1.3

The Dynamic Programming Algorithm Chap. 1

THE DYNAMIC PROGRAMMING ALGORITHM

The dynamic programming (DP) technique rests on a very simple
idea, the principle of optimality. The name is due to Bellman, who con-
tributed a great deal to the popularization of DP and to its transformation

into a systematic tool. Roughly, the principle of optimality states the fol-
lowing rather obvious fact.

Principle of Optimality

Let 7* = {Bg 53, . ., Ki.1} be an optimal policy for the basic prob-
lem, and assume that when using 7+, a given state z; occurs at time
t with positive probability. Consider the subproblem whereby we are
at x, at time i and wish to minimize the “cost-to-go” from time ito

time NV
N-1
Efon(zn)+) g (@, (i), wy) b
k=i
Then the truncated policy {uf, pur ..., My 1} is optimal for this sub-
problem.

.

The intuitive justification of the principle of optimality is very simple.

If the truncated policy {u}, Eipts--es M7y _1} were not optimal as stated, we

would be able to reduce the cost further by switching to an optimal policy
for the subproblem once we reach z;. For an auto travel analogy, suppose
that the fastest route from Los Angeles to Boston passes through Chicago.
The principle of optimality translates to the obvious fact that the Chicago
to Boston portion of the route is also the fastest route for a trip that starts
from Chicago and ends in Boston.

The principle of optimality suggests that an optimal policy can be
constructed in piecemeal fashion, first constructing an optimal policy for
the “tail subproblem” involving the last stage, then extending the optimal

policy to the “tail subproblem” involving the last two stages, and continuing
in this manner until an optimal policy for the

entire problem is constructed.
The DP algorithm is based on this idea. We introduce the algorithm by
means of an example.

The DP Algorithm for the Inventory Control Example

Consider the inventory control example of the previous section and
the following procedure for determining the optimal ordering policy starting
with the last period and proceeding backward in time.

Sec. 1.3 The Dynamic Programming Algorithm 17

Period N — 1: Assume that at the beginning of period N — 1 the stock
is zy-1. Clearly, no matter what happened in the past, the inventory
manager should order the amount of inventory that minimizes over u N—1 =
0 the sum of the ordering cost and the expected terminal holding/shortage
cost cun—1 + E{R(zn)}, which can be written as

aun-1+ E {R(@n-1+un_y— Wy 1)}
wWN-1

Adding the holding/shortage cost of period N — 1, the optimal cost for the
last period (plus the terminal cost) is

In-1(zn-1) =r(zN-1)

+ min |cuy_1+ E ANAHZL+§2L1‘EZLZ ;
uUN-120 Wh 1

Naturally, Jy_1 is a function of the stock Ty—1. It is calculated either
analytically or numerically (in which case a table H.Cmoa for oon:ucﬁwﬁ
storage of the function Jy_1). In the process of om_oiwﬂsm. JNn_1, we obtain
the optimal inventory policy B _1(zn-1) for the last period; i _q(z E.Lv
is the value of uy_; that minimizes the right-hand side of the preceding
equation for a given value of zx_;.

Period N — 2: Assume that at the beginning of period N — 2 the stock is
Tn-2. It is clear that the inventory manager should order the amount of

inventory that minimizes not just the expected cost of period N — 2 but
rather the

(expected cost of period N — 2) + (expected cost of period N — 1,
given that an optimal policy will be used at period N — 1),

which is equal to

T(zn-2) + cun—a + E{Jn_1(zn_1)}.
Using the system equation IN-1 =ZIN-2 +UN_2 —WN_2, the last term is
also written as Jy_1(Tn_g + un_g — WN-3).

Thus the optimal cost for the last two periods given that we are at
state Ty -2, denoted Jy_o(zn—2), is given by

In-—2(zn-2) = r(zN-2)

+SE T:Z& +m_ﬁ.mz|2e2|m+:2\ml wN-2)}
un-220 W _g

Again Jy_a(xn_2) is calculated for every zy-z. At the same time, the
optimal policy uf; _,(zn-3) is also computed.

18 The Dynamic Programming Algorithm Chap. 1

Period k: Similarly, we have that at period k, when the stock is Tk, the
inventory manager should order) to minimize

(expected cost of period k) + (expected cost of periods k+1,... N - i

given that an optimal policy will be used for these periods)

By denoting by Ji(zk) the optimal cost, we have

.HWAH\QV ” ‘.«.ﬁnnr.v + Mwuvaw Tu...:«n + %A.\#.T;Hw + Ul — Srku— P mwuv

which is actually the dynamic programming equation for this problem.

The functions Ji(zy) denote the optimal expected cost for the re-
maining periods when starting at period k and with initial inventory z;.
These functions are computed recursively backward in time, starting at
period N — 1 and ending at period 0. The value Jo(zo) is the optimal
expected cost for the process when the initial stock at time 0 is z. During
the calculations, the optimal policy is simultaneously computed from the
minimization in the right-hand side of Eq. (3.1).

