1.1

Life can only be understood going backwards,
but it must be lived going forwards.

Kierkegaard

INTRODUCTION

minimize a certain cost — a
an undesirable outcome,

. > key aspect of such situations is that decisions cannot be viewed in
_monﬁcs since one must balance the desire for low present cost with the
:zamm:mvmﬁw of high future costs. The dynamic brogramming technique
captures this tradeoff, At each stage, decisions are ranked based on the
mcﬂ of the present cost and the expected future cost, assuming optimal
decision making for subsequent stages.

There is a very broad variety of practical problems that can be treated

of a &SwEwn system over a finite number of stages (a finite horizon). This
B.oa& will occupy us for the first six chapters; its infinite horiz
will be the subject of the last chapter and Vol. IL.

Our basic model has two principal features: (1) an underlying discrete-

time &SQ&% system, and (2) a cost function that is additive over time.
The dynamic system is of the form

on version

Tt = felTr, e, we), k=01
where
k indexes discrete time,

Zk is the state of the system and

summarizes past information that is
relevant for future optimization

1

Uy is the control or decision variable to be selected at time k,

Wr is a random parameter

(also called disturbance or noise d i
the context), o

N is the horizon or number of times control jg applied.

o

The cost function is additive in the sense that the cost incurred at
time k&, denoted by gy (2x, ug, Wg), accumulates over time. The total cost,
is

N-1
aN(@N) + D gk, we, wy),
k=0

where gy (zn) is a terminal cost incurred at the end of the process. How-
ever, because of the presence of wy, cost is generally a random variable and
cannot be meaningfully optimized. We therefore formulate the problem as
an optimization of the expected cost

N-1

E{gn(zn) + M@iﬁ?:?)&i ,
k=0

where the expectation is with respect to the joint distribution of the random
variables involved. The optimization is over the controls ug, u, ..., un_1,
but some qualification is needed here; each control uy, is selected with some
knowledge of the current state zy (either its exact value or some other
information relating to it).

A more precise definition of the terminology just used will be given
shortly. We first provide some orientation by means of examples.

Example 1.1 (Inventory Control)

Consider a problem of ordering a quantity of a certain item at each of N
periods so as to meet a stochastic demand. Let us denote

) stock available at the beginning of the kth period,

uk stock ordered (and immediately delivered) at the beginning of the kth
period,

wy demand during the kth period with given probability distribution.

We assume that wo,wy, ... »WN-1 are independent random variables,
and that excess demand is backlogged and filled as soon as additional inven-
tory becomes available. Thus, stock evolves according to the discrete-time
equation

Tk+1 = Tk + Uk — Wy,
where negative stock corresponds to backlogged demand (see Fig. 1.1.1).
The cost incurred in period k consists of two components:

(a) A cost r(wx) representing a penalty for either positive stock zx (holding
cost for excess inventory) or negative stock xj (shortage cost for unfilled
demand).

(b) The purchasing cost cuy, where ¢ is cost per unit ordered.

The Dynamic Programming Algorithm Chap. 1

Wi | Demand at Perlod k

Stock at Peried k Inventory Stock at Period k+ 1
Xy System » .
khq +1 “x._n + :_xn S_..X
Stock Ordered at
Cost of Period k g EURLR
tg— Uj
r(xe)+ CuUy

Figure 1.1.1 Inventory control example.
(state) z, the stock ordered (control)
bance) wy, determine the cost r(zg)
at the next period.

At period k, the current stock
and the demand (random distur-
+ cuy and the stock Th41 = Tk +up —wy,

There is also a terminal cost R(zn) for being left with inventory zn at the
end of N periods. Thus, the total cost over N periods is

N-1

Eq R(zn) + Mu?.?u& +oeux) p.

k=0

We want to minimize this cost by proper choice of the orders g,
subject to the natural constraint ux = 0 for all k.

At this point we need to distinguish between closed-loop and open-
loop minimization of the cost. In open-loop minimization we select all orders
Uo; ..., UN—1 at once at time 0, without waiting to see the subsequent demand
levels. In closed-loop minimization we postpone placing the order u; until the
last possible moment (time k) when the current stock z) will be known. The
idea is that since there is no penalty for delaying the order Uk up to time k,
we can take advantage of information that becomes available between times
0 and k (the demand and stock level in past periods).

