
Stochastic optimal control theory

Bert Kappen
SNN, Radboud University
Nijmegen the Netherlands

August, 2012

Bert Kappen



SNN Machine Learning and Brain modeling

• Develop mathematical methods for the brain and intelligent behavior

– Bayesian methods for learning and data analysis
– Control theory
– Applications

• Approach

– methods from statistical physics, statistics, computer science, mathematics
– insights from neuroscience

PhD position available on Neural Networks for stochastic optimal control theory

Bert Kappen ICTP, August 2012 1



www.snn.ru.nl

Bayesian methods
• Graphical models

• Approximate inference

Stochastic optimal control theory
• Controlled diffusions

• Learning

• Robotics and multi-agents

Bio-informatics
• Genome-wide association studies

• Neuro-imaging genetics

Neuroscience
• Neural networks

• Brain computer interface

• Connectivity measures

Spin-off smart-research.nl

• Wine portal

• Petrophysical expert system (Shell)

• Medical diagnostic expert system

• Missing person identification (NFI)

A S

T L B

E

X D

0 0.5 1 1.5 2

−5

0

5

Bert Kappen ICTP, August 2012 2

www.snn.ru.nl
smart-research.nl


Introduction

Optimal control theory: Optimize sum of a path cost and end cost. Result is
optimal control sequence and optimal trajectory.

Input: Cost function. Output: Optimal trajectory and controls.
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Introduction

Control problems are delayed reward problems:

• Motor control: devise a sequece of motor commands to reach a goal

• finance: devise a sequence of buy/sell commands to maximize profit

• Learning, exploration exploitation
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Types of optimal control problems

Finite horizon (fixed horizon time)

• Dynamics and environment may depend explicitly on time.

• Optimal control depends explicitly on time.
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Types of optimal control problems

Finite horizon (moving horizon)

• Dynamics and environment are static.

• Optimal control is time independent.

Infinite horizon

• discounted reward, Reinforcement learning

• total reward, absorbing states

• average reward

Other issues:

• discrete vs. continuous state

• discrete vs. continuous time

• observable vs. partial observable

Bert Kappen ICTP, August 2012 6



Overview

Lecture 1: Optimal control theory, discrete time
- Introduction of delayed reward problem in discrete time;
- Dynamic programming solution and deterministic Bellman equations;
- Extension to noisy case
- Examples
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Overview

Lecture 2: Optimal control theory, continuous time
- Solution in continuous time and states;
- Example: Mass on a spring
- Pontryagin maximum principle; Notion of an optimal (particle) trajectory
- Again Mass on a spring
- Stochastic differential equations
- Kolmogorov and Fokker-Plack equations
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Overview

Lecture 3: Stochastic optimal control theory
- Hamilton-Jacobi-Bellman equation (continuous state and time)
- LQ control, Ricatti equation;
- Example of LQ control
- Portfolio selection
- Path integral control
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Overview

Lecture 4: KL control theory
- Example: Delayed choice
- Importance sampling
- How to control a device?
- KL control theory - Relation KL control and path integral control - Multi agent
system - Stationary KL control (- Variational approximation, n joint arm)
(- Coordination of continuous agents using MF and BP)
(- Risk sensitive control)
(- Inference and control)
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Material

• H.J. Kappen. Optimal control theory and the linear Bellman Equation. In
Inference and Learning in Dynamical Models (Cambridge University Press 2010),
edited by David Barber, Taylan Cemgil and Sylvia Chiappa
http://www.snn.ru.nl/~bertk/control/timeseriesbook.pdf

• Dimitri Bertsekas, Dynamic programming and optimal control

• website
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Lecture 1: Optimal control theory: discrete time
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Discrete time control

Consider the control of a discrete time deterministic dynamical system:

xt+1 = xt + f(t, xt, ut), t = 0, 1, . . . , T − 1

xt describes the state and ut specifies the control or action at time t.

Given xt=0 = x0 and u0:T−1 = u0, u1, . . . , uT − 1, we can compute x1:T .

Define a cost for each sequence of controls:

C(x0, u0:T−1) = φ(xT ) +

T−1∑
t=0

R(t, xt, ut)

The problem of optimal control is to find the sequence u0:T−1 that minimizes
C(x0, u0:T−1).
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Dynamic programming

Find the minimal cost path from A to J.

C(J) = 0, C(H) = 3, C(I) = 4

C(F ) = min(6 + C(H), 3 + C(I))
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Discrete time control

The optimal control problem can be solved by dynamic programming. Introduce
the optimal cost-to-go:

J(t, xt) = min
ut:T−1

(
φ(xT ) +

T−1∑
s=t

R(s, xs, us)

)

which solves the optimal control problem from an intermediate time t until the
fixed end time T , for all intermediate states xt.

Then,

J(T, x) = φ(x)

J(0, x) = min
u0:T−1

C(x, u0:T−1)
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Discrete time control

One can recursively compute J(t, x) from J(t+ 1, x) for all x in the following way:

J(t, xt) = min
ut:T−1

(
φ(xT ) +

T−1∑
s=t

R(s, xs, us)

)

= min
ut

(
R(t, xt, ut) + min

ut+1:T−1

[
φ(xT ) +

T−1∑
s=t+1

R(s, xs, us)

])
= min

ut
(R(t, xt, ut) + J(t+ 1, xt+1))

= min
ut

(R(t, xt, ut) + J(t+ 1, xt + f(t, xt, ut)))

This is called the Bellman Equation.

Computes u as a function of x, t for all intermediate t and all x.
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Discrete time control

The algorithm to compute the optimal control u∗0:T−1, the optimal trajectory x∗1:T

and the optimal cost is given by

1. Initialization: J(T, x) = φ(x)

2. Backwards: For t = T − 1, . . . , 0 and for all x compute

u∗t (x) = arg min
u
{R(t, x, u) + J(t+ 1, x+ f(t, x, u))}

J(t, x) = R(t, x, u∗t ) + J(t+ 1, x+ f(t, x, u∗t ))

3. Forwards: For t = 0, . . . , T − 1 compute

x∗t+1 = x∗t + f(t, x∗t , u
∗
t (x
∗
t ))

NB: the backward computation requires u∗t (x) for all x.
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Stochastic case

xt+1 = xt + f(t, xt, ut, wt) t = 0, . . . , T − 1

At time t, wt is a random value drawn from a probability distribution p(w).

For instance,

xt+1 = xt + wt, x0 = 0

wt = ±1, p(wt = 1) = p(wt = −1) = 1/2

xt =

t−1∑
s=0

ws

Thus, xt random variable and so is the cost

C(x0) = φ(xT ) +

T−1∑
t=0

R(t, xt, ut, ξt)
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Stochastic case

C(x0) =

〈
φ(xT ) +

T−1∑
t=0

R(t, xt, ut, ξt)

〉

=
∑
w0:T−1

∑
ξ0:T−1

p(w0:T−1)p(ξ0:T−1)

(
φ(xT ) +

T−1∑
t=0

R(t, xt, ut, ξt)

)

with ξt, xt, wt random. Closed loop control: find functions ut(xt) that minimizes
the remaining expected cost when in state x at time t. π = {u0(·), . . . , uT−1(·)}
is called a policy.

xt+1 = xt + f(t, xt, ut(xt), wt)

Cπ(x0) =

〈
φ(xT ) +

T−1∑
t=0

R(t, xt, ut(xt), ξt)

〉

π∗ = argminπCπ(x0) is optimal policy.
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Stochastic Bellman Equation

J(t, xt) = min
ut
〈R(t, xt, ut, ξt) + J(t+ 1, xt + f(t, xt, ut, wt))〉

J(T, x) = φ(x)

ut is optimized for each xt separately. π = {u0, . . . , uT−1} is optimal a policy.
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Inventory problem

• xt = 0, 1, 2 stock available at the beginning of period t.

• ut stock ordered at the beginning of period t. Maximum storage is 2: ut ≤ 2−xt.

• wt = 0, 1, 2 demand during period t with p(w = 0, 1, 2) = (0.1, 0.7, 0.2); excess
demand is lost.

