in motor areas. In the latter case, nearby
neuron populations encode nearby motor acts.

Consider a one-dimensional environment that we encode with a one-dimensional array of neurons,
i = 1, . . . ,m and denote the firing rate of the neurons at time t by ρi(t).

We assume that the animal has learned a model of the world (the neural map, the dynamics and
the rewards). In addition to sensing, the neural map can then also be used for planning.
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A neural implementation

We assume that the neural array implements a space-discretized version of the forward diffusion
process as given by the Fokker-Planck equation:

dρi

dt
= −

Vi

λ
ρi(t) +

ν

2

∑
j

Di jρ j(t)

with D the diffusion matrix Dii = −2,Dii+1 = Dii−1 = 1 and all other entries of D are zero. Vi is the
cost at location xi. Each neuron updates its firing rate on the basis of the activity of itself and its
nearest neighbors. Further, we assume that there is some additional inhibitory lateral connectivity
in the network such that the total firing rate in the map is normalized:

∑
i ρi(t) = 1.

By running the network dynamics from t = 0 to T in the absence of external stimuli, the animal can
’think ahead’ and compute the best current action.
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A neural implementation

For T = 5 the optimal action is to move to the right (the nearest local minimum of V). For T = 10,
the peak around x = 2 disappears and a peak around x = −1 appears. The optimal action is to
move to the left.

This is quite different from the reinforcement learning paradigm, where for each value of γ the
Bellman equations should be solved.

−2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

Figure 4: Thinking ahead. Blue lines show the time evolution of ρi(t). In red, thick
solid, dot-dashed and dashed lines at t = 0.1, 5 and t = 10, respectively.

17

17In this very simple example, the decision whether to move left or right can be inferred simply from the mode of
ρ(y,T |x, 0). In general this does not need to be true and in any case, for the correct estimation of the size of the optimal
control, the gradient of ψ(x) =

∫
dyρ(y,T |x, 0) must be computed.
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Comparing RL and PI control

• Time dependent versus time independent control problems

• Discrete state space versus continuous state space

• For receding horizon problems:
– all J(x) interdependent from Bellman equation (RL) versus J(x) independent (PI)
– No reusability to compute J for different γ (RL) versus some reusability for (PI) 18

– Exploration can be defined independent of exploration: random exploration allows for online
estimation of value function (PI)

18For example, suppose that we know the solution for horizon times T : ψT (x) =
∫

dyρT (y|x). We can use this to
compute a solution ψ2T (x) =

∫
dzρ2T (z|x) =

∫
dzdyρT (z|y)ρT (y|x) =

∫
dyψT (y)ρT (y|x).
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The variational approximation
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The variational method

Consider an arm consisting of n joints of length 1. The location of the ith joint in the 2d plane is

xi =

i∑
j=1

cos θi yi =

i∑
j=1

sin θi

with i = 1, . . . , n. Each of the joint angles is controlled by a variable ui. The dynamics of each joint
is

dθi = uidt + dξi, i = 1, . . . , n

with dξi independent Gaussian noise with
〈
dξ2

i

〉
= νdt. Denote by ~θ the vector of joint angles, and

~u the vector of controls.
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The variational method

The expected cost for the control path ~ut:T is

C(~θ, t, ~ut:T ) =

〈
φ(θ(T )) +

∫ T

t

1
2
~uT (t)~u(t)

〉
φ(~θ) =

α

2

(
(xn(~θ) − xtarget)2 + (yn(~θ) − ytarget)2

)
with xtarget, ytarget the target coordinates of the end joint.
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The variational method

Because V = 0, f = 0, g = 1, the solution to uncontrolled dynamics is Gaussian 19

ψ(~θ0, t) =

∫
d~θ

(
1

√
2πν(T − t)

)n

exp

− n∑
i=1

(θi − θ
0
i )2/2ν(T − t) − φ(~θ)/ν


The control at time t for all components i is given by

ui =
1

T − t

(
〈θi〉 − θ

0
i

)
(10)

where 〈θi〉 is the expectation value of θi computed wrt the probability distribution

p(~θ) =
1

ψ(~θ0, t)
exp

− n∑
i=1

(θi − θ
0
i )2/2ν(T − t) − φ(~θ)/ν

 (11)

19This is not exactly correct because θ is a periodic variable. One should use the solution to diffusion on a circle
instead. We can ignore this as long as

√
ν(T − t) is small compared to 2π.