The example illustrates the main advantage offered by DP. While
the original inventory problem requires an optimization over the set of
policies, the DP algorithm of Eq. (3.1) decomposes this problem into a
sequence of minimizations carried out over the set of controls. Each of
these minimizations is much simpler than the original problem.

The DP Algorithm

We now state the DP algorithm for the basic problem and show its
optimality by translating in mathematical

terms the heuristic argument
given above for the inventory example.

Proposition 3.1: For every injtial state g, the optimal cost J*(xzp)
of the basic problem is equal to Jy(zg), where the tunction Jy is given

by the last step of the following algorithm, which proceeds backward
in time from period N — 1 to period 0:

In(zNn) = gn(zn), (3.2)

.P.?QHBE mgiaw,@?@i+&_ﬂ+;?h§_§,83;
uk €Uk (z) wy,

el . =1,
(3.3)

Sec. 1.3 The Dynamic Programming Algorithm 19

where the expectation is taken with respect to the probability distribu-
tion of wy, which depends on x and u. Furthermore, if uj = uf(zx)
minimizes the right side of Eq. (3.3) for each z; and k, the policy
m* = {p§, ..., u}_;} is optimal.

Proof: { For any admissible policy 7 = {mo, g1, .., -1} and each k£ =
0,1,...,N —1, denote 7k = {sk: i1, .. v} Fork =0,1,...,N -1,
let Jf(zx) be the optimal cost for the (N — k)-stage problem that starts at
state zy and time k, and ends at time N that is,

N-1
Ji(zx) = min E gn(zn) + M i (s, pi (), ws)
wk wg,.wy i—k

For k = N, we define J§(zn) = gn(zy). We will show by induction
that the functions J} are equal to the functions Ji generated by the DP
algorithm, so that for k = 0, we will obtain the desired result.

Indeed, we have by definition J = JIv = gn. Assume SEn. for
some k and all 74,1, we have e41(ZTkt1) = Je41(Teg1). Then, since
7% = (g, m8+1), we have for all

Titer) = ?xﬁﬁ.ﬁ GT.:.WZL % ?thﬁaxu,éwv
N-1
+on(En)+ Y gz, pile), w,)
1=k+1
=min E { gk (zk, px (k) wi)
Mg wy
N-1
-+ min E gn(zn) + M EAH,:?AH&,EL
Tk weg sy i=ht1
=min B {gi(zk, e (zx), wi) + Tg g (Fe (2, prlze), we)) }
ik wg
= min B {gk(zk, pr(2k), we) + Jops (Fi (ze, pe(zn), we)) }
Hi wg

= min B {gi(zk, uk, wk) + Jes1 (Fo(zr, wr, wi)) }
up €U () wy

= .HWAHWY

T For a strictly rigorous proof, some technical mathematical issues must be
addressed; see Section 1.5. These issues do not arise if the disturbance wy, takes
a finite or countable number of values and the expected values of all terms in
the expression of the cost function (2.2) are well defined and finite for every
admissible policy .

20 The Dynamic Programming Algorithm Chap. 1

completing the induction. In the second equation above, we moved the
minimum over m5+1 inside the braced expression, using the assumption
that the probability distribution of wy,t=k+1,..., N—-1, depends only
on z; and w;. In the third equation, we used the definition of JE 11> and in
the fourth equation we used the induction hypothesis. In the fifth equation,
we converted the minimization over pr to a minimization over.uy, using
the fact that for any function F of z and u, we have

in I/ ’ = i F s),
min F(z, u(z)) oin F(z,u)

where M is the set of all functions w(z) such that u(z) € U (z) for all z.
Q.E.D.

The argument of the preceding proof provides an interpretation of
Ji(zk) as the optimal cost for an (N — k)-stage problem starting at state
T and time &, and ending at time N. We consequently call Ji(xy) the
cost-to-go at state z;. and time k, and refer to Jj, as the cost-to-go function
at time k.

Ideally, we would like to use the DP algorithm to obtain closed-form
expressions for Ji; or an optimal policy. In this book, we will consider alarge
number of models that admit analytical solution by DP. Even if such models
encompass oversimplified assumptions, they are often very useful. They
may provide valuable insights about the structure of the optimal solution of
more complex models, and they may form the basis for suboptimal control
schemes. Furthermore, the broad collection of analytically solvable models
provides helpful guidelines for modeling; when faced with a new problem it
Is worth trying to pattern its model after one of the principal analytically
tractable models.

Unfortunately, in many practical cases an analytical solution is not
possible, and one has to resort to numerical execution of the DP algorithm.
This may be quite time-consuming since the minimization in the DP Eq.
(3.3) must be carried out for each value of x;. This means that the state
Space must be discretized in some way (if it is not already a finite set).
The computational requirements are proportional to the number of dis-
cretization points, so for complex problems the computational burden may
be excessive. Nonetheless, DP is the only general approach for sequential
optimization under uncertainty, and even when it is computationally pro-
hibitive, it can serve as the basis for more practical suboptimal approaches,
which will be discussed in Chapter 6.