• ut is the cost of purchasing ut units. (xt + ut − wt)2 is cost of stock at end of
period t.

xt+1 = max(0, xt + ut − wt)

C(x0, u0:T−1) =

〈
t=2∑
t=0

ut + (xt + ut − wt)2

〉

Planning horizon T = 3.
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Inventory problem
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Apply Bellman Equation

Jt(xt) = min
ut
〈R(xt, ut, wt) + Jt+1(f(xt, ut, wt))〉

R(x, u, w) = u+ (x+ u− w)2

f(x, u, w) = max(0, x+ u− w)

Start with J3(x3) = 0,∀x3.
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Dynamic programming in action

Assume we are at stage t = 2 and the stock is x2. The cost-to-go is what we order
u2 and how much we have left at the end of period t = 2.

J2(x2) = min
0≤u2≤2−x2

u2 +
〈
(x2 + u2 − w2)2

〉
= min

0≤u2≤2−x2

(
u2 + 0.1 ∗ (x2 + u2)2 + 0.7 ∗ (x2 + u2 − 1)2

+ 0.2 ∗ (x2 + u2 − 2)2
)

J2(0) = min
0≤u2≤2

(
u2 + 0.1 ∗ u2

2 + 0.7 ∗ (u2 − 1)2 + 0.2 ∗ (u2 − 2)2
)

u2 = 0 : rhs = 0 + 0.7 ∗ 1 + 0.2 ∗ 4 = 1.5

u2 = 1 : rhs = 1 + 0.1 ∗ 1 + 0.2 ∗ 1 = 1.3

u2 = 2 : rhs = 2 + 0.1 ∗ 4 + 0.7 ∗ 1 = 3.1

Thus, u2(x2 = 0) = 1 and J2(x2 = 0) = 1.3
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Inventory problem

The computation can be repeated for x2 = 1 and x2 = 2, completing stage 2 and
subsequently for stage 1 and stage 0.
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Exercise: Two ovens

A certain material is passed through a sequence of two ovens. Aim is to reach pre-specified final

product temperature x∗ with minimal oven energy.

x0,1,2 are the product temperatures initially, after pasing through oven 1 and after passing through

oven 2. u0,1 are the oven temperatures. The dynamics is

xt+1 = (1− a)xt + aut t = 0, 1

C = r(x2 − x∗)2
+ u

2
0 + u

2
1

• Find the optimal control solution u0, u1.

• Show that adding mean zero noise to the dynamics (xt+1 = (1 − a)xt + aut + wt with

〈wt〉 = 0), does not change the optimal control solution.
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Example: Two ovens

End cost-to-go is J(2, x2) = r(x2 − x∗)2.

J(1, x1) = min
u1

(
u2

1 + J(2, x2)
)

= min
u1

(
u2

1 + r((1− a)x1 + au1 − x∗)2
)

u1 = µ1(x1) =
ra(x∗ − (1− a)x1)

1 + ra2

J(1, x1) =
r((1− a)x1 − x∗)2

1 + ra2

J(0, x0) = min
u0

(
u2

0 + J(1, x1)
)

= min
u0

(
u2

0 +
r((1− a)x1 − x∗)2

1 + ra2

)
= min

u0

(
u2

0 +
r((1− a)((1− a)x0 + au0)− x∗)2

1 + ra2

)
u0 = µ0(x0) =

r(1− a)a(x∗ − (1− a)2x0)

1 + ra2(1 + (1− a)2)

J(0, x0) =
r((1− a)2x0 − x∗)2

1 + ra2(1 + (1− a)2)
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Comments

• Linear Quadratic Control: Solution can be obtained in closed form because
problem is linear quadratic.

• Certainty equivalence: Optimal control solution is unaffected by noise:

xt+1 = (1− a)xt + aut + wt t = 0, 1

C = r(x2 − x∗)2 + u2
0 + u2

1

with 〈wt〉 = 0.Then

J(1, x1) = min
u1

(
u2

1 +
〈
r((1− a)x1 + au1 + w1 − x∗)2

〉)
= min

u1

(
u2

1 + r((1− a)x1 + au1 − x∗)2 + r 〈w1〉2
)
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Lecture 2: Optimal control theory, continuous time
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Continuous limit

Replace t+ 1 by t+ dt with dt→ 0.

xt+dt = xt + f(xt, ut, t)dt

C(x0, u0→T ) = φ(xT ) +

∫ T

0

dτR(τ, x(τ), u(τ))

Assume J(x, t) is smooth.

J(t, x) = min
u

(R(t, x, u)dt+ J(t+ dt, x+ f(x, u, t)dt))

≈ min
u

(R(t, x, u)dt+ J(t, x) + ∂tJ(t, x)dt+ ∂xJ(t, x)f(x, u, t)dt)

−∂tJ(t, x) = min
u

(R(t, x, u) + f(x, u, t)∂xJ(x, t))

with boundary condition J(x, T ) = φ(x).

Bert Kappen ICTP, August 2012 30



Continuous limit

−∂tJ(t, x) = min
u

(R(t, x, u) + f(x, u, t)∂xJ(x, t))

with boundary condition J(x, T ) = φ(x).

This is called the Hamilton-Jacobi-Bellman Equation.

Computes the anticipated potential J(t, x) from the future potential φ(x).
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Example: Mass on a spring

The spring force Fz = −z towards the rest position and control force Fu = u.

Newton’s Law
F = −z + u = mz̈

with m = 1.

Control problem: Given initial position and velocity z(0) = ż(0) = 0 at time t = 0,
find the control path −1 < u(0→ T ) < 1 such that z(T ) is maximal.
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Example: Mass on a spring

Introduce x1 = z, x2 = ż, then

ẋ1 = x2

ẋ2 = −x1 + u

The end cost is φ(x) = −x1; path cost R(x, u, t) = 0.

The HJB takes the form:

−∂tJ = min
u

(
x2
∂J

∂x1
− x1

∂J

∂x2
+
∂J

∂x2
u

)
= x2

∂J

∂x1
− x1

∂J

∂x2
−
∣∣∣∣ ∂J∂x2

∣∣∣∣ , u = −sign

(
∂J

∂x2

)

Bert Kappen ICTP, August 2012 33



Example: Mass on a spring

We try J(t, x) = ψ1(t)x1 + ψ2(t)x2 + α(t). The HJBE reduces to the ordinary
differential equations

ψ̇1 = ψ2

ψ̇2 = −ψ1

α̇ = −|ψ2|

These equations must be solved for all t, with final boundary conditions ψ1(T ) =
−1, ψ2(T ) = 0 and α(T ) = 0.

Note, that the optimal control only requires ∂xJ(x, t), which in this case is ψ(t)
and thus we do not need to solve α. The solution for ψ is

ψ1(t) = − cos(t− T )

ψ2(t) = sin(t− T )
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Example: Mass on a spring

The optimal control is

u(x, t) = −sign(ψ2(t)) = −sign(sin(t− T ))

As an example consider T = 2π. Then, the optimal control is

u = −1, 0 < t < π

u = 1, π < t < 2π

0 2 4 6 8
−2

−1

0

1

2

3

4

t

x
1

x
2
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Pontryagin minimum principle

The HJB equation is a PDE with boundary condition at future time. The PDE is
solved using discretization of space and time.

The solution is an optimal cost-to-go for all x and t. From this we compute the
optimal trajectory and optimal control.

An alternative approach is a variational approach that directly finds the optimal
trajectory and optimal control.
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Pontryagin minimum principle

We can write the optimal control problem as a constrained optimization problem
with independent variables u(0→ T ) and x(0→ T )

min
u(0→T ),x(0→T )

φ(x(T )) +

∫ T

0

dtR(x(t), u(t), t)

subject to the constraint
ẋ = f(x, u, t)

and boundary condition x(0) = x0.

Introduce the Lagrange multiplier function λ(t):

C = φ(x(T )) +

∫ T

0

dt [R(t, x(t), u(t))− λ(t)(f(t, x(t), u(t))− ẋ(t))]

= φ(x(T )) +

∫ T

0

dt[−H(t, x(t), u(t), λ(t)) + λ(t)ẋ(t))]

−H(t, x, u, λ) = R(t, x, u)− λf(t, x, u)
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Derivation PMP

The solution is found by extremizing C. This gives a necessary but not sufficient
condition for a solution.