Bert Kappen CWI, March 2025 172



The variational method

We compute the expectations
〈
~θ
〉

by introducing a factorized Gaussian variational distribution q(~θ) =∏n
i=1N((θi|µi, σi). We compute µi and σi by by minimizing the KL divergence between q(~θ) and p(~θ):

KL =

∫
dθq(θ) log

q(θ)
p(θ)

= −

n∑
i=1

log
√

2πσ2
i + logψ(~θ0, t) +

1
2ν(T − t)

n∑
i=1

(
σ2

i + (µi − θ
0
i )2

)
+

1
ν

〈
φ(~θ)

〉
q

where we omit irrelevant constants.
〈
φ(~θ)

〉
can be computed in closed form. Setting the derivative

of the KL with respect to µi and σ2
i equal to zero:

µi ← θ0
i + α(T − t)

(
sin µie

−σ2
i /2(〈xn〉 − xtarget) − cos µie

−σ2
i /2(〈yn〉 − ytarget)

)
1
σ2

i

←
1
ν

(
1

(T − t)
+ αe−σ

2
i − α

(
〈xn〉 − xtarget

)
cos µie

−σ2
i /2 − α

(
〈yn〉 − ytarget

)
sin µie

−σ2
i /2

)
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The variational method
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The variational method
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The variational method
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Note, that the computation of 〈θi〉 solves the coordination problem between the different joints.
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Once 〈θi〉 is known, each θi is steered independently to its target value 〈θi〉 using the control law
Eq. 10. The computation of 〈θi〉 in the variational approximation is very efficient and can be used to
control arms with hundreds of joints.
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Coordination of agents

n agents with independent dynamics

dxα = ( fα(xα, t) + uα) + dξα, α = 1, . . . , n

should coordinate their actions to minimize a
cost at a future time t = T :

φ(y1, . . . , yn) yα ∈ {z1, . . . zk}

and φ = ∞ elsewhere.
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Coordination of agents

Then,

Ψ(x1, . . . , xn, t) =

∫
dy1 . . . dyn

∏
α

ρ(yα,T |xα, t) exp(−φ(y1, . . . , yn)/ν)

=
∑
~y

exp(−E(~y|~x, t)/ν)

p(~y) =
1
Z

exp(−E(~y|~x, t)/ν)

uα(~x, t) = −∂xαJ =

〈
∂ log ρ(yα,T |xα, t)

∂xα

〉
with ~x = (x1, . . . , xn), ~y = (y1, . . . , yn).

E has a graphical model structure if φ has.

Bert Kappen CWI, March 2025 179



Pseudo code

Loop:

1. Compute the cost and its log derivative for each agent to move to each target:

ρ(zi,T |xα, t), i = 1, . . . , k, α = 1, . . . , n

This path integral can be estimated using MC sampling or variational approximation.

2. Compute uα using graphical model inference in p(~y) (exact, BP, MF).
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A simple 1d example

Intrinsic dynamics fα = 0, V(x1, . . . , xn) = 0:

p(yα,T |xα, t) ∝ exp(−(yα − xα)2/2ν(T − t))

End cost φ(y1, . . . , yn) =
∑k

j=1(n j(~y) − n j)2, with n j(~y) the # of agents that go to target j.

Optimal control is for agent α is

uα =
1

T − t
(〈yα〉 − xα)
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A simple 1d example
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A simple 1d example
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Nonlinear Coordination

Agents a = 1, . . . , n in 2D:

dxa(t) = va(t) cosϕa(t) dt

dya(t) = va(t) sinϕa(t) dt

dva(t) = ua(t)dt + dξa(t)

dϕa(t) = ωa(t)dt + dζa(t)

Initial states O, va(0) = 0, ϕa(0) = 0
Targets X, va(T ) = 0, ϕa(T ) = 0

Sample paths specified at
ti = t + i dt,
i = 0, . . . , 6, dt = (T − t)/6

Example of 10 agents & 10 targets:
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Sample paths:
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Computation Time

Inference methods:

Junction Tree (· − ·)
MF (—)

(100 sample paths per agent-target)

CPU time (s) vs. number of agents:
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(# agents = # targets)

JT : exponential in number of agents
(intractable for # agents > 10)

MF : polynomial in number of agents
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Risk sensitive control

It is relatively straightforward to generalize the path integral method to optimize a cost of the form

C̃ = φ(xT ) +

∫
1
2

uT Ru + V(x)

C =
1
θ

log
〈
exp(θC̃)

〉
For θ = 0 the risk neutral control is recovered. For θ small:

C =
〈
C̃
〉

+
θ

2

(〈
C̃2

〉
−

〈
C̃
〉2

)
+ h.o.

θ > 0 is risk averse, θ < 0 is risk seeking.

vd Broek et al. UAI 2010
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Risk sensitive control

We illustrate the behavior for the (well known) LQ case. V = f = 0, φ = α/2x2.

The optimal control is given by

u =
−αx

R + α(T − t)(1 − νRθ)

For θ < 0 control is weaker
For 0 < θ < 1/Rν control is stronger
In both cases control increases with time.