The following exammples illustrate some of the analytical and compu-
tational aspects of DP,

Example 3.1

A certain material is passed through a sequence of two ovens (see Fig. 1.3.1).
Denote

Sec. 1.3 The Dynamic Programming Algorithm 21

Tp: initial temperature of the material,
Tx, k= 1,2: temperature of the material at the exit of oven k,
Uk-1, k = 1,2: prevailing temperature in oven k.

We assume a model of the form
Ter1 = (1 — a)zr + aug, k=01,

where @ is a known scalar from the interval {0,1). The objective is to get
the final temperature z» close to a given target T, while expending relatively
little energy. This is expressed by a cost function of the form

r{zg — Hvu +ud + cm,

where r > 0 is a given scalar. We assume no constraints on wuk. (In reality,
there are constraints, but if we can solve the unconstrained problem and
verify that the solution satisfies the constraints, everything will be fine.) The
problem is deterministic; that is, there is no stochastic uncertainty. However,
such problems can be placed within the basic framework by introducing a
fictitious disturbance taking a unique value with probability one.

Initial Final
Temperature x, Oven 1 X Oven 2 Temperature x,
————— Temperature o= Temperature | —
up u,

Figure 1.3.1 Problem of Example 3.1. The temperature of the material

evolves according to xx4; = (1 — @)z + auy, where a is some scalar with
0<a<l.

We have N = 2 and a terminal cost g2(x2) = r(z2 — T)?, so the initial
condition for the DP algorithm is [cf. Eq. (3.2)]

.NMAHMV = ﬁme = .H.um
For the next-to-last stage, we have [cf. Eq. (3.3)]

Ji(z1) = Egﬁ?m + Ja(z2)]

:.ab?m — .HNAC —a)zy + 95:.
uy
Substituting the previous form of J2, we obtain

J1(z1) = min Tw + QAG —a)zi +au; — va_ . (3.4)

H

This minimization will be done by setting to zero the derivative with respect
to uy. This yields

0=2u; + wﬂmﬁﬁ —a)z1 +au; - T),

22

The Dynamic Programming Algorithm Chap. 1

and by collecting terms and solving for u;, we obtain the optimal temperature
for the last oven:

ra(T — (1 - a)z)
1+ra?
Note that this is not a single control but rather a control function, a rule that

tells us the optimal oven temperature u; = uf(x;) for each possible state ;.
By substituting the optimal u; in the expression (3.4) for J;, we obtain

pi(z) =

2
Aier) r*a?((1 - a)z;, — T) a’ G:i (1-a)z:1)

ﬂ
+7 | (1—-a)z: +

(1+ra2)? 1+ ra? —F
HMDNAAH - nwV.HH = NJUN ﬁ.Pm 2 2
- (1 +ra?)2 +iAH+ﬁQMIHv Qwrn&hﬂfﬂv
(1~ a)or ~T)?
- 1+ ra?)

We now go back one stage. We have [cf. Eq. (3.3)]

.Nn_ ﬁﬁcy Hamd Thw + _NHAHH: HEHS _Hﬁm +.~w ﬁ: | Dv.&.o + Dﬁo:“
ug ug

and by substituting the expression already obtained for J;, we have
lﬁ —a)?zo + (1 - a)aug — Hvu
1+ ra?

Jo(zo) = min |u? +
ug

We minimize with respect to ug by setting the corresponding derivative to
zero. We obtain

0=2ug+

2r(1 - avpﬁ: —a)’zo + (1 - a)aug — Hv
1+ ra2 .

This yields, after some calculation, the optimal temperature of the first oven:

r(1 - a)a(T ~ (1 — a)*zo)
1 +§%T + (1 - auwv

polxo) =

The optimal cost is obtained by substituting this expression in the formula
for Jo. This leads to a straightforward but lengthy calculation, which in the
end yields the rather simple formula

r((1 - a)?zo — va
1+ra?(1+(1- &J .

L«DAHOV =

This completes the solution of the problem.

Sec. 1.3 The Dynamic Programming Algorithm 23

One noteworthy feature in the preceding example is the facility with
which we obtained an analytical solution. A little thought while tracing
the steps of the algorithm will convince the reader that what simplifies the
solution is the quadratic nature of the cost and the linearity of the system
equation. In Section 4.1 we will see that, generally, when the system is
linear and the cost is quadratic then, regardless of the number of stages N,
the optimal policy is given by a closed-form expression.

Another noteworthy feature of the example is that the optimal policy
remains unaffected when a zero-mean stochastic disturbance is added in

the system equation. To see this, assume that the material’ s temperature
evolves according to

Th1 = (1 — a)zp + auy + wy, k= 0,1,

where wo, w; are independent random variables with given distribution,
ZEro mean

E{wo} = E{u1} =0,

and finite variance. Then the equation for J, [cf. Eq. (3.3)] becomes

Ji(z1) = min E A:w +7((1 - @)1 + auy + wy iﬂuuw

Ul w

:mmm?w +7((1 - a)z1 + auy — \.Sm
+ 2rE{w1}((1 - a)z1 + au; — T) + rE{w}}].