If we vary the action wrt to the trajectory x, the control u and the Lagrange
multiplier λ, we get:

δC = φx(x(T ))δx(T )

+

∫ T

0

dt[−Hxδx(t)−Huδu(t) + (−Hλ + ẋ(t))δλ(t) + λ(t)δẋ(t)]

= (φx(x(T )) + λ(T )) δx(T )

+

∫ T

0

dt
[
(−Hx − λ̇(t))δx(t)−Huδu(t) + (−Hλ + ẋ(t))δλ(t)

]

For instance, Hx = ∂H(t,x(t),u(t),λ(t))
∂x(t) .
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We can solve Hu(t, x, u, λ) = 0 for u and denote the solution as

u∗(t, x, λ)

Assumes H convex in u.

The remaining equations are

ẋ = Hλ(t, x, u∗(t, x, λ), λ)

λ̇ = −Hx(t, x, u
∗(t, x, λ), λ)

with boundary conditions

x(0) = x0 λ(T ) = −φx(x(T ))

Mixed boundary value problem.
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Again mass on a spring

Problem

ẋ1 = x2, ẋ2 = −x1 + u

R(x, u, t) = 0 φ(x) = −x1

Hamiltonian

H(t, x, u, λ) = −R(t, x, u) + λTf(t, x, u) = λ1x2 + λ2(−x1 + u)

H∗(t, x, λ) = λ1x2 − λ2x1 − |λ2| u∗ = −sign(λ2)

The Hamilton equations

ẋ =
∂H∗

∂λ
⇒ ẋ1 = x2, ẋ2 = −x1 − sign(λ2)

λ̇ = −∂H
∗

∂x
⇒ λ̇1 = λ2, λ̇2 = −λ1

with x(t = 0) = x0 and λ(t = T ) = (1, 0).
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Example

Consider the control problem:

dx = udt

C =
α

2
x(T )2 +

∫ T

t0

dt
1

2
u(t)2

with initial condition x(t0).

Solve the control problem using the PMP formalism.
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Solution

The PMP recipe is

1. Construct the Hamiltonian

H(t, x, u, λ) = −R(t, x, u) + λf(t, u, x) = −1

2
u2 + λu

2. Construct the optimized Hamiltonian

H∗(t, x, λ) = H(t, x, u∗, λ) =
1

2
λ2 u∗ = λ

3. Solve the Hamilton equations of motion

dx

dt
=

∂H∗

∂λ
= λ

dλ

dt
= −∂H

∗

∂x
= 0
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with boundary conditions x(t0) and λ(t = T ) = −αx(T )1. The solution for λ
is constant λ(t) = λ = −αx(T ). The solution for x(t) is

x(t) = x(t0) + λ(t− t0)

Combining these two results, we get λ = −αx(T ) = −α(x(t0) + λ(T − t0)), or

λ =
−αx(t0)

1 + α(T − t0)

Since u∗ = λ, this is the optimal control law.

1Note, that φ(x) = α
2x

2 so that φx = αx.
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Brownian bridge

Due to certainty equivalence, this is also the optimal control law for

dx = udt+ dξ

C =

〈
α

2
x(T )2 +

∫ T

t0

dt
1

2
u(t)2

〉

For α→∞ the process is known as a Brownian bridge.

The control law and dynamics becomes

dx = udt+ dξ

u =
−x(t0)

T − t0

x(T )→ 0 w.p. 1.
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Relation to classical mechanics

The equations look like classical mechanics

ẋ = Hλ(t, x, u∗(t, x, λ), λ) x(0) = x0

λ̇ = −Hx(t, x, u
∗(t, x, λ), λ) λ(T ) = −φx(x(T ))

In classical mechanics H is called the Hamiltonian. Consider the time evolution of
H:

Ḣ = Ht +Huu̇+Hxẋ+Hλλ̇ = Ht

H(t, x, u, λ) = −R(t, x, u) + λf(t, u, x)

So, for problems where R, f do not explicitly depend on time, H is a constant of
the motion.
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Example

Consider the control problem:

dx = udt

C =

∫ T

t0

dt
1

2
u(t)2 + V (x(t))

with initial condition x(t0).

1. H(x, u, λ) = −1
2u

2 − V (x) + λu

2. u∗ = λ, H∗(x, λ) = 1
2λ

2 − V (x)

3.

ẋ =
∂H∗

∂λ
= λ λ̇ = −∂H

∗

∂λ
=
∂V (x)

∂x

Control cost V play role of minus potential energy.
Control solution has constant difference of kinetic energy and state cost
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Comments

The HJB method gives a sufficient (and often necessary) condition for optimality.
The solution of the PDE is expensive.

The PMP method provides a necessary condition for optimal control. This means
that it provides candidate solutions for optimality.

The PMP method is computationally less complicated than the HJB method
because it does not require discretization of the state space.

Optimal control in continuous space and time contains many complications related
to the existence, uniqueness and smoothness of the solution, particular in the
absence of noise. In the presence of noise many of these intricacies disappear.

HJB generalizes to the stochastic case, PMP does not (at least not easy).
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Stochastic differential equations

Consider the random walk on the line:

xt+1 = xt + ξt ξt = ±1

with x0 = 0. We can compute

xt =

t∑
i=1

ξi

Since xt is a sum of random variables, xt becomes Gaussian distributed with

〈xt〉 =

t∑
i=1

〈ξi〉 = 0

〈
x2
t

〉
=

t∑
i,j=1

〈ξiξj〉 =

t∑
i=1

〈
ξ2
i

〉
+

t∑
i,j=1,j 6=i

〈ξiξj〉 = t

Note, that the fluctuations ∝
√
t.
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Stochastic differential equations

In the continuous time limit we define

dxt = xt+dt − xt = dξ

with dξ an infinitesimal mean zero Gaussian variable with
〈
dξ2
〉

= νdt.

Then

d

dt
〈x〉 = lim

dt→0

〈
xt+dt − xt

dt

〉
= lim
dt→0

〈
dξ

dt

〉
= 0

d

dt

〈
x2
〉

= lim
dt→0

〈
x2
t+dt − x2

t

dt

〉
= lim
dt→0

〈
(xt + dξ)2 − x2

t

dt

〉
= lim
dt→0

〈
dξ2

dt

〉
= ν

So for initial state x0, 〈x〉 (t) = x0 and
〈
x2
〉

(t) = νt which fully specifies the
Gaussian distribution:

ρ(x, t|x0, 0) =
1√

2πνt
exp

(
−(x− x0)2

2νt

)
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Consider the stochastic differential equation

x(t+ dt) = x(t) + f(x(t), t)dt+ ξ(t)

ξ is a Wiener process with 〈ξ〉 = 0,
〈
ξ2
〉

= νdt.

The probability to find the particle at y at time t + dt given that it was at x at
time t is given by

p(y, t+ dt|x, t) = 〈δ(y − x− f(x, t)dt− ξ)〉ξ

where 〈〉ξ is expectation wrt the Wiener process.
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Kolmogorov backward equation

Define ψ(x, t) = p(z, T |x, t) the probability to reach a future state z at time T ,
given that it is currently at x, t. Clearly,

ψ(x, t) = p(z, T |x, t) =

∫
dyp(z, T |y, t+ dt)p(y, t+ dt|x, t)

=

∫
dyψ(y, t+ dt) 〈δ(y − x− f(x, t)dt− ξ)〉ξ

= 〈ψ(x+ f(x, t)dt+ ξ, t+ dt)〉ξ
= ψ(x, t) + dt∂tψ(x, t) + 〈f(x, t)dt+ ξ〉ξ∇ψ(x, t)

+
1

2

〈
(f(x, t)dt+ ξ)2

〉
ξ
∇2ψ(x, t)

Thus,

−∂tψ(x, t) = f(x, t)∇ψ(x, t) +
1

2
ν∇2ψ(x, t) ψ(x, T ) = δ(z − x)

This equation is known as the Kolmogorov backwards equation.
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Fokker Plank (forward) equation

We can similarly derive a forward equation for the quantity ρ(x, t) = p(x, t|x0, 0).