Closed-loop optimization is of central importa:
ming and is the type of optimization that we will co
in this book. Thus, in our basic form
while gathering information between stages that will be used to enhance the
quality of the decisions. The effect of this on the structure of the resulting
optimization problem is quite profound. In particular, in closed-loop inven-
tory optimization we are not interested in finding optimal numerical values
of the orders but rather we want to find an optimal rule for selecting at each
perod k an order ux for each possible value of stock zx that can occur. This
is an “action versus strategy” distinction.

Mathematically, in closed-loop inventory optimization, we want to find
a sequence of functions px, k=0, . .. N — 1, mapping stock z into order u;
S0 as to minimize the expected cost. The meanineg of i is that far sach I

ceeyUN-T,

nce in dynamic program-
nsider almost exclusively
ulation, decisions are made in stages

Sec. 1.1 Introduction 5

and each possible value of =y,

t(zx) = amount that should be ordered at time k if the stock is k.

The sequence m = {p,.. -y pn—1} will be referred to as a policy or
control law. For each m, the corresponding cost for a fixed initial stock xg is
N-1
Jr(zo) = E ¢ R(zn) + MT.AH&V + ntwﬁawvv ;
k=0

and we want to minimize Jr(zo) for a given zg over all = that satisfy the
constraints of the problem. This is a typical dynamic programming problem.
‘We will analyze this problem in various forms in subsequent sections. For
example, we will show in Section 4.2 that for a reasonable choice of the cost
function, the optimal ordering policy is of the form
Sy — z3 if zp < Sk,

p (k) = ﬁ 0 otherwise,
where Sy is a suitable threshold level determined by the data of the problem.
In other words, when stock falls below the threshold Sk, order just enough to
bring stock up to Sk.

The preceding example illustrates the main ingredients of the basic

problem formulation:

(a) A discrete-time system of the form

Tet1 = fr(Tk, vk, wi),

where f is some function; in the inventory example Jrl(ze, uk, wg) =
Tk + W — W.

(b) Independent random parameters wy. This will be generalized by al-
lowing the probability distribution of wy to depend on z, and uy;
in the context of the inventory example, we can think of a situation
where the level of demand wy, is influenced by the current stock level
Tk

(c) A control constraint; in the example, we have up > 0. In mmsmmwr
the constraint set will depend on zx and the time index k, that is,
ug € Up(zg). To see how constraints dependent on x, can arise in the
inventory context, think of a situation where there is an upper bound
B on the level of stock that can be accommodated, so ugy < B — x.

(d) An additive cost of the form

N-1
ESgn(en) + Y gelon, ue,wi)
k=0
where gr are some functions; in the example, we have gy(zn) =
R(zn), and gx (T, ug, wg) = r(zk) + cug.

(e) Optimization over (| closed-loop) policies, that is, rules for choosing uy,
far each k and nnssihle valua af +..

6 The Dynamic Programming Algorithm Chap, 1

Discrete-State and Finite-State Systems

In the preceding example, the state Zr was a continuous real variable,
and it is easy to think of multidimensional generalizations where the state
is an n-dimensional vector of real variables. It is also possible, however,
that the state takes values from a discrete set, such as the integers.

A version of the inventory problem where a discrete viewpoint is more
natural arises when stock is measured in whole units (such as cars), each
of which is a significant fraction of Tk, Uk, Or wk. It is more appropriate
then to take as state space the set of all integers rather than the set of real
numbers. The form of the system equation and the cost per period will, of
course, stay the same.

In other systems the state is naturally discrete and there is no contin-
uous counterpart of the problem. Such systems are often conveniently spec-
ified in terms of the probabilities of transition between the states. What we
need to know is py;(u, k), which is the probability at time k that the next
state will be j, given that the current state is i, and the control selected is
u, i.e.,

pij(u, k) = MUAHTI =jlag=1i,ux = Ew

Such a system can be described alternatively in terms of the discrete-time
system equation

Th+1 = W,
where the probability distribution of the random parameter wy, is
EUT_En =j|ar =1i,u = .r; = pij(u, k).