Since E{w;} = 0, we obtain
Ji(z1) = min TW +7((1 - a)z1 + auy — MEJ + rE{w?}.
ug

Comparing this equation with Eq. (3.4), we see that the presence of wy
has resulted in an additional inconsequential term, rE{w?}. Therefore,
the optimal policy for the last stage remains unaffected by the presence
of wy, while Ji(z1) is increased by the constant term rE{w?}. It can be
seen that a similar situation also holds for the first stage. In particular,
the optimal cost is given by the same expression as before except for an
additive constant that depends on E{w2} and E{w?}.

If the optimal policy is unaffected when the disturbances are replaced
by their means, we say that certainty equivalence holds. We will derive
certainty equivalence results for several types of problems involving a linear
system and a quadratic cost (see Sections 4.1, 5.2, and 5.3)

Example 3.2

To illustrate the computational aspects of DP, consider an inventory control
problem that is slightly different from the one of Sections 1.1 and 192 Tn

24

The Dynamic Programming Algorithm Chap. 1

particular, we assume that inventory uy and the demand wy are nonnegative
integers, and that the excess demand (wg — zx — ug) is lost. As a result, the
stock equation takes the form

Ti+1 = max(0, zi + ug — Wi).

We also assume that there is an upper bound of 2 units on the stock that can

be stored, i.e. there is a constraint zy + ux < 2. The holding/storage cost for
the kth period is given by

(zr + us — wi)?,

implying a penalty both for excess inventory and for unmet demand at the
end of the kth period. The ordering cost is 1 per unit stock ordered. Thus
the cost per period is

Qkﬁﬂr.ﬁ..f.rckv = Ui + AHW + Up — Ekvm.
The terminal cost is assumed to be 0,
gn(zn) = 0.

The planning horizon N is 3 periods, and the initial stock zg is 0. The demand
wr has the same probability distribution for all periods, given by

plwg = 1) = 0.7,

The system can also be represented in terms of the transition probabilities

P:j(u) between the three possible states, for the different values of the control
(see Fig. 1.3.2).

The starting equation for the DP algorithm is

Lqmﬁ,ﬁwv = O_

since the terminal state cost is 0 [cf. Eq. (3.2)]. The algorithm takes the form
[ef. Eq. (3.3))

_ : — -
Jelzk) = sl ﬁmﬁﬁw+@w+ g — Wi)* + Ji 41 (max(0, 2k +up we)) },
uRp=0,1,2

where k=0, 1,2, and x, ux, wi can take the values 0,1, and 2.

Period 2: We compute J2(z2) for each of the three possible states. We have

_NMAOV = NHWWJ R NA\RN + (uz — \Emvww
ugy=u,1, ».:M

Il

min LS +0.1(u2)® + 0.7(uz — 1)* + 0.2(uz — 2)%].
ua=u,1,

Sec. 1.3 The Dynamic Programming Algorithm 25

stook = 2 (2! () stock =2

Stock =2 O () stock = 2

0.7

Stock = 1 .4. Stock = 1
0
0.1 b
Stock =0 () () stock=0

Stock purchased = 1

. Stock = 1

. Stock =0

Slock purchased = 0

Stock =2 O Stock = 2
0.1
Stock =1 O Stock = 1
0.7
0.2
Stock =0 Stock=0

Stock purchased = 2

Stage 0 Stage 0 Stage 1 Stage 1 Stage 2 Stage 2
Stock | Cost-to-go | Optimal Cost-to-go | Optimal | Cost-to-go | Optimal
stock to stock to stock to
purchase purchase purchase
0 3.67 is 2.5 1 1.3 1
1 2.67 0 1.2 0 0.3 0
2 2.608 0 1.68 0 1.1 0

Figure 1.3.2 System and DP results for Example 3.2. The transition proba-
bility diagrams for the different values of stock purchased (control) are shown.
The numbers next to the arcs are the transition probabilities. The control
w = 1 is not available at state 2 because of the limitation Tr 4+ ur < 2. Simi-

larly, the control u = 2 is not available at states 1 and 2. The results of the
DP algorithm are given in the table.

We calculate the expectation of the right side for each of the three possible
values of us:

uz=0:E{}=07-1+02-4=15,
up =1:E{}=1+4+01-14+02-1=13,
o =2: F{l=2401.4407.1=121

The Dynamic Programming Algorithm Chap. 1

Hence we have, by selecting the minimizing ua,
J2(0) = 1.3, u3(0) = 1.

