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Reinforcement learning

We consider a first order Markov process that assigns a probability to the transition
of x to x′ under action u: p0(x

′|x, u).

Reinforcement learning considers an infinite time horizon and rewards are
discounted.

We introduce a reward that depends on our current state and action R(x, u).

We define a policy π(u|x) as the conditional probability to take action u given
that we are in state x. Given the policy π and given that we start in state x0, the
probability to be in state xt at time t > 0 is given by

pπ(xt|x0; t) =
∑

u0:t−1,x1:t−1

t−1∏
s=0

p0(xs+1|xs, ux)π(us|xs)
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The expected future discounted reward in state x is defined as:

Jπ(x) =

∞∑
s=0

∑
x′,u′

π(u′|x′)pπ(x′|x; s)R(x′, u′)γs pπ(x
′|x, 0) = δx,x′

with 0 < γ < 1 the discount factor. Jπ is also known as the value function for
policy π. The objective of reinforcement learning is to find the policy π that
maximizes J for all states.

We can write a recursive relation for Jπ in the same way as we did in the previous
section.

Jπ(x) =
∑
u

π(u|x)R(x, u) +
∞∑
s=1

∑
x′,u′

π(u′|x′)pπ(x′|x; s)R(x′, u′)γs

=
∑
u

π(u|x)

(
R(x, u) + γ

∑
x′

p0(x
′|x, u)Jπ(x′)

)

Solving for Jπ(x) by fixed point iteration is called policy evaluation.

Bert Kappen Gatsby 2012 2



The idea of policy improvement is to construct a better policy from the value of
the previous policy. Once we have computed Jπ, we construct a new deterministic
policy

π′(u|x) = δu,u(x), u(x) = argmax
u

R(x, u) + γ
∑
x′

p0(x
′|x, u)Jπ(x′)(1)

It can be shown that the solution for Jπ′ is as least as good as the solution Jπ in
the sense that

Jπ′(x) ≥ Jπ(x),∀x

Thus
π0 → Jπ0 → π1 → Jπ1 → π2 . . .

One can show, that this procedure converges to a fixed point J∗(x).
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TD learning and actor-critic networks

The above procedures assume that the environment p0(x
′|x, u), R(x, u) in which

the automaton lives is known.

When the environment is not known one can either first learn a model and then
a controller or use a so-called model free approach, which yields the well-known
TD(λ) and Q-learning algorithms.

When p0 and R are not known, one can replace the Bellman equation by a sampling
variant

Jπ(x) = Jπ(x) + α(r + γJπ(x
′)− Jπ(x)). (2)

with x the current state of the agent, x′ the new state after choosing action u
from π(u|x) and r the actual observed reward.

To verify that this stochastic update equation gives a solution, look at its fixed
point:

Jπ(x) = R(x, u) + γJπ(x
′).
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and take expectation wrt to π(u|x) and p0(x
′|x, u).

Eq. 2 is the TD(0) algorithm. In principle, one should require full convergence of
the TD algorithm under the policy π before a new policy is defined.

Actor-critic idea: Interleave Eq. 2 with policy changes Eq. 1.
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Q learning

A mathematically more elegant way to compute the optimal policy in a model free
way is given by the Q learning algorithm (Watkins). Denote Q(x, u) the optimal
expected value of state x when taking action u and then proceeding optimally.
That is

Q(x, u) = R(x, u) + γ
∑
x′

p0(x
′|x, u)max

u′
Q(x′, u′) (3)

and J∗(x) = maxuQ(x, u).

Its stochastic, on-line, version is

Q(x, u) = Q(x, u) + α(R(x, u) + γmax
u′

Q(x′, u′)−Q(x, u)) (4)

As before, one can easily verify that by taking the expectation value of this equation
with respect to p0(x

′|x, u) one recovers Eq. 3.

Note, that for this approach to work not only all states should be visited a sufficient
number of times (as in the TD approach) but all state-action pairs. On the other
hand, Q-learning does not require the policy improvement step and the repeated
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computation of value functions. Also in the Q-learning approach it is tempting
to limit actions to those that are expected to be most successful, as in the TD
approach, but this may again result in a suboptimal solution.
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