Conversely, given a discrete-state system in the form

Try1 = .Nn.ﬂﬁnﬂ#u Uk E.mu_

together with the probability distribution Pe(wk | zk,ux) of we, we can
provide an equivalent transition probability description. The corresponding

transition probabilities are given by
pi(u, k) = Pe{Wie(i, u, §) | i = 4, up, = u)},

where W (i, u, §) is the set

S.\.#As., E.:.a = Tt _ ji= .w._.nﬁﬂ.,ggevw.

Thus a discrete-state system can equivalently be described in terms
of a difference equation and in terms of transition probabilities. Depending
on the given problem, it may be notationally more convenient to use one
description over the other.

The following three examples illustrate discrete-state systems.

Sec. 1.1 Introduction 7
Example 1.2 (Machine Hﬁm.ﬁ_mnmwbmﬁﬁ

Consider a problem of operating efficiently over NV time periods a machine
that can be in any one of n states, denoted 1,2,...,n. The implication here
is that state i is better than state i + 1, and state 1 corresponds to a machine
in perfect condition. In particular, we denote by g(%) the operating cost per
period when the machine is in state 7, and we assume that

9(1) <g(2) < -~ < g(n).

During a period of operation, the state of the machine can become worse
or it may stay unchanged. We thus assume that the transition probabilities

pij = P{next state will be 7 | current state is i}

satisfy
pi;j =0 if 7 <.
We assume that at the start of each period we know the state of the
machine and we must choose one of the following two options:

(a) Let the machine operate one more period in the state it currently is.
(b) Repair the machine and bring it to the perfect state 1 at a cost R.

We assume that the machine, once repaired, is guaranteed to stay in state
1 for one period. In subsequent periods, it may deteriorate to states i>1
according to the transition probabilities p, 5

Thus the objective here is to decide on the level of deterioration (state)
at which it is worth paying the cost of machine repair, thereby obtaining the
benefit of smaller future operating costs. Note that the decision should also
be affected by the period we are in. For example, we would be less inclined
to repair the machine when there are few periods left.

The system equation for this problem is represented by the graphs of
Fig. 1.1.2. These graphs depict the transition probabilities between various
pairs of states for each value of the control and are known as transition proba-
bility graphs or simply transition graphs. Note that there is a different graph
for each control; in the present case there are two controls (repair or not
Tepair).

Example 1.3 (Control of a Queue)

Consider a queueing system with room for n customers operating over IV
time periods. We assume that service of a customer can start (end) only
at the beginning (end) of the period and that the system can serve only
one customer at a time., The probability p,, of m customer arrivals during
a period is given, and the numbers of arrivals in two diferent periods are
independent. Customers finding the system Ffull depart without attempting
to enter later. The system offers two kinds of service, fast and slow, with cost
per period ¢y and c;, respectively. Service can be switched between fast and

The Dynamic Programming Algorithm Chap. 1

b._:

Do not repair Repair

Figure 1.1.2 Machine replacement example. Transition probability graphs for
each of the two possible controls (repair or not repair). At each stage and state 1,

the cost of repairing is R+g(1), and the cost of not repairing is g(i). The terminal
cost is (.

slow at the beginning of each period. With fast (slow) service, a customer in
service at the beginning of a period will terminate service at the end of the
period with probability gs (respectively, gs) independently of the number of
periods the customer has been in service and the number of customers in the
system (g5 > g,). There is a cost 7(i) for each period for which there are ¢
customers in the system. There is also a terminal cost R(:) for i customers
left in the system at the end of the last period. The problem is to choose, at
a function of the number of customers in
the system so as to minimize the expected total cost over N periods.

It is appropriate to take as state here the number i of customers in the
system at the start of g period and as control the type of service provided.
The cost per period then is (i) plus ¢y or c, depending on whether fast or
slow service is provided. We derive the transition probabilities of the system.

When the system is empty at the start of the period, the probability
that the next state is J is independent of the type of service provided. It
equals the given probability of j customer arrivals when j < n,

Poj(ug) = poj(us) = p;, 7=0,1...,n—-1,

Sec, 1.1 Introduction 9

and it equals the probability of n or more customer arrivals when 7 = n,

ﬂa:?\av Hﬁc:?au = M DPm.

m=n

When there is at least one customer in the system (i > 0), we have
H:.ZQ..L”O“ mmu..A\..HIH.