ρ(y, t+ dt) =

∫
dxp(y, t+ dt|x, t)ρ(x, t)

=

∫
dx 〈δ(y − x− f(x, t)dt− ξ)〉ξ ρ(x, t)

=
1

1 + f ′(y, t)dt
〈ρ(y − f(y, t)dt− ξ, t)〉ξ

=
1

1 + f ′(y, t)dt

〈
ρ(y, t)− (f(y, t)dt+ ξ)∇ρ(y, t) +

1

2
(f(y, t) + ξ)2∇2ρ(y, t)

〉
ξ

= ρ(y, t)−∇(f(y, t)ρ(y, t))dt+
1

2
ν∇2ρ(y, t)dt

Thus,

∂tρ(x, t) = −∇(f(x, t)ρ(x, t)) +
1

2
ν∇2ρ(x, t), ρ(x, 0) = δ(x− x0)
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Example: Brownian motion

dx = dξ
〈
dξ2
〉

= νdt

ρ(x, t) = p(x, t|x0, 0) =
1√

2πνt
exp

(
−(x− x0)2

2νt

)
ψ(x, t) = p(z, T |x, t) =

1√
2πν(T − t)

exp

(
− (x− z)2

2ν(T − t)

)
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Forward and backward drift

For

dx = f(x, t)dt+ ξ

The expected forward drift is

〈dx〉 = f(x, t)dt

The expected backward drift given x(t + dt) = y can be computed using Bayes’
rule:

p(y, t− dt|x, t) =
p(x, t|y, t− dt)ρ(y, t− dt)

ρ(x, t)

p(x, t|y, t− dt) = 〈δ(x− y − f(y, t− dt)dt− ξ)〉ξ
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〈x(t)− y(t− dt)〉x(t)=x =

∫
dy(x− y)p(y, t− dt|x, t)

=

∫
dy(x− y) 〈δ(x− y − f(y, t− dt)dt− ξ)〉 ρ(y, t− dt)

ρ(x, t)

=
1

ρ(x, t)

〈
1

1 + f ′(x, t)dt
(f(x, t)dt+ ξ)ρ(x− f(x, t)dt− ξ, t− dt)

〉
+O(dt2)

=
1

ρ(x, t)

1

1 + f ′(x, t)dt
〈(f(x, t)dt+ ξ)(ρ(x, t)− ξρ′(x, t)〉+O(dt2)

= f(x, t)dt− ν∇ log ρ(x, t)dt+O(dt2) ≡ f̃(x, t)dt

We see that the forward and backward drifts are different: given that we are at
time t at location x the expected future drift is given by f(x, t). The expected
past drift into x is given by f̃(x, t) = f(x, t)− ν∇ log ρ(x, t).
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Example: Brownian motion

dx = dξ x(0) = 0
〈
dξ2
〉

= νdt

ρ(x, t) =
1√

2πνt
exp

(
− x

2

2νt

)
f(x, t) = 0

f̃(x, t) = −x
t
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Lecture 3:
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Stochastic optimal control

Consider a stochastic dynamical system

dx = f(t, x, u)dt+ dξ

dξ Gaussian noise 〈dξidξj〉 = νij(t, x, u)dt.

The cost becomes an expectation:

C(t, x, u(t→ T )) =

〈
φ(x(T )) +

∫ T

t

dτR(t, x(t), u(t))

〉

over all stochastic trajectories starting at x with control path u(t→ T ).

Note, that u(t) as part of u(t → T ) is used at time t. Next move to x + dx and
repeat the optimization.
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Stochastic optimal control

We obtain the Bellman recursion

J(t, xt) = min
ut

R(t, xt, ut) + 〈J(t+ dt, xt+dt)〉

〈J(t+ dt, xt+dt)〉 =

∫
dxt+dtN (xt+dt|xt, νdt)J(t+ dt, xt+dt)

= J(t, xt) + dt∂tJ(t, xt) + 〈dx〉 ∂xJ(t, xt) +
1

2

〈
dx2
〉
∂2
xJ(t, xt)

〈dx〉 = f(x, u, t)dt〈
dx2
〉

= ν(t, x, u)dt

Thus,

−∂tJ(t, x) = min
u

(
R(t, x, u) + f(x, u, t)∂xJ(x, t) +

1

2
ν(t, x, u)∂2

xJ(x, t)

)
with boundary condition J(x, T ) = φ(x).
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Linear Quadratic control

The dynamics is linear

dx = [A(t)x+B(t)u+ b(t)]dt+

m∑
j=1

(Cj(t)x+Dj(t)u+ σj(t))dξj,
〈
dξjdξj′

〉
= δjj′dt

The cost function is quadratic

φ(x) =
1

2
xTGx

R(x, u, t) =
1

2
xTQ(t)x+ uTS(t)x+

1

2
uTR(t)u

In this case the optimal cost-to-go is quadratic in x:

J(t, x) =
1

2
xTP (t)x+ αT (t)x+ β(t)

u(t) = −Ψ(t)x(t)− ψ(t)
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Substitution in the HJB equation yields ODEs for P, α, β:

−Ṗ = PA+ A
T
P +

m∑
j=1

C
T
j PCj +Q− ŜT R̂−1

Ŝ

−α̇ = [A− BR̂−1
Ŝ]

T
α+

m∑
j=1

[Cj −DjR̂
−1
Ŝ]

T
Pσj + Pb

β̇ =
1

2

∣∣∣√R̂ψ∣∣∣2 − αTb− 1

2

m∑
j=1

σ
T
j Pσj

R̂ = R +

m∑
j=1

D
T
j PDj

Ŝ = B
T
P + S +

m∑
j=1

D
T
j PCj

Ψ = R̂
−1
Ŝ

ψ = R̂
−1

(B
T
α+

m∑
j=1

D
T
j Pσj)

with P (tf) = G and α(tf) = β(tf) = 0.
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Example

Find the optimal control for the dynamics

dx = (x+ u)dt+ dξ,
〈
dξ2
〉

= νdt

with end cost φ(x) = 0 and path cost R(x, u) = 1
2(Qx2 +Ru2).

The Ricatti equations reduce to

−Ṗ = 2P +Q−R−1P 2

−α̇ = (1−R−1P )α = 0

β̇ =
1

2
R−1α2 − 1

2
νP = −1

2
νP

with P (T ) = α(T ) = β(T ) = 0 and

u(x, t) = −P (t)x
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The solution is

P (t) = R
exp(2

√
1 +R−1Q(T − t))− 1

1

1+
√

1+R−1Q
exp(2

√
1 +R−1Q(T − t))− 1

1−
√

1+R−1Q

The optimal control is u(x, t) = −R−1P (t)x.

0 2 4 6 8 10
0

1
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6

t

 

 

P

β
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Comments

Note, that in the last example the optimal control is independent of ν, i.e. optimal
stochastic control equals optimal deterministic control.

In general:

• If Cj = Dj = 0 (only ’additive noise’) Ṗ , α̇ independent of noise σ, β̇ depends
on σ, but control independent of β. Thus control independent of σ (certainty
equivalence)

• If Cj 6= 0 or Dj 6= 0, control depends on Cj, Dj, σj (no certainty equivalence)
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Example: Portfolio selection

2 Consider a market with p stocks and one bond. The bond price process is subject
ot the following deterministic ordinary differential equation:

dP0(t) = r(t)P0(t)dt, P0(0) = p0 > 0 (1)

The other assets have price processes Pi(t), i = 1, . . . , p satisfying stochastic
differential equations

dPi(t) = Pi(t)

bi(t)dt+

m∑
j=1

σij(t)dξj(t)

 , Pi(0) = pi > 0 (2)

Consider an investor whose total wealth at time t is denoted by x(t)

x(t) =

p∑
i=0

Ni(t)Pi(t) (3)

2 This section is from [1] section 6.8 (pg. 335).
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with Ni the number of stocks/bond of type i. Then

dx(t) =

(
r(t)x(t) +

p∑
i=1

(bi(t)− r(t))ui(t)

)
dt+

p∑
i=1

m∑
j=1

σij(t)ui(t)dξj(t) (4)

with ui(t) = Ni(t)Pi(t), i = 1, . . . , p the portfolio of the investor.

The objective of the investor is to maximize the mean terminal wealth 〈x(tf)〉 and
minimize at the same time the variance

Σ2 =
〈
x(tf)2

〉
− 〈x(tf)〉2

This is a multi-objective optimization problem with an efficient frontier of optimal
solutions: for each given mean there is a minimial variance.