For z, = 1, we have

.&mﬁ: = min mﬁﬁm+ﬁw+ﬁw\EMvuv

ug=0,1 wy

= min [us +0.1(1 + u2)’ + 0.7(u2)” + 0.2 — 1)%].
up =0,

up=0:E{}=01-14+02-1=0.3,
uz=1:E{}=1401-4407-1=2.1.
Hence
I(1) =03, p3(1)=o0.

For 12 = 2, the only admissible control is us = 0, so we have

J2(2) = BE{(2-—w2)*} =0.1-44+07-1=11,
wy

B2 =11, p3(2) =0

Period 1: Again we compute Ji(x1) for each of the three possible states
zz = 0,1,2, using the values J2(0), Jo(1), J2(2) obtained in the previous
period. For z; = 0, we have

J1(0) = min E{ur+ (w1 —wi)? + J; (max(0,u1 wn)) },
u1=0,1,2 1wy

ur =0: E£{}=0.1-72(0) + 0.7(1 + J2(0)) + 0.2(4 + J2(0)) = 2.8,

ur = 15 B{} = 1+ 0.1(1 + J2(1)) + 0.7 J2(0) +0.2(1 + Jo(0)) = 2.5,

2: B{} =2+40.1(4+ J2(2)) + 0.7(1 + Jo(1)) + 0.2 - J5(0) = 3.68,
Ji(0) =25, ui(0)=1.

For ;1 = 1, we have

Ui

&En min m,?l:f:is;fﬁasﬁe,:Snsc:_
uy=t,1

ur=0: E{} = 0.1(1+ J2(1)) + 0.7+ J2(0) + 0.2(1 + J2(0)) = 1.2,
1: B{} = 1+0.1(4 4 J2(2)) +0.7(1+ Ja(1)) + 0.2 J2(0) = 2.68,
(1) =12, ui(1)=0.

For z; = 2, the only admissible control is u; = 0, so we have

&
I

J1(2)

It

mﬁm —un)? + Hwﬁgmkﬁo,w - ELV*

=0.1(4 + J2(2)) +0.7(1 + J2(1)) + 0.2 J5(0)
= 1.68,

Sec. 1.3 The Dynamic Programming Algorithm 27

J1(2) = 1.68, #1(2) = 0.

Period 0: Here we need to compute only Jo(0) since the initial state is known
to be 0. We have

Jo(0) = min m\..mg + (uo — wo)? + Jy ?smkﬁc_ﬁo — Ecd T

up=0,1,2 wq

o =0:E{}=01-4(0)+0.7(1 + J1(0)) +0.2(4 + J1(0)) = 4.0,

uo=1: E{-} =1+0.1(1+ (1)) +0.7- 11(0) + 0.2(1 + J1(0)) = 3.67,

uo =2: B{}=2+0.1(4+ J1(2)) +0.7(1 + Ji(1)) +0.2 - J1(0) = 5.108,
Jo(0) =3.67, p3(0) = 1.

It

If the initial state were not known a priori, we would have to compute
in a similar manner Jo(1) and Jo(2), as well as the minimizing up. The reader
may verify (Exercise 1.2) that these calculations yield

(1) =2.67, p5(1) =0,

Jo(2) = 2608, p3(2) = 0.

Thus the optimal ordering policy for each period is to order one unit if the
current stock is zero and order nothing otherwise. The results of the DP
algorithm are given in tabular form in Fig. 1.3.1.

Example 3.3 (Optimizing a Chess Match Strategy)

Consider the chess match example considered in Section 1.1. There, a player
can select timid play (probabilities py and 1 — pa for a draw or loss, respec-
tively) or bold play (probabilities Pw and 1—py, for a win or loss, respectively)
in each game of the match. We want to formulate a DP algorithm for finding
the policy that maximizes the player’s probability of winning the match, Note
that here we are dealing with a maximization problem. We can convert the
problem to a minimization problem by changing the sign of the cost function,
but a simpler alternative, which we will generally adopt, is to replace the
minimization in the DP algorithm with maximization.

Let us consider the general case of an N -game match, and let the state
be the net score, that is, the difference between the points of the player
minus the points of the opponent (so a state of 0 corresponds to an even
score). The optimal cost-to-go function at the start of the kth game is given
by the dynamic programming recursion

Ji(zk) = max Tm&ni@i + (I = pa)Jrs1(zr — 1),

(3.5)
Pudktr(zx + 1) + (1 — pu)Jis1(zk — 1)].

The maximum above is taken over the two possible decisions:

28

The Dynamic Programming Algorithm Chap. 1
(a) Timid play, which keeps the score at @ with probability ps, and changes
Tk to zx — 1 with probability 1 — py.

(b) Bold play, which changes zx to zx + 1 or to zr — 1 with probabilities
Puw or (1 — py), respectively.

It is optimal to play bold when
Pudir1(zh +1) + (1 = pu)Jis1(zr — 1) > padisr (z) + (1 = pa)Jrpr{zk — 1)

or equivalently, if

Puw o, Jet1(r) = Jepr(zx — 1)

Pe — Jrpr(zr + 1) — Jrga(ae — 1)

(3.6)
The dynamic programming recursion is started with

1 ifzy >0,
In(zn) =< py ifzn = 0, (3.7)
0 if Ty < 0.