Pij(us) = gqspo, ifj=i-1,
pij(uf) = P{j—i+1 arrivals, service completed}
+ P{j — i arrivals, service not completed }

=aPi-int +(1-gf)pj—, fi-1<j<n-—1,

(o]
Pitn-n)(®) =a5 D P+ (1= gp)pai1os,

m=n-—t

Pn(ug) =(1-q5) > pm.

m=n-—i

The transition probabilities when slow service is provided are also given by
these formulas with u s and g replaced by u, and g,, respectively.

Example 1.4 (Optimizing a Chess Match Strategy)

A player is about to play a two-game chess match with an opponent, and
wants to maximize his winning chances. Each game can have one of two
outcomes:

(a) A win by one of the players (1 point for the winner and 0 for the loser).
(b) A draw (1/2 point for each of the two players).

If the score is tied at 1-1 at the end of the two games, the match goes into
sudden-death mode, whereby the players continue to play until the first time
one of them wins a game (and the match). The player has two playing styles
and he can choose one of the two at will in each game, independently of the
style he chose in previous games,

(1) Timid play with which he draws with probability py > 0, and he loses
with probability (1 — Pd).

(2) Bold play with which he wins with probability p,, and he loses with
probability (1 — p,).

Thus, in a given game, timid play never wins, while bold play never draws.
The player wants to find a style selection strategy that maximizes his proba-
bility of winning the match. Note that once the match gets into sudden death,
the player should play bold, since with timid plav he can at hest nralanc the

1

10 The Dynamic Programming Algorithm Chap. 1
sudden death play, while running the risk of losing. Therefore, there are only
two decisions for the player to make, the selection of the playing strategy in
the first two games, Thus, we can model the problem as one with two stages,
and with states the possible scores at the start of each of the first two stages
(games), as shown in Fig. 1.1.3. The initial state Is the initial score 0-0. The
transition probabilities for each of the two different controls (playing styles)
are also shown in Fig. 1.1.3. There is a cost at the terminal states: a cost of
-1 at the winning scores 2.0 and 1.5-0.5, a cost of 0 at the losing scores 0-2
and 0.5-1.5, and a cost of —Pw at the tied score 1-1 (since the probability of
winning in sudden death is Pw). Note that to maximize the probability P of
winning the match, we must minimize — P,

This problem has an interesting feature. One would think that if Pw <
1/2, the player would have a less than 50-50 chance of winning the match,
even with optimal play, since his probability of losing is greater than his
probability of winning any one game, regardless of his playing style. This is
not so, however, because the player can adapt his playing style to the current
score, but his opponent does not have that option. In other words, the player
can use a closed-loop strategy, and it will be seen later that with optimal play,
as determined by the dynamic programming algorithm, he has a better than
50-50 chance of winning the match provided Puw Is higher than a threshold
value P, which, depending on the value of Pd, may satisfy 5 < 1/2.

2 THE BASIC PROBLEM

We now formulate a general problem of decision under stochastic
uncertainty over a finite number of stages. This problem, which we call
basic, is the central problem in this book. We will discuss solution methods
for this problem based on dynamic programming in the first six chapters,
and we will extend our analysis to versions of this problem involving an
infinite number of stages in the last chapter and in Vol. II of this work.

The basic problem is very general. In particular, we will not require
that the state, control, or random parameter take a finite number of val-
ues or belong to a space of n-dimensional vectors. A surprising aspect of
dynamic programming is that its applicability depends very little on the
hature of the state, control, and random parameter spaces. For this reason
it is convenient to proceed without any assumptions on the structure of

these spaces; indeed such assumptions would become a serious impediment
later.