These pairs can be found by minimizing the single objective criterion

µΣ2 − 〈x(tf)〉 (5)

for different values of the weighting factor µ.
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This objective, however, is not an expectation value of some stochastic quantity
due to the 〈·〉2 term. Consider a slightly different problem, minimizing the objective〈

µx(tf)2 − λx(tf)
〉

(6)

which is of the standard stochastic optimization form. One can show that one can
construct a solution of Problem 5 by solving problem 6 for suitable λ(µ). 3

Our goal is thus to minimize eq. 6 subject to the stochastic dynamics eq. 4.

This is an LQ problem. The solution is computed from the Ricatti equations

ui(x, t) = ψi(t)x+ φi(t)

As an example we consider the simplest possible case: p = m = 1 and r, b, σ
independent of time.

3 and finding λ from
λ = 1 + 2µ

〈
x(tf)

〉
(λ, µ)

([1] Theorem 8.2 pg. 338)
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Efficient boundary
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Parameter values are: p = m = 1. Trading period is one year weekly. annual bond rate 5

% (r = 0.0009758), annual expected stock rate is 10 % (b = 0.0019), volatility σ = 2b.

x0 = 2. Shows var x versus 〈x〉 scatter plot for various values of µ. Small µ corresponds to

risky investments with high expected return and large fluctuation. µ→∞ corresponds to riskless

investment in bond only and a return of 5 %.

µ = 10 corresponds to 〈x〉 = 3 and
√
var = 0.2.
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Making money
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total wealth x

Simulation of optimal control with µ = 10, The optimal strategy is to borrow many stocks and

sell them as soon as the objective is achieved.

Indeed, 〈x〉 = 3 as expected. The strategy to get at this 50 % increase in wealth
is to buy many stocks and hope they will give the expected wealth increase. As
soon as this occurs, all stocks are sold and the money is put in the bank.
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Link between control and inference

General idea:
- Express the control problem as an inference problem

- Use efficient state-of-the-art inference methods
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Link between control and inference

General idea:
- Express the control problem as an inference problem

- Use efficient state-of-the-art inference methods

For instance:
- For LQ control problems the optimal control computation is equivalent to ’Kalman smoothing’.
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Link between control and inference

General idea:
- Express the control problem as an inference problem

- Use efficient state-of-the-art inference methods

Variational inference:
p(x1:n) = π(x1:n)/Z is a probability distribution, compute

p(x1) =
∑
x2:n

p(x1:n)
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Link between control and inference

General idea:
- Express the control problem as an inference problem

- Use efficient state-of-the-art inference methods

Variational inference:
p(x1:n) = π(x1:n)/Z is a probability distribution, compute

p(x1) =
∑
x2:n

p(x1:n)

Define free energy

F (q) =
∑
x1:n

q(x1:n) log
q(x1:n)

π(x1:n)

F is minimized by q = p.
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Link between control and inference

General idea:
- Express the control problem as an inference problem

- Use efficient state-of-the-art inference methods

Variational inference:
p(x1:n) = π(x1:n)/Z is a probability distribution, compute

p(x1) =
∑
x2:n

p(x1, x2:n)

Define free energy

F (q) =
∑
x1:n

q(x1:n) log
q(x1:n)

π(x1:n)

F is minimized by q = p.

Restrict minimization to simple distributions q(x1:n) = q1(x1) . . . qn(xn) and minimize

p(x1) ≈ q1(x1)
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Link between control and inference

General idea:
- Express the control problem as an inference problem

- Use efficient state-of-the-art inference methods

Efficient inference:
- Variational inference, TAP

- Belief propagation, EP, Cluster Variation Method, Survey propagation

- convex relaxations

- Monte Carlo Sampling
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Link between control and inference

General idea:
- Express the control problem as an inference problem

- Use efficient state-of-the-art inference methods

In particular:
- Consider a class of control problems for which the Bellman equation can be transformed in a

linear pde (using a log transform)

- ’Solve’ as a Feynman-Kac path integral
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Link between control and inference

General idea:
- Express the control problem as an inference problem

- Use efficient state-of-the-art inference methods

The log transform first used in QM:

h̄i∂tΨ = HΨ H(x, t) = V (x, t)−
h̄2

2
∂

2
x

Write

Ψ =
√
ρ exp

(
i
S

h̄

)
then

−∂tS =
1

2
(∇xS)

2 −
1

2
h̄

2∂
2
x

√
ρ

√
ρ

+ V

−∂tρ = ∇x(ρ∇xS)

Later used in Burgers Equation, and by Fleming and Mitter for control.
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Link between control and inference

General idea:
- Express the control problem as an inference problem

- Use efficient approximate inference methods

In particular:
- Consider a class of control problems for which the Bellman equation looks like the Mandelung

equation

- Use the log transform to convert it into a Schrödinger-like backward equation

- Identify this equation as a Kolmogorov backward equation.

- Identify the corresponding forward diffusion process
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Path integral control

dxi = fi(x, t)dt+
∑
j

gia(x, t)(uadt+ dξa)

C(t, x, u(t→ T )) =

〈
φ(x(T )) +

∫ T

t

dsV (x, t) +
1

2

∑
ab

Rabuaub

〉

with 〈dξadξb〉 = νabdt.

The cost is an expectation over all stochastic trajectories starting at x with control
path u(t→ T ).

The stochastic HJB equation becomes

−∂tJ = min
u

(
1

2
uTRu+ V + (∇J)T (f + gu) +

1

2
Tr
(
gνgT∇2J

))
which we need to solve with end boundary condition J(x, tf) = φ(x).
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Path integral control

Minimization wrt u yields: 4

u = −R−1gT∇J

−∂tJ = −1

2
(∇J)TgR−1gT (∇J) + V + (∇J)Tf +

1

2
Tr
(
gνgT∇2J

)
(our ’Mandelung equation’)

Define ψ(x, t) through J(x, t) = −λ logψ(x, t) and impose a relation between R
and ν:

R = λν−1

with λ a positive number.

4ua = −
∑
b

(
R−1

)
ab
gib(x, t)

∂J(x,t)
∂xi
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The relation R = λν−1

dxi = fi(x)dt+
∑
a

gia(x)(uadt+ dξa)

C =

〈
φ(x(T )) +

∫ T

t

dsV (x) +
1

2

∑
ab

Rabuaub

〉

Noise and control act in the same sub-space. Directions where noise is large,
control is cheap and visa versa.
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The relation R = λν−1

dxi = fi(x)dt+
∑
a

gia(x)(uadt+ dξa)

C =

〈
φ(x(T )) +

∫ T

t

dsV (x) +
1

2

∑
ab

Rabuaub

〉

Noise and control act in the same sub-space. Directions where noise is large,
control is cheap and visa versa.

Can be alternatively understood as a KL divergence between controlled and
uncontrolled trajectories:

∑
τ

p(τ |u) log
p(τ |u)

p(τ |0)
=

∫ T

0

dt
1

2
uTν−1u

λ plays the role of temperature.
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Path integral control

Then the HJB becomes linear in ψ

∂tψ =

(
V

λ
− fT∇− 1

2
Tr
(
gνgT∇2

))
ψ

with end condition ψ(x, T ) = exp(−φ(x)/λ) (our Kolmogorov backward equation)
5

5 We sketch the derivation for g = 1.

−
1

2
(∇J)

T
R
−1

(∇J) +
1

2
Tr
(
ν∇2

J
)

= −
1

2

∑
ij

∇iJR
−1
ij ∇jJ +

1

2
λ
∑
ij

R
−1
ij ∇ijJ

=
1

2

∑
ij

R
−1
ij

(
−∇iJ∇jJ + λ∇ijJ

)
=

1

2

∑
ij

R
−1
ij

(
−λ2 1

ψ
∇ijψ

)

since

−∇iJ∇jJ = −λ2 1

ψ2
∇iψ∇jψ
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Path integral control

The linearity allows us to revers the direction of time.