We have Jn(0) = py, because when the score is even after N games (zy = 0),
it is optimal to play bold in the first game of sudden death.

By executing the DP algorithm (3.5) starting with the terminal condi-
tion (3.7), and using the criterion (3.6) for optimality of bold play, we find
the following, assuming that py > py,:

In—i(zn-y)=1forzy_; >1; optimal play: either
JIn-1(1) = max[ps + (1 = pa)pw, pu + (1 — pu)puw)
=pa+(l —pu)pw; optimal play: timid
Jw-1(0) = pw; optimal play: bold
Jn-1(-1) =pi; optimal play: bold

Iv—1(zn_1) =0for zy_y < —1; optimal play: either.
Also, given Jy_1(2n-1), and Egs. (3.5) and (3.6) we obtain
Jn-2(0) = max[pepu + (1 = pa)pl, P (pa+ (1= pa)pw) + (1 = pu)]
= Pu (Pu + (Pu + pa)(1 — Pw))

and that if the score is even with 2 games remaining, it is optimal to play
bold. Thus for a 2-game match, the optimal policy for both periods is to
play timid if and only if the player is ahead in the score. The region of pairs

(Pw, pa) for which the player has a better than 50-50 chance to win a 2-game
match is

Rz = {(pw:a) | Jo(0) = pu (P + (Pu +pa)(1 = pu)) > 112}

and, as noted in the preceding section, it includes points where Pw < 1/2.

Sec. 1.3 The Dynamic Programming Algorithm 29

Example 3.4 (Finite-State Systems)

We mentioned earlier (cf. the examples in Section 1.1) that systems with a
finite number of states can be represented either in terms of a discrete-time
System equation or in terms of the probabilities of transition between the
states. Let us work out the DP algorithm corresponding to the latter case.
We will assume for the sake of the following discussion that the problem is
stationary (i.e., the transition probabilities, the cost per stage, and the control
constraint sets do not change from one stage to the next). Then, if

Pij(u) = P{Zrs1 = j | mp = d,up = u}
are the transition probabilities, we can alternatively represent the system by
the system equation (cf. the discussion of the previous section)
Tr+1 = Wy,

where the probability distribution of the disturbance wy, is

Pluk =37 |z = d,ug = u} = py(u).
Using this system equation and denoting by g(i, u) the expected cost per stage
at state 7 when control u is applied, the DP algorithm can be rewritten as

Ji (i) = :mmams [9(i,u) + NAL«:;EL:

or equivalently (in view of the distribution of wy, given previously)

Ju) = min %}?MM?%EE& :

As an illustration, in the machine replacement example of Section 11
this algorithm takes the form

Je(?) = min | R+ g(1) + Ji41 (1), m?.vlTMuP.uSﬂtg ,

=i

"The two expressions in the above minimization correspond to the two available
decisions (replace or not replace the machine).

In the queueing example of Section 1.1, the DP algorithm takes the
form

In(i) =R(E), i=0,1,...,n,

Jel@) = min \r(@) + e+ 3 pis(ur) e (G), 70) + co + > pis () Jea (4)

i=0 i=0

The two expressions in the above minimization correspond to the two possible
decisions (fast and slow service).

1.4

30 The Dynamic Programming Algorithm Chap. 1

STATE AUGMENTATION

We now discuss how to deal with situations where some of the as-
sumptions of the basic problem are violated. Generally, in such cases the
problem can be reformulated into the basic problem format. This process is
called state augmentation because it typically involves the enlargement of
the state space. The general guideline in state augmentation is to include
in the enlarged state at time k all the information that is known to the
controller at time k and can be used with advantage in selecting uy. Un-
fortunately, state augmentation often comes at a price: the reformulated

problem may have very complex state and/or control spaces. We provide
some examples.

Time Lags

In many applications the system state Zk+1 depends not only on the
preceding state z; and control uy but also on earlier states and controls.
In other words, states and controls influence future states with some time
lag. Such situations can be handled by state augmentation; the state is
expanded to include an appropriate number of earlier states and controls.

For simplicity, assume that there is at most a single period time lag
in the state and control; that is, the system equation has the form

Th+1 = filTr, Tho1, Uk, up—1, wy), k=1,2,...,N-1, (4.1)

T = %OA.H\.O“ .H.@Du‘...tov.