Basic Problem

We are given a discrete-time dynamic system

Thyl = &wﬁﬂw,ﬁw.éwvu o= Ok o0 N 1, (2.1)

Sec, 1.2 The Basic Problem 11

1st Game / Timid Play

p

S~
Dy

d

1

1
d

—{293
‘tﬂ
- Py

S,
> Pg e

2nd Game / Timid Play

2nd Game / Bold Play

Figure 1.1.3 Chess match example. Transition probability graphs for each of
the two possible controls (timid or bold play). Note here that the state space is
not the same at each stage. The terminal cost is -1 at the winning final scores 2-0

and 1.5-0.5, 0 at the losing final scores 0-2 and 0.5-1.5, and —p,, at the tied score
1-1.

where the state x;, is an element of a space Sk, the control u; is an element
of a space Cy, and the random “disturbance” wy, is an element of a space
Dy,

The control uy is constrained to take values in a given nonempty
subset U(xzy) C Cj, which depends on the current state Tg; that is, uy €
Uk(zx) for all 4 € S}, and k.

The random disturbance w, is characterized by a probability distri-
bution Py (- | Tk, ux) that may depend explicitly on xy, and uy but not on
values of prior disturbances Wg_1,...,Wp.

We consider the class of policies (also called control laws) that consist

12 The Dynamic Programming Algorithm Chap. 1

of a sequence of functions

T = AE.?..JEZIHT

where u maps states xi into controls uy = pr(zk) and is such that
ti(2x) € Ug(zg) for all 2 € Sy. Such policies will be called admissible.

Given an initial state z¢ and an admissible policy m = {0, ..., un-1},
the system equation
Th+1 "bn\nﬁnﬁk_tkﬁ.ﬁwv,ngu W”O.H‘..‘.Zl 1, AMMV

makes 4 and wy random variables with well-defined distributions. Thus,
for given functions gi, k = 0,1,..., N, the expected cost

N-1
Jnlzo) = E N (@N) +) gk (zk, pilan), wi) (2.3)
k=0,1,...,N=1 k=0

is a well-defined quantity. For a given initial state Zop, an optimal policy *
is one that minimizes this cost; that is,

Jor AHDV = WMW— L..amﬁovu

where II is the set of all admissible policies.

Note that the optimal policy 7* is associated with a fixed initial state
zo. However, an interesting aspect of the basic problem and of dynamic
programming is that it is typically possible to find a policy m* that is
simultaneously optimal for all initial states.

The optimal cost depends on zg and is denoted by J*(zo); that is,

J= = mi
(zo) min Jx(z0).

It is useful to view J* as a function that assigns to each initial state o the
optimal cost J*(xp) and call it the optimal cost function or optimal value
function.

For the benefit of the mathematically oriented reader we note that
in the preceding equation, “min” denotes the greatest lower bound (or
infimum) of the set of numbers {J(zo) | = € II}. A notation more in line
with normal mathematical usage would be to write J* (z0) = infrem Jx (o).
However (as discussed in Appendix B), we find it convenient to use “min” in

place of “inf” even when the infimum is not attained. It is less distracting,
and it will not lead to any confusion.

Sec. 1.2 The Basic Problem 13
The Role and Value of Information

We mentioned earlier the distinction between open-loop minimiza-
tion, where we select all controls wo,...,uy_1 at once at time 0, and
closed-loop minimization, where we select a policy {po,...,un_1} that
applies the control px(zy) at time k with knowledge of the current state
zy (see Fig. 1.2.1). With closed-loop policies, it is possible to achieve lower
cost, essentially by taking advantage of the extra information (the value
of the current state). The reduction in cost may be called the value of
the information and can be significant indeed. If the information is not
available, the controller cannot adapt appropriately to unexpected values
of the state, and as a result the cost can be adversely affected. For example,
in the inventory control example of the preceding section, the information
that becomes available at the beginning of each period k is the inventory
stock . Clearly, this information is very important to the inventory man-
ager, who will want to adjust the amount uy to be purchased depending
on whether the current stock xj is running high or low.

Tr

Uk= pdXy) System Xy
- Xk + 1= (X, Lk, W) -

A

[}

Ky

Figure 1.2.1 Information gathering in the basic problem. At each time k the
controller observes the current state z) and applies a control ug = pp(xy) that
depends on that state.