We identify ψ(x, t) ∝ p(z, T |x, t), then the Bellman equation

∂tψ =

(
V

λ
− fT∇− 1

2
Tr
(
gνgT∇2

))
ψ

can be interpreted as a Kolmogorov backward equation for the process

dxi = fi(x, t)dt+
∑
a

gia(x, t)dξa

x(t) = † with probability V (x, t)dt/λ

x(T ) = † with probability φ(x)/λ

∇ijJ = −λ∇i∇j logψ = −λ∇i
(

1

ψ
∇jψ

)
= λ

1

ψ2
∇iψ∇jψ − λ

1

ψ
∇ijψ
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Path integral control

The correspondong forward equation is

∂tρ = −V
λ
ρ−∇(fρ) +

1

2
Tr∇2gνgTρ

with ρ(x, t) = p(x, t|z, 0) and ρ(x, 0) = δ(x− z).
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Feynman-Kac formula

Denote Q(τ |x, s) the distribution over uncontrolled trajectories that start at x, t:

dx = f(x, t)dt+ g(x, t)dξ

with τ a trajectory x(t→ T ). Then

ψ(x, t) =

∫
dQ(τ |x, t) exp

(
−S(τ)

λ

)
S(τ) = φ(x(T )) +

∫ T

t

dsV (x(s), s)

ψ can be computed by forward sampling the uncontrolled process.
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Posterior distribution over optimal trajectories

ψ(x, t) can be interpreted as a partition sum for the distribution over paths under
optimal control:

P (τ |x, t) =
1

ψ(x, t)
Q(τ |x, t) exp

(
−S(τ)

λ

)

The optimal cost-to-go is a free energy:

J(x, t) = −λ log

∫
dQ(τ |x, t) exp

(
−1

λ
S(τ))

)

The optimal control is an expectation wrt P :

u(x, t)dt = −R−1gT (x, t)∇xJ(x, t)dt =

∫
dP (τ)dξ(τ) = 〈dξ〉P
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Recap

Control problem:

dx = fdt+ g(udt+ dξ) C =

〈
φ+

∫ T

t

V +
1

2
u
T
Ru

〉
R = λν

−1

HJB is linear:

∂tψ = Hψ J = −λ logψ

Solution is given by Feynman-Kac formula: ψ =
∫
dQ(τ) exp

(
−S(τ)

λ

)
.

Q distribution over uncontrolled dynamics (u = 0).

Posterior distribution over optimal controlled trajectories: P (τ) = 1
ψQ(τ) exp

(
−S(τ)

λ

)
.

Optimal control is expectation value: udt = 〈dξ〉P .
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Delayed choice

dx = utdt+ dξt
〈
ξ2
t

〉
= νdt 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

x

V = 0, path cost is 1
2u

2 and end cost φ(z = ±1) = 0, φ(z) =∞ else encodes two
targets at z = ±1 at t = T .

PI recipe:

1.

ψ(x, t) =

∫
dQ(τ |x, t) exp(−S(τ)/λ)

S(τ) = φ(x(T ))

ψ(x, t) =

∫
dzq(z, T |x, t) exp(−φ(z)/λ) = q(1, T |x, t) + q(−1, T |x, t)

q(z, T |x, t) = N (z|x, ν(T − t))
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2. Compute

J(x, t) = −λ logψ(x, t) =
1

T − t

(
1

2
x

2 − ν(T − t) log 2 cosh
x

ν(T − t)

)
3.

u(x, t) = −∇J(x, t) =
1

T − t

(
tanh

x

ν(T − t)
− x
)
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Delayed choice

dx = udt+ dξ
〈
ξ2
〉

= νdt

V = 0, path cost is 1
2u

2, φ(x = ±1) = 0 and φ(x) =∞, else.
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Delayed choice

dx = udt+ dξ
〈
ξ2
〉

= νdt

V = 0, path cost is 1
2u

2, φ(x = ±1) = 0 and φ(x) =∞, else.
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Delayed choice

dx = udt+ dξ
〈
ξ2
〉

= νdt

V = 0, path cost is 1
2u

2, φ(x = ±1) = 0 and φ(x) =∞, else.
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”When the future is uncertain, delay your decisions.”
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Estimating optimal control by sampling

For given x, t, the optimal control is given by

udt =

∫
dP (τ)dξ(τ) =

∫
dQ(τ) exp(−S(τ)/λ)dξ(τ)∫
dQ(τ) exp(−S(τ)/λ)

We generate N trajectories xµt:T starting at x, t with initial noise dξµ. Define

Sµ =

T∑
s=t

V (xµs , s)dt+ φ(xµT )

udt =

∑
µ dξ

µ exp(−Sµ/λ)∑
µ exp(−Sµ/λ)

Unbiased, but inefficient.
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Importance sampling

Efficiency may be improved by sampling with u 6= 0.

ψ(x, t) =

∫
dQ(τ) exp(−S(τ)/λ) =

∫
dQ′(τ)

dQ(τ)

dQ′(τ)
exp(−S(τ)/λ)

with Q′(τ |x, t) from the stochastic process

dx = f(x, t)dt+ g(x, t)(û(x, t)dt+ dξ)
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How to control a device?

Plant is unknown

Exploration of state space

Motor babbling in infants
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How to control a device?

Plant is unknown

Exploration of state space

Motor babbling in infants

Problem for brains and for robots
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Control of a deterministic unknown plant

We consider a deterministic control problem of the form

dxi = fi(x, t)dt+
∑
a

gia(x, t)uadt

C =

∫ T

0

1

2
uTRu+ V (x, t)

the problem is to compute the optimal control law ua(x, t) from a sequence of
states that we generate with some chosen control

uµ0:T , x
µ
0:T , µ = 1, . . . , N

Plant

x
t

u
t

x
t+dt

Bert Kappen ICTP, August 2012 99



Suppose that we choose random controls from a Gaussian distribution: uadt =
dξa, ν = λR−1. The dynamics becomes

dxi = fi(x, t)dt+
∑
a

gia(x, t)dξa

the uncontrolled dynamics of the stochastic control

dxi = fi(x, t)dt+
∑
a

gia(x, t)(uadt+ dξa)

C =

〈∫ T

0

1

2
uTRu+ V (x, t)

〉

which is equivalent to the original control problem when λ→ 0.
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Acrobot

q1(0) = q2(0) = −π/2, q̇1(0) = q̇2(0) = 0, maximize final height

H = l1 sin q1(T ) + l2 sin q2(T )
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Acrobot

d11(q)q̈1 + d12(q)q̈2 + h1(q, q̇) + φ1(q) = 0

d21(q)q̈1 + d22q̈2 + h2(q, q̇) + φ2(q) = u

We can write these equations in standard form

dxi = fi(x)dt+ gi(x)udt

with x1 = q1, x2 = q2, x3 = q̇1, x4 = q̇2 and

f1(x) = x3 g1(x) = 0
f2(x) = x4 g2(x) = 0

f3(x) = −d22(h1+φ1)+d12(h2+φ2)
D g3(x) = −d12

D

f4(x) = d12(h1+φ1)−d11(h2+φ2)
D g4(x) = d11

D
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Acrobot
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100 iterations. At each iteration 50 stochastic trajectories were generated. The new control was

computed from a deterministic trajectory. Noise was lowered at each iteration. Top left: final

height for each stochastic trajectory for each iteration (red) and for each deterministic solution

(blue).
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Acrobot

Result after 100 trials
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Application in robotics

Compares favorably to state-of-the-art RL methods (Theodorou et al. 2010-2012)
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KL control theory

x denotes state of the agent and x1:T is a path through state space from time
t = 1 to T .

q(x1:T |x0) denotes a probability distribution over possible future trajectories given
that the agent at time t = 0 is is state x0, with

q(x1:T |x0) =

T∏
t=0

q(xt+1|xt)

q(xt+1|xt) implements the allowed moves.

R(x1:T ) =
∑T
t=1R(xt) is the total cost when following path x1:T .

The KL control problem is to find the probability distribution p(x1:T |x0) that
minimizes

C(p|x0) =
∑
x1:T

p(x1:T |x0)

(
log

p(x1:T |x0)

q(x1:T |x0)
+R(x1:T )

)
= KL(p||q) + 〈R〉p
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KL control theory

p(x1:T |x0) and q(x1:T |x0) distributions over trajectories.