Time lags of more than one period can be handled similarly.
If we introduce additional state variables yx and s, and we make the
identifications yx = zx_;, s = Uk-1, the system equation (4.1) yields

Tk4+1 .ﬂkﬁﬁwq@_ﬁ.ﬁku%w_@kv
Yk+1 | = Tk . (4.2)
Sk+1 Uk

By defining i, = (Zk, Yk, Sk) as the new state, we have
Ery1 = fi(@x, ug, Wi),

where the system function f; is defined from Eq. (4.2). By using the preced-
Ing equation as the system equation and by expressing the cost function
in terms of the new state, the problem is reduced to the basic problem
without time lags. N aturally, the control u; should now depend on the
new state Ty, or equivalently a policy should consist of functions py of the

Sec. 1.4 State Augmentation 31

current state xx, as well as the preceding state zx_; and the preceding
control uy_;.

When the DP algorithm for the reformulated problem is translated
in terms of the variables of the original problem, it takes the form

In(zn) = gn(zN),

IN-1(zN-1,TN_2, uN_7)

H EE m._ AQZLAHZL.QZL_EZIL
uN-1€UN (1) wy_g

+ IN(fv-1(@N_1,2N-2, un—1, un 2, wn_1)) T

Ju(Tk, Th—1,Uk-1) = min E ?ia?:?\ei
up €Uk (z) wy

1

+ Tea1 (Fi(2h, Too1, uk, ug—1, wi), 7, ELW. k=1,...,N-2

.wo?.cvﬂ Sm_,m%aa %.. {90(z0, w0, wo) + J; (fo(zo, w0, wo), zo, uo) } .

Similar reformulations are possible when time lags appear in the cost;
for example, in the case where the cost is of the form

N-1
Edgn(zn,on_1) + go(zo, uo, we) + M G (Thy Th—1, U, W)
k=1

The extreme case of time lags in the cost arises in the nonadditive form
E{gn(xn,zNo1,. .. 20, un_1,... s U0, WN—-1,- .., W) }.

Then, the problem can be reduced to the basic problem format, by taking
as augmented state

Iy = ﬁafaxlr..;:&?:alt..,:?éaLi.;,Ecv

and E{gn(Zn)} as reformulated cost. Policies consist of functions . of the
present and past states zy, ..., Zo, the past controls w_q, ... , ug, and the
past disturbances wy_1, ..., wq. Naturally, we must assume that the past
disturbances are known to the controller. Otherwise, we are faced with
a problem where the state is imprecisely known to the controller. Such

problems are known as problems with imperfect state information and will
be discussed in Chapter 5.

32 The Dynamic Programming Algorithm Chap. 1

Correlated Disturbances

We turn now to the case where the disturbances wy are correlated
over time. A common situation that can be handled efficiently by state
augmentation arises when the process wo, ..., wx_; can be represented as
the output of a linear system driven by independent random variables. As
an example, suppose that by using statistical methods, we determine that
the evolution of wy can be modeled by an equation of the form

W = Awg_1 + &,

where A is a given scalar and {&x} is a sequence of independent random
vectors with given distribution. Then we can introduce an additional state
variable

Yk = W1

and obtain a new system equation

Anwiv l A?AH?:?»@w +miv
Ykt) Ay + &k !

where the new state is the pair 7 = (zx,yx) and the new disturbance is
the vector &.

More generally, suppose that wj, can be modeled by

Wi = Crlk+1,

where
Yie+1 = Aryr + &k, k=0,...,N-1,

Ak, C are known matrices of appropriate dimension, and £, are indepen-
dent random vectors with given distribution (see Fig. 1.4.1). By viewing
Y as an additional state variable, we obtain the new system equation

Hf&v H A.? ?F:?Qim@x._. @LJ .
Ykl Aryr + &

Sk 7% W
— U\»+AH>E\W+ _mk {2 0& E—

Figure 1.4.1 Representing correlated disturbances as the output of a linear sys-
tem driven by independent random vectors.

Seec. 1.4 State Augmentation 33

Note that in order to have perfect state information, the controller
must be able to observe y;. Unfortunately, this is true only in the minority
of practical cases; for example when (. is the identity matrix and W1 1s
observed before uy, is applied. In the case of perfect state information, the
DP algorithm takes the form

In(@n,yn) = gn(zn),

»Nl _ “ - " ! uQ \w
iﬁﬂ@t c»mﬂwﬁ_at mm_?w?a Uk, Cr(Aryr + &)

+ ka1 (fr (zh, uk, Cr(Arye + &), Arye +)}
Forecasts

Finally, consider the case where at time & the controller has access to
a forecast yj that results in a reassessiment of the probability distribution
of wg and possibly of future disturbances. For example, y, may be an exact
prediction of wy, or an exact prediction that the probability distribution of
Wy 1s a specific one out of a finite collection of distributions. Forecasts of
interest in practice are, for example, probabilistic predictions on the state
of the weather, the interest rate for money, and the demand for inventory.

Generally, forecasts can be handled by state augmentation although
the reformulation into the basic problem format may be quite complex. We
will treat here only a simple special case.

Assume that at the beginning of each period k, the controller re-
celves an accurate prediction that the next disturbance wy will be selected
according to a particular probability distribution out of a given collection
of distributions {Q;,... ,@m}; that is, if the forecast is i, then wy, is se-
lected according to Q;. The a priori probability that the forecast will be ;
is denoted by p; and is given.