Example 2.1

To illustrate the benefits of the proper use of information, let us consider
the chess match example of the preceding section. There, a player can select
timid play (probabilities py and 1 — py4 for a draw and a loss, respectively)
or bold play (probabilities p,, and 1 — p,, for a win and a loss, respectively)
in each of the two games of the match. Suppose the player chooses a policy
of playing timid if and only if he is ahead in the score, as illustrated in Fig.
1.2.2; we will see in the next section that this policy is optimal, assuming
Pd > Pw. Then after the first game (in which he plays bold), the score is 1-0
with probability p,, and 0-1 with probability 1 — py. In the second game, he

14 The Dynamic Programming Algorithm Chap. 1

plays timid in the former case and bold in th

games, ?NUB@NE:S\ of a match win is py,pg, the probability of a match loss
is C —Pw)”, and the probability of a tied score 18 pu (1 ~ pa) + (1 = pu)pu, in
which case he has a probability p,, of winnin

b g the subsequent sudden-death
game. Thus the probability of winning the match with the given strategy is

e latter case. Thus after two

ﬁeva+ﬁsﬁﬁecFﬁ_mvuTcl_dSvﬁeuq .

which, with some rearrangement, gives

Probability of a match win = Pl (2 - Pu) + pu(l — py)py. (2.4)

Bold Play

Figure 1.2.2 Illustration of the
than 50-50 chance of winning th
abilities. The player chooses a
in the score.

policy used in Example 2.1 to obtain a greater
e chess match and associated transition prob-
policy of playing timid if and only if he is ahead

Suppose now that p, < 1 /2. Then the player has a greater probability
of losing than winning any one game, regardless of the type of play he uges.
From this we can infer that no open-loop strategy can give the player a greater
than 50-50 chance of winning the match. Yet from Eq. (2.4) it can be seen
that with the closed-loop strategy of playing timid if and only if the player
is ahead in the score, the chance of a match win can be greater than 50-50
provided that p., is close enough to 1/2 and py is close enough to 1. As w:.
example, for p,, = 0.45 and py = 0.9, Eq. (2.4) gives a match win probability
of roughly 0.53.

To calculate the value of information, let us consider the four open-loop

ﬁo:ommm“2umamg.€mnmoamo=ﬂrm type of play to be used without waiting to
see the result of the first game. These are:

Sec. 1.2 The Basic Problem 15

(1) Play timid in both mm,:.;mmu this has a probability p2p,, of winning the
match.

(2) Play bold in both games; this has a probability p2, + p(1 — Pw) =
P%(2 — puw) of winning the match,

(3) Play bold in the first game and timid in the second game; this has a
probability pups + p (1 — pa) of winning the match.

(4) Play timid in the first game and bold in the second game; this also has
a probability pupa + p% (1 — pa) of winning the match.

The first policy is always dominated by the others, and the optimal
open-loop probability of winning the match is

Open-loop probability of win

I

max (py, (2 — pu), Pupd + po(1 - pa))
P + Pu(l — puw) max(pw, pa).

Ii

By making the reasonable assumption pg > py, we see that the optimal open-

loop policy is to play timid in one of the two games and play bold in the other,
and that

Open-loop probability of a match win = pypg + ﬁmcc — pd). (2.5)

For py = 0.45 and pg = 0.9, Eq. (2.5) gives an optimal open-loop match win
probability of roughly 0.425. Thus, the value of the information (the outcome
of the first game) is the difference of the optimal closed-loop and open-loop
values, which is approximately 0.53 — 0.425 = 0.105. More generally, by
subtracting Egs. (2.4) and (2.5), we see that

Value of information = ﬁw@ = Puw) + Pw(l — puw)pa — ?Eﬁn + ﬁmcﬁ = Evv
= pull - pu).

It should be noted, however, that whereas availability of the state
information cannot hurt, it may not result in an advantage either. For
instance, in deterministic problems, where no random disturbances are
present, one can predict the future states given the initial state and the se-
quence of controls. Thus, optimization over all sequences {ug, u1,...,uN_1}
of controls leads to the same optimal cost as optimization over all admis-
sible policies. The same can be true even in some stochastic problems (see
for example Exercise 1.13). This brings up a related issue. Assuming no
information is forgotten, the controller actually knows the prior states and
controls o, U, ..., Tk—1,ux_1 as well as the current state Tk. Therefore,
the question arises whether policies that use the entire system history can
be superior to policies that use just the current state. The answer turns out
to be negative although the proof is technically complicated (see [BeST8]).
The intuitive reason is that, for a given time k and state Tk, all future
expected costs depend explicitly just on z; and not on prior history.