Given q, find p that minimizes

C(p|x0) = KL(p||q)− 〈R〉p

The solution and the optimal control cost are

p(x1:T |x0) =
1

Z(x0)
q(x1:T |x0) exp (R(x1:T ))

C = − logZ(x0)

Z(x0) =
∑
x1:T

q(x1:T |x0) exp (R(x1:T ))

NB: Z(x0) is an integral over paths.
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KL control theory

The optimal control at time t = 0 is given by

p(x1|x0) =
∑
x2:T

p(x2:T |x0) ∝ q(x1|x0) exp(R(x1))β1(x1)

with βt(x) the backward messages.

xxx

....

x
0 T−2 T−1 T

βT (xT ) = 1

βt−1(xt−1) =
∑
xt

q(xt|xt−1) exp(R(xt))βt(xt)
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KL control theory

The control computation is ’reduced’ to a (graphical model) inference problem.

Dynamics: ptxy(π) → DP → Bellman Equation
Cost: C(π0:T ) = 〈R〉

↓ ↓
restricted class approximate J

↓ ↓
Free dynamics: qtxy → approx inference → Optimal π
C = KL(p||q exp(R))

Optimal solution:

p(x1:T |x0) =
1

Z
q(x1:T |x0) exp(R(x0:T ))

Intractable, but standard approximate inference problem.
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Link to contiuous path integral formulation

The previous continuous path integral control can be obtained as a special case of
the KL control formulation.

p(xt+dt|xt, ut) = N (xt+dt|xt + f(xt, t)dt+ utdt, ν)

q(xt+dt|xt) = N (xt+dt|xt + f(x, t)dt, ν)

C(p|x0) = KL(p|q)− 〈R〉 =
∑
xdt:T

p(xdt:T |x0)

(
T∑
t=dt

1

2
uTt ν

−1ut −R(xt)

)
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Multi Agent cooperative game

Model of cooperation: either hunt a hare alone or a stag together.

Stag Hare
Stag 3,3 0, 1
Hare 1, 0 1,1

We define the KL-stag-hunt game as a multi-agent version where agents move on
a grid to hunt stag or hare.
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Approximate inference of the KL-stag-hunt problem

M = 10 agents, N = 400 locations, 1026 states per time slice

Sequential BP. If converges, converges in less than 500 iterations. Trajectories are
marginal beliefs.
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Phase transition (?)
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Average cost KL control (Todorov 2006)

When T →∞ and q ergodic the backward message recursion

βt−1(xt−1) =
∑
xt

H(xt−1, xt)βt(xt) H(x, y) = q(y|x) exp(R(y))

becomes the computation of the Perron-Frobenius eigen pair (β(·), λ):

Hβ = λβ H(x, y) = q(y|x) exp(R(x))

The optimal control satisfies

p(y|x) = q(y|x) exp(R(x))
β(y)

λβ(x)

C = − log λ

J(x) = − log β(x)
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KL-learning [Bierkens, Kappen 2012]

• Goal: find Perron-Frobenius solution Hz = λz, with H = [q(y|x) exp(−R(x))],
while stepping through state space according to q and observing incurred cost.

• Algorithm (KL-learning):

z ← (1/n, . . . , 1/n), λ > 0, x← any state
for m = 1 : M do
y ← independent draw from q(·|x)
∆← exp(−R(x))z(y)/λ− z(x)
z(x)← z(x) + γ∆
λ← λ+ γ∆
x← y

end for

• Invariants: z > 0, λ = ||z||1.

Generalization of z-learning (Todorov) to λ 6= 1
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Numerical experiment
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Summary and discussion

Control as inference links control to machine learning and statistical physics
- efficient computational methods
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Summary and discussion

Control as inference links control to machine learning and statistical physics
- efficient computational methods

- insight in the role of noise: phase transitions (delayed choice and collaboration)
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Summary and discussion

Control as inference links control to machine learning and statistical physics
- efficient computational methods

- insight in the role of noise: phase transitions (delayed choice and collaboration)

- favorable comparison with state-of-the-art RL methods in robotics (Theodorou 2010-2012)
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Summary and discussion

Control as inference links control to machine learning and statistical physics
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- insight in the role of noise: phase transitions (delayed choice and collaboration)
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Further reading

http://www.snn.ru.nl/~bertk/

http://www.snn.ru.nl
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Other topics

- Variational approximation, n joint arm (Kappen tutorial 2011)

- Sampling approach to control of robotics arm (van den Broek 2011)

- Coordination of continuous agents using MF and BP (Wiegerinck et al. 2006, van den Broek et

al. 2006)

- Risk sensitive path integral control (van den Broek 2010)

- Inference and control (Kappen tutorial 2011)
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The variational method

Consider an arm consisting of n joints of length 1. The location of the ith joint in the 2d plane is

xi =

i∑
j=1

cos θi yi =

i∑
j=1

sin θi

with i = 1, . . . , n. Each of the joint angles is controlled by a variable ui. The dynamics of each

joint is

dθi = uidt+ dξi, i = 1, . . . , n

with dξi independent Gaussian noise with
〈
dξ2

i

〉
= νdt. Denote by ~θ the vector of joint angles,

and ~u the vector of controls.
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The variational method

The expected cost for the control path ~ut:T is

C(~θ, t, ~ut:T ) =

〈
φ(θ(T )) +

∫ T

t

1

2
~u
T
(t)~u(t)

〉

φ(~θ) =
α

2

(
(xn(~θ)− xtarget)

2
+ (yn(~θ)− ytarget)

2
)

with xtarget, ytarget the target coordinates of the end joint.
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The variational method

Because V = 0, f = 0, g = 1, the solution to uncontrolled dynamics is Gaussian 6

ψ(~θ0, t) =

∫
d~θ

(
1√

2πν(T − t)

)n

exp

(
−

n∑
i=1

(θi − θ0
i )

2
/2ν(T − t)− φ(~θ)/ν

)

The control at time t for all components i is computed from Eq. ?? and is given by

ui =
1

T − t

(
〈θi〉 − θ0

i

)
(7)

where 〈θi〉 is the expectation value of θi computed wrt the probability distribution

p(~θ) =
1

ψ(~θ0, t)
exp

(
−

n∑
i=1

(θi − θ0
i )

2
/2ν(T − t)− φ(~θ)/ν

)
(8)

6This is not exactly correct because θ is a periodic variable. One should use the solution to diffusion on a circle
instead. We can ignore this as long as

√
ν(T − t) is small compared to 2π.
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The variational method

We compute the expectations
〈
~θ
〉

by introducing a factorized Gaussian variational distribution

q(~θ) =
∏n

i=1N ((θi|µi, σi). We compute µi and σi by by minimizing the KL divergence

between q(~θ) and p(~θ):

KL =

∫
dθq(θ) log

q(θ)

p(θ)

= −
n∑
i=1

log
√

2πσ2
i + logψ(~θ0, t) +

1

2ν(T − t)

n∑
i=1

(
σ

2
i + (µi − θ0

i )
2
)

+
1

ν

〈
φ(~θ)

〉
q

where we omit irrelevant constants.
〈
φ(~θ)

〉
can be computed in closed form. Setting the

derivative of the KL with respect to µi and σ2
i equal to zero:

µi ← θ
0
i + α(T − t)

(
sinµie

−σ2
i /2(〈xn〉 − xtarget)− cosµie

−σ2
i /2(〈yn〉 − ytarget)

)
1

σ2
i

←
1

ν

(
1

(T − t)
+ αe

−σ2
i − α (〈xn〉 − xtarget) cosµie

−σ2
i /2 − α (〈yn〉 − ytarget) sinµie

−σ2
i /2

)
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The variational method
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The variational method
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The variational method
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Note, that the computation of 〈θi〉 solves the coordination problem between the different joints.