For θ > 1/Rν, control is only well-defined when the denominator is positive:

α(T − t) <
R

νRθ − 1

Control decreases with time. For larger time-to-go, the expected cost is infinite.

vd Broek et al. UAI 2010
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Inference and control

As an example of the intricacies of joint inference and control , consider the simple LQ control
problem [16, 17]

dx = αudt + dξ (12)

C(x0, θ0, u(0→ T )) =

〈
φ(x(T )) +

∫ T

0
dtR(x, u, t)

〉
(13)

with α unobserved and x observed. Path cost R(x, u, t) and end cost φ(x) and noise variance ν are
given.

Although α is unobserved, we have a means to observe α indirectly through the sequence xt, ut, t =

0, . . .. Each time step we observe dx and u and we can thus update our belief about α using the
Bayes formula:

pt+dt(α|dx, u) ∝ p(dx|α, u)pt(α) (14)

p(dx|α, u) is Normal in dx with variance νdt
pt(α) our belief at time t about the values of α
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The information that we receive about α increases with u, because the αudt term dominates the dξ
term. However, large u values are more costly and also may drive us away from our target state
x(T ).

Thus, the optimal control is a balance between optimal inference and minimal control cost.

The solution is to augment the state space with parameters θt (sufficient statistics) that describe
pt(α) = p(α|θt) and θ0 known, which describes our initial belief in the possible values of α. The cost
that must be minimized is

C(x0, θ0, u(0→ T )) =

〈
φ(x(T )) +

∫ T

0
dtR(x, u, t)

〉
(15)

where the average is with respect to the noise dξ as well as the uncertainty in α.

NB: the average over α depends on θt which is not known beforehand.
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For simplicity, consider the example that α attains only two values α = ±1. Then pt(α|θ) = σ(αθ),
with the sigmoid function σ(x) = 1

2(1 + tanh(x)). The update equation Eq. 14 implies a dynamics for
θ:

dθ =
u
ν

dx =
u
ν

(αudt + dξ)

20

With zt = (xt, θt) we obtain a standard HJB Eq.

−∂tJ(t, z)dt = min
u

(
R(t, x, u)dt + 〈dz〉z ∂zJ(z, t) +

1
2

〈
dz2

〉
z
∂2

z J(z, t)
)

with boundary condition J(z,T ) = φ(x) (NB independent of θ).

20The rhs of the Bayes rule is

p(dx|α, u)p(α|θt) ∝ exp
(
−

(dx − αudt)2

2νdt

)
exp(αθt) ∝ exp

(
dxαu
ν

+ αθt

)
= exp

(
α

(
θt +

dxu
ν

))
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The result is

−∂tJ = min
u

(
R(x, u, t) + ᾱu∂xJ +

u2ᾱ

ν
∂θJ +

1
2
ν∂2

xJ +
1
2

u2

ν
∂2
θJ + u∂x∂θJ

)
21 with boundary conditions J(x, θ,T ) = φ(x).

Thus, the dual control problem (joint inference on α and control problem on x) has become an
ordinary control problem in x, θ (Florentin, 1962).

Note that if R, φ are quadratic and α is known, this is an LQ problem. However, when α is not
known, the corresponding dual control problem is not LQ (because of the additional u dependent
terms).

21The expectation values appearing in this equation are conditioned on (xt, θt) and are averages over p(α|θt) and the

Gaussian noise. 〈dx〉x,θ = ᾱudt, 〈dθ〉x,θ = ᾱu2
ν dt,

〈
dx2

〉
x,θ

= νdt,
〈
dθ2

〉
x,θ

= u2
ν dt, 〈dxdθ〉 = udt, with ᾱ = tanh(θ) the

expected value of α for a given value θ.
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Probing
x=−2

u
t →

θ
t
 →

1

−1

Dual control solution with end cost φ(x) = x2 and path cost
∫ t f

t dt′12u(t′)2 and ν = 0.5. Plot shows the
deviation of the control from the certain case: ut(x, θ)/ut(x, θ = ±∞) as a function of θ for different
values of t and x = 2. The curves with the larger values are for larger times-to-go.

’Probing’: u is much larger when α is uncertain (θ small) then when α is certain θ = ±∞.
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Symmetry breaking and non-differentiability of J

The observed probing behavior arises as the result of a symmetry breaking in the right hand side
of the Bellman equation.
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Figure 5: Rhs of the Bellman equation as a function of u and its derivative for θ = 0. The different
curves correspond to different values of x. Explorative behavior (u , 0) arises in the no-knowledge
state θ = 0 by proposing non-zero controls. The singularity is absent at t = T − 2 and present
starting from t = T − 3.
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Symmetry breaking and non-differentiability of J

As a result of the local minima in the Bellman optimization, the optimal value function is not differ-
entiable.

The optimal cost-to-go is convex in the belief [18].
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Left) Jt(x, θ) for t = T − 2, x = −2 (grey) and t = T − 2, x = −6 (black) versus θ Right) Same as left,
but as a function of the belief p = p(b = 1|θ).
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