As an example, suppose that in our earlier inventory example the de-
mand wy, is determined according to one of three distributions @1, Q2, and
@3, corresponding to “small,” “medium,” and “large” demand. Each of the
three types of demand occurs with a given probability at each time period,
independently of the values of demand at previous time periods. However,
the inventory manager, prior to ordering wuy, gets to know through a fore-
cast the type of demand that will occur. (Note that it is the probability
distribution of demand that becomes known through the forecast, not the
demand itself.)

The forecasting process can be represented by means of the equation

Yr+1 = &g,

where yi41 can take the values 1,...,m, corresponding to the m possible
forecasts, and & is a random variable taking the value ¢ with probability

o Lne ynamic Frogramming Algorithm Chap. 1
P:. The interpretation here is that when &k takes the value i, then wy,,
will occur according to the distribution Q..

By combining the system equation with the forecast equation Ykl =
£k, we obtain an augmented system given by

A.‘Eﬂtu _ A.???:TEEV
Ye+1) €k)
The new state is %), = (zx, yx), and because the forecast Yk is known at time
k, perfect state information prevails. The new disturbance is W = (wy, &),
and its probability distribution is determined by the distributions Q, and
the probabilities p;, and depends explicitly on Z; (via yx) but not on the
prior disturbances. Thus, by suitable reformulation of the cost, the problem
can be cast into the basic problem format. Note that the control applied
depends on both the current state and the current forecast.

The DP algorithm takes the form

.

In(EN,yN) = gn(zN), (4.3)
Je(Zk,yk) = min E ?25,5353
up€UR(xE) wy,
m (4.4)
+ M?@fi?@?:ﬁ@tb 7 @L“
=1
where y; may take the values I,...,m, and the expectation over w18

taken with respect to the distribution Qy,. -

There is a nice simplification of the above algorithm that allows DP
to be executed over a smaller space. In particular, define

m
.MWAH.#‘U HMEH.LFAHWUH..Y W”DMH_..;le,
=1
and X
In(zn) = gn(zN).
Then from Eq. (4.4), we obtain the algorithm

up UL (eg) wy

m
EatﬂM? min m?ﬂa?:?ez
1=1

=+ ,M.a;_vwﬁ.%‘nﬁ.ﬂ#.ﬁuxug.‘ﬂva Yk = @\V,

which is executed over the space of xy rather than z; and Yg- This simpli-
fication arises also in other contexts where the state has a component that
cannot be affected by the choice of control (see Exercise 1.22).

It should be clear that the preceding formulation admits several ex-
tensions; one example is the case where forecasts can be influenced by
the control action and involve several future disturbances. However, the

price for these extensions is increased complexity of the corresponding DP
algorithm.

1.5

See. 1.5 Some Mathematical Issues 35

SOME MATHEMATICAL ISSUES

Let us now discuss some technical issues relating to the basic prob-
lem formulation. The reader who is not mathematically inclined need not
be concerned about these issues and can skip this section without loss of
continuity.

Once an admissible policy {#o, ..., n-1} is adopted, the following
sequence of events is envisioned at the typical stage k:

1. The controller observes zj and applies ug = pg(z).

2. The disturbance wy, is generated according to the given distribution
Pe(- | 2k, pr(zi).

3. The cost g (zk, ux (zx),wx) is incurred and added to previous costs.

4. The next state zy,, is generated according to the system equation

Thy1 = fi(Th, pr(zh), wi).

If this is the last stage (k = N — 1), the terminal cost gn(zn) is
added to previous costs and the process terminates. Otherwise, k is

incremented, and the same sequence of events is repeated for the next
stage.

For each stage, the above process is well-defined and is couched in pre-
cise probabilistic terms. Matters are, however, complicated by the need to
view the cost as a well-defined random variable with well-defined expected
value. The framework of probability theory requires that for each policy
we define an underlying probability space, that is, a set Q, a collection of
events in {1, and a probability measure on these events. In addition, the
cost must be a well-defined random variable on this space in the sense of
Appendix C (a measurable function from the probability space into the real
line in the terminology of measure-theoretic probability theory). For this
to be true, additional (measurability) assumptions on the functions s Gk,
and p; may be required, and it may be necessary to introduce additional
structure on the spaces Sy, Cy, and Dj. Furthermore, these assumptions
may restrict the class of admissible policies, since the functions p may be
constrained to satisfy additional (measurability) requirements.

Thus, unless these additional assumptions and structure are specified,
the basic problem is formulated inadequately. Unfortunately, a rigorous
formulation for general state, control, and disturbance spaces is well beyond
the mathematical framework of this introductory book and will not be
undertaken here. Nonetheless, it turns out that these difficulties are mainly
technical and do not substantially affect the basic results to be obtained.
For this reason, we find it convenient to proceed with informal derivations
and arguments; this is consistent with most of the literature on the subject.