Once 〈θi〉 is known, each θi is steered independently to its target value 〈θi〉 using the control law

Eq. 7. The computation of 〈θi〉 in the variational approximation is very efficient and can be used

to control arms with hundreds of joints.
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Coordination of agents

n agents with independent dynamics

dxα = (fα(xα, t) + uα) + dξα, α = 1, . . . , n

should coordinate their actions to minimize a

cost at a future time t = T :

φ(y1, . . . , yn) yα ∈ {z1, . . . zk}

and φ =∞ elsewhere.
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Coordination of agents

Then,

Ψ(x1, . . . , xn, t) =

∫
dy1 . . . dyn

∏
α

ρ(yα, T |xα, t) exp(−φ(y1, . . . , yn)/ν)

=
∑
~y

exp(−E(~y|~x, t)/ν)

p(~y) =
1

Z
exp(−E(~y|~x, t)/ν)

uα(~x, t) = −∂xαJ =

〈
∂ log ρ(yα, T |xα, t)

∂xα

〉
with ~x = (x1, . . . , xn), ~y = (y1, . . . , yn).

E has a graphical model structure if φ has.
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Pseudo code

Loop:

1. Compute the cost and its log derivative for each agent to move to each target:

ρ(zi, T |xα, t), i = 1, . . . , k, α = 1, . . . , n

This path integral can be estimated using MC sampling or variational approximation.

2. Compute uα using graphical model inference in p(~y) (exact, BP, MF).
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A simple 1d example

Intrinsic dynamics fα = 0, V (x1, . . . , xn) = 0:

p(yα, T |xα, t) ∝ exp(−(yα − xα)
2
/2ν(T − t))

End cost φ(y1, . . . , yn) =
∑k

j=1(nj(~y) − nj)2, with nj(~y) the # of agents that go to target

j.

Optimal control is for agent α is

uα =
1

T − t
(〈yα〉 − xα)
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A simple 1d example
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A simple 1d example
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Nonlinear Coordination

Agents a = 1, . . . , n in 2D:

dxa(t) = va(t) cosϕa(t) dt

dya(t) = va(t) sinϕa(t) dt

dva(t) = ua(t)dt+ dξa(t)

dϕa(t) = ωa(t)dt+ dζa(t)

Initial states O, va(0) = 0, ϕa(0) = 0

Targets X, va(T ) = 0, ϕa(T ) = 0

Sample paths specified at

ti = t+ i dt,

i = 0, . . . , 6, dt = (T − t)/6

Example of 10 agents & 10 targets:
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Computation Time

Inference methods:

Junction Tree (· − ·)
MF (—)

(100 sample paths per agent-target)

CPU time (s) vs. number of agents:
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(# agents = # targets)

JT : exponential in number of agents

(intractable for # agents > 10)

MF : polynomial in number of agents
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Risk sensitive control

It is relatively straightforward to generalize the path integral method to optimize a cost of the form

C̃ = φ(xT ) +

∫
1

2
u
T
Ru+ V (x)

C =
1

θ
log
〈

exp(θC̃)
〉

For θ = 0 the risk neutral control is recovered. For θ small:

C =
〈
C̃
〉

+
θ

2

(〈
C̃

2
〉
−
〈
C̃
〉2
)

+ h.o.

θ > 0 is risk averse, θ < 0 is risk seeking.

vd Broek et al. UAI 2010
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Risk sensitive control

We illustrate the behavior for the (well known) LQ case. V = f = 0, φ = α/2x2.

The optimal control is given by

u =
−αx

R + α(T − t)(1− νRθ)

For θ < 0 control is weaker

For 0 < θ < 1/Rν control is stronger

In both cases control increases with time.

For θ > 1/Rν, control is only well-defined when the denominator is positive:

α(T − t) <
R

νRθ − 1

Control decreases with time. For larger time-to-go, the expected cost is infinite.

vd Broek et al. UAI 2010
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Inference and control

As an example of the intricacies of joint inference and control , consider the simple LQ control

problem [2, 3]

dx = αudt+ dξ (9)

C(x0, θ0, u(0→ T )) =

〈
φ(x(T )) +

∫ T

0

dtR(x, u, t)

〉
(10)

with α unobserved and x observed. Path cost R(x, u, t) and end cost φ(x) and noise variance

ν are given.

Although α is unobserved, we have a means to observe α indirectly through the sequence

xt, ut, t = 0, . . .. Each time step we observe dx and u and we can thus update our belief about

α using the Bayes formula:

pt+dt(α|dx, u) ∝ p(dx|α, u)pt(α) (11)

p(dx|α, u) is Normal in dx with variance νdt

pt(α) our belief at time t about the values of α
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The information that we receive about α increases with u, because the αudt term dominates the

dξ term. However, large u values are more costly and also may drive us away from our target

state x(T ).

Thus, the optimal control is a balance between optimal inference and minimal control cost.

The solution is to augment the state space with parameters θt (sufficient statistics) that describe

pt(α) = p(α|θt) and θ0 known, which describes our initial belief in the possible values of α. The

cost that must be minimized is

C(x0, θ0, u(0→ T )) =

〈
φ(x(T )) +

∫ T

0

dtR(x, u, t)

〉
(12)

where the average is with respect to the noise dξ as well as the uncertainty in α.

NB: the average over α depends on θt which is not known beforehand.
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For simplicity, consider the example that α attains only two values α = ±1. Then

pt(α|θ) = σ(αθ), with the sigmoid function σ(x) = 1
2(1 + tanh(x)). The update equation

Eq. 11 implies a dynamics for θ:

dθ =
u

ν
dx =

u

ν
(αudt+ dξ)

7

With zt = (xt, θt) we obtain a standard HJB Eq.

−∂tJ(t, z)dt = min
u

(
R(t, x, u)dt+ 〈dz〉z ∂zJ(z, t) +

1

2

〈
dz

2
〉
z
∂

2
zJ(z, t)

)
with boundary condition J(z, T ) = φ(x) (NB independent of θ).

7The rhs of the Bayes rule is

p(dx|α, u)p(α|θt) ∝ exp

(
−

(dx− αudt)2

2νdt

)
exp(αθt) ∝ exp

(
dxαu

ν
+ αθt

)
= exp

(
α

(
θt +

dxu

ν

))
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The result is

−∂tJ = min
u

(
R(x, u, t) + ᾱu∂xJ +

u2ᾱ

ν
∂θJ +

1

2
ν∂

2
xJ +

1

2

u2

ν
∂

2
θJ + u∂x∂θJ

)
8 with boundary conditions J(x, θ, T ) = φ(x).

Thus, the dual control problem (joint inference on α and control problem on x) has become an

ordinary control problem in x, θ (Florentin, 1962).

Note that if R, φ are quadratic and α is known, this is an LQ problem. However, when α is not

known, the corresponding dual control problem is not LQ (because of the additional u dependent

terms).

8 The expectation values appearing in this equation are conditioned on (xt, θt) and are averages over p(α|θt) and

the Gaussian noise. 〈dx〉x,θ = ᾱudt, 〈dθ〉x,θ = ᾱu2

ν dt,
〈
dx2
〉
x,θ

= νdt,
〈
dθ2
〉
x,θ

= u2

ν dt, 〈dxdθ〉 = udt,

with ᾱ = tanh(θ) the expected value of α for a given value θ.
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Probing
x=−2

u
t →

θ
t
 →

1

−1

Dual control solution with end cost φ(x) = x2 and path cost
∫ tf
t dt′12u(t′)2 and ν = 0.5.

Plot shows the deviation of the control from the certain case: ut(x, θ)/ut(x, θ = ±∞) as a

function of θ for different values of t and x = 2. The curves with the larger values are for larger

times-to-go.

’Probing’: u is much larger when α is uncertain (θ small) then when α is certain θ = ±∞.

Bert Kappen ICTP, August 2012 146



Symmetry breaking and non-differentiability of J

The observed probing behavior arises as the result of a symmetry breaking in the right hand side

of the Bellman equation.
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(k) t = T − 2 (l) t = T − 3

Figure 1: Rhs of the Bellman equation as a function of u and its derivative for θ = 0. The

different curves correspond to different values of x. Explorative behavior (u 6= 0) arises in the

no-knowledge state θ = 0 by proposing non-zero controls. The singularity is absent at t = T − 2

and present starting from t = T − 3.
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Symmetry breaking and non-differentiability of J

As a result of the local minima in the Bellman optimization, the optimal value function is not

differentiable.

The optimal cost-to-go is convex in the belief [4].
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Left) Jt(x, θ) for t = T − 2, x = −2 (grey) and t = T − 2, x = −6 (black) versus θ Right)

Same as left, but as a function of the belief p = p(b = 1|θ).
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