
Extra exercises
1. Solve the mass on the spring problem discussed in the tutorial on slides 32–35, 40

such that the end velocity is maximal, i.e. φ(x) = −x2.

2. Consider the control problem:

dx = udt + dξ

C =
〈

1
2

x(T )2 +

∫ T

t0
dt

1
2

u(t)2
〉

with initial condition x(t0) and
〈
dξ2
〉
= νdt.

(a) Solve the control problem in the deterministic case ν = 0 using the PMP
formalism.

(b) Solve the control problem in the stochastic case using the Bellman equa-
tion.

(c) Solve the control problem in the stochastic case using the path integral
control methods and the Fokker Planck equation.

3. Consider the controlled random walk in one dimension

dx = udt + dξ

with initial position x at t = 0 and noise variance
〈
dξ2
〉
= νdt. When u = 0, the

solution for the probability density at time t satisfies the Fokker-Planck equation

∂tρ(y, t|x, 0) =
1
2
ν∂2

yρ(y, t|x, 0)

(a) Give an expression for the solution ρ(y, t|x, o). Show that the solution sat-
isfies the Fokker Planck equation.

(b) Assume that there are two targets at t = T at locations x = ±1. To make
sure we arrive at the targets we define an end-cost function φ that has delta
peaks at the targets:

φ(x(T )) =

0 x(T ) = ±1
∞ otherwise

Compute the optimal cost-to-go for any x, t using the path integral formal-
ism. Use R = 1 for the scaling of the control cost.

(c) Derive that the optimal control satisfies

u∗(t, x) =
tanh(x/(ν(T − t)) − x

T − t

4. Write a Matlab program for the control problem in exercise 3.

(a) By varying ν,T , study numerically how the optimal control depends on
these parameters.

(b) Explain in words the delayed choice mechanism.
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5. Consider the mountain car problem. A car is at the bottom of a valley and can
accelerate forward or backwards. The problem is to find a control strategy that
gets the car out of the valley. L(x) is the shape of the valley. A definition of L
can be found just below the exercise. Gravitational force is Fg = −g sinα, with

tanα = L′ = dL
dx the slope. Since −π/2 < α < π/2 we have cosα =

√
1 − sin2 α

and
Fg(x) = −g

L′(x)√
1 + L′2(x)

The second order system is described by position x and velocity v. The dynamics
is

dx = vdt

dv = Fg(x)dt + udt + dξ

The cost is

C(u) =
〈
φ(x(T ) +

∫ T

0
dt

R
2

u2
〉

with φ(x) = 0 for xmin < x < xmax and φ(x) = A otherwise. Take A = −1 and
−xmin = xmax = 2, R = ν = T = g = 1. Feel free to change the values.

(a) Take x(0) = 0.5 and v(0) = 0. Simulate the uncontrolled dynamics and vary
the parameters such that 1) the problem is too easy and all trajectories reach
the top of the hill and 2) the problem is not too hard that no trajectories
reach the top of the hill.

(b) With the parameter values found above, compute the optimal cost to go
J(x, v, t = 0) for x = −2 : 0.1 : 2 and v = −2 : 0.1 : 2 using MCMC. This
is done by running n times the uncontrolled dynamics for each x, v pair:

J(x, v, t = 0) = −λ log

1n
n∑
µ=1

exp(−φ(x(T ))/λ)


Plot J(x, v, t = 0). Interpret the result.

(c) Design an optimal controller using the formula u(x, t) = 1
dt
EdWte−S

Ee−S . x is the
current state (position and velocity), t is the current time. dt is the time
step. In theory, this should be infinitely small, but in practice better results
are obtained with a quite large dt (for instance 0.1). The expressions are
estimated with n trajectories, all starting at x, t as

Ee−S =
1
n

n∑
µ=1

exp

−dt
N∑

i=N1

V(xµi )


EWte−S =

1
n

n∑
µ=1

dWµ
t exp

−dt
N∑

i=N1

V(xµi )


with t = N1dt and T = Ndt. Note, that you can estimate both numerator
and denominator from the same batch of samples.
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function shape = L(x)

shape = -1 - 1/2*(tanh(2*x + 2) - tanh(2*x - 2));
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