
Excercise Computational neuroscience: Boltzmann-Gibbs
distributions

1. (a) Derive Eq. ??.

(b) Show that the detailed balance does not hold when the weights of the neural network
are not symmetric (wij 6= wji). In other words, show that te Boltzmann distribution
is not the stationary distribution of the Glauber dynamics with asymmetric weights.

2. Study the accuracy of the mean field and linear response method for a Boltzmann dis-
tribution on 2 neurons with equal threshold θ1 = θ2 = θ and connected by a weigth
w:

p(s1, s2) =
1

Z
exp(ws1s2 + θ(s1 + s2))

(a) Give an expression for the mean field equations to approximately compute the firing
rates for this network.

(b) Solve the mean field equations numerically for θ = w and various values of w and
compare the mean field approximation with the exact result.

(c) Compute the linear response estimate of the correlations and compare with the exact
values.

3. Work out analytically the result of mean field learning with linear response correction for
the case of two neurons and a data set consisting of three patterns (1,−1), (1, 1), (−1,−1).
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1 Answers

1. (a) From the definition of the sequential Glauber dynamics:

T (s|Fis) = σ(sihi(Fis)) = σ(sihi(s))

The last step follows becasue Fis is the state s with the value of the ith neuron
flipped (si → −si). The local field hi is given by

hi =
∑

j 6=i

wijsj + θi

and therefore does not depend on the value of si.

The reverse transition probability is

T (Fis|s) = σ(−sihi(s))

Therefore,

T (s|Fis)

T (Fis|s)
=

σ(sihi(s))

σ(−sihi(s))

=
exp(sihi(s))

exp(hi(s)) + exp(−hi(s))

exp(hi(s)) + exp(−hi(s))

exp(−sihi(s))

= exp(2sihi(s))

(b) The Glauber dynamics with sequential update satisfies Eq. ?? also for asymmetric
weights. On the other hand, the Boltzmann distribution is independent of the asym-
metric part of the weights. In other words, if we write wij = ws

ij + wa
ij with ws,a

ij the
symmetric and asymmetric parts of the matrix wij, respectively. We have

∑

ij

wijsisj =
∑

ij

ws
ijsisj

Therefore Eq. ?? and Eq. ?? can only be reconciled for symmetric wij.
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2. (a) The mean field equations are given by

m1 = tanh(wm2 + θ), m2 = tanh(wm1 + θ)

When w > 0, the solution is of the form m = m1 = m2 and therefore we only have
to solve

mmf = tanh(wmmf + θ)

for mmf .

(b) The solution of this fixed point equation for θ = w is sketched in fig. 1Left. For any
value of w, we can solve this equation using any standard numerical routine. The
Matlab code that I used is given here:

m=-2:0.1:2;

subplot(2,2,1)

plot(m,m,m,tanh(m+1),m,tanh(10*m+10))

legend(’m’,’tanh(m+1)’,’tanh(10m+10)’)

xlabel(’m’)

i=0;

for w=0:0.1:1,

i=i+1;

m=fsolve(inline(’tanh(w*m+w)-m’,’m’,’w’),0,[],w);

w1(i)=w;

m_mf(i)=m;

m_ex(i)=(-exp(-w)+exp(3*w))/(3*exp(-w)+exp(3*w));

end;

subplot(2,2,2)

plot(w1,m_mf,w1,m_ex)

legend(’m_{mf}’,’m_{ex}’)

xlabel(’w’)

ylabel(’m’)

The exact mean firing rates are normally intractable to compute for a large network,
but for two neurons is easily computed. It is given by Eq. ??, which for the special
case that θ = w becomes

mex =
− exp(−w) + exp(3w)

3 exp(−w) + exp(3w)

For θ = w, the solution for various values of w is shown in fig.1Right.

(c) The exact correlations are given by Eq. ??, with

〈s1s2〉 =
∑

s1,s2

s1s2p(s) =
− exp(−w) + exp(3w)

3 exp(−w) + exp(3w)

and 〈si〉 = mex as above. The linear response estimate of the correlations is given by
Eq. ??, with mi the mean field solution. Thus, for each w and θ, we first compute
the mean field solution m, and then invert the matrix in Eq. ??. The exact and
linear response solution for θ = w as a function of w is plotted in fig. 2. The Matlab
code that I used is given here:
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Figure 1: Left) Solution of the fixed point equation is given at the intersection of the straight line
and the tanh. Right) Numerical solutions are obtained solving the one dimensional non-linear
equations.
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Figure 2: Comparison of linear response and exact correlations.
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i=0;

for w=0:0.1:1,

i=i+1;

w1(i)=w;

m=fsolve(inline(’tanh(w*m+w)-m’,’m’,’w’),0,[],w);

c=[1/(1-m^2), -w;-w,1/(1-m^2)];

klad=inv(c);

chi_lr(i)=klad(1,2);

m_ex=(-exp(-w)+exp(3*w))/(3*exp(-w)+exp(3*w));

chi_ex(i)=m_ex-m_ex^2;

end;

subplot(2,2,1)

plot(w1,chi_lr,w1,chi_ex)

legend(’\chi_{lr}’,’\chi_{ex}’)

xlabel(’w’)

ylabel(’\chi’)

3. We use the recipe Eq. 45-48. From the data set we compute the means m1 = 1/3 and
m2 = −1/3. The correlations in the data are given by 〈s2

1
〉c = 〈s2

2
〉c = 1 and 〈s1s2〉c = 1/3.

Thus the data covariance matrix is

C =

(

1 1/3
1/3 1

)

−

(

1/9 -1/9
-1/9 1/9

)

=

(

8/9 4/9
4/9 8/9

)

Its inverse is easily computed as

C−1 =

(

3/2 -3/4
-3/4 3/2

)

From Eq. 47 we obtain

w =

(

9/8 0
0 9/8

)

−

(

3/2 -3/4
-3/4 3/2

)

=

(

-3/8 3/4
3/4 -3/8

)

Finally,

θ1 = tanh−1(m1) + 3/8m1 − 3/4m2 = tanh−1(1/3) + 3/8

θ1 = tanh−1(m2) − 3/4m1 + 3/8m2 = − tanh−1(1/3) − 3/8

Note, the appearance of the diagonal weights wii. In fact relation Eq. 36 (χ = C)
only holds off-diagonal. This relation is only equivalent to the relation χ−1 = C−1 if
we also impose Eq. 36 for i = j. These are n additional relations and the solution can
be obtained by introducing n additional parameters in the mean field description, which
are the diagonal weights. This rather ad hoc argument can be made more formal using
a higher order extension of the mean field theory using the Thouless Anderson Palmer
(TAP) method. From this it is shown that the diagonal terms are always negative as we
find in this example.
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