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Mounting evidence suggests that ‘core object recognition,’ the ability to rapidly recognize objects despite
substantial appearance variation, is solved in the brain via a cascade of reflexive, largely feedforward
computations that culminate in a powerful neuronal representation in the inferior temporal cortex. However,
the algorithm that produces this solution remains poorly understood. Here we review evidence ranging
from individual neurons and neuronal populations to behavior and computational models. We propose
that understanding this algorithm will require using neuronal and psychophysical data to sift through many
computational models, each based on building blocks of small, canonical subnetworks with a common
functional goal.
Introduction
Recognizing the words on this page, a coffee cup on your desk,

or the person who just entered the room all seem so easy. The

apparent ease of our visual recognition abilities belies the

computational magnitude of this feat: we effortlessly detect

and classify objects from among tens of thousands of possibili-

ties (Biederman, 1987) andwe do sowithin a fraction of a second

(Potter, 1976; Thorpe et al., 1996), despite the tremendous

variation in appearance that each object produces on our eyes

(reviewed by Logothetis and Sheinberg, 1996). From an evolu-

tionary perspective, our recognition abilities are not surprising—

our daily activities (e.g., finding food, social interaction, selecting

tools, reading, etc.), and thus our survival, depend on our accu-

rate and rapid extraction of object identity from the patterns of

photons on our retinae.

The fact that half of the nonhuman primate neocortex is

devoted to visual processing (Felleman and Van Essen, 1991)

speaks to the computational complexity of object recognition.

From this perspective, we have a remarkable opportunity—we

have access to a machine that produces a robust solution, and

we can investigate that machine to uncover its algorithms of

operation. These to-be-discovered algorithms will probably

extend beyond the domain of vision—not only to other biological

senses (e.g., touch, audition, olfaction), but also to the discovery

of meaning in high-dimensional artificial sensor data (e.g.,

cameras, biometric sensors, etc.). Uncovering these algorithms

requires expertise from psychophysics, cognitive neuroscience,

neuroanatomy, neurophysiology, computational neuroscience,

computer vision, and machine learning, and the traditional

boundaries between these fields are dissolving.

What Does It Mean to Say ‘‘We Want to Understand
Object Recognition’’?
Conceptually, we want to know how the visual system can take

each retinal image and report the identities or categories of one
or more objects that are present in that scene. Not everyone

agrees on what a sufficient answer to object recognition might

look like. One operational definition of ‘‘understanding’’ object

recognition is the ability to construct an artificial system that

performs as well as our own visual system (similar in spirit to

computer-science tests of intelligence advocated by Turing

(1950). In practice, such an operational definition requires

agreed-upon sets of images, tasks, and measures, and these

‘‘benchmark’’ decisions cannot be taken lightly (Pinto et al.,

2008a; see below). The computer vision and machine learning

communities might be content with a Turing definition of opera-

tional success, even if it looked nothing like the real brain, as it

would capture useful computational algorithms independent of

the hardware (or wetware) implementation. However, experi-

mental neuroscientists tend to be more interested in mapping

the spatial layout and connectivity of the relevant brain areas,

uncovering conceptual definitions that can guide experiments,

and reaching cellular and molecular targets that can be used

to predictably modify object perception. For example, by uncov-

ering the neuronal circuitry underlying object recognition, we

might ultimately repair that circuitry in brain disorders that impact

our perceptual systems (e.g., blindness, agnosias, etc.).

Nowadays, these motivations are synergistic—experimental

neuroscientists are providing new clues and constraints about

the algorithmic solution at work in the brain, and computational

neuroscientists seek to integrate these clues to produce hypoth-

eses (a.k.a. algorithms) that can be experimentally distinguished.

This synergy is leading to high-performing artificial vision

systems (Pinto et al., 2008a, 2009b; Serre et al., 2007b). We

expect this pace to accelerate, to fully explain human abilities,

to reveal ways for extending and generalizing beyond those abil-

ities, and to expose ways to repair broken neuronal circuits and

augment normal circuits.

Progress toward understanding object recognition is driven

by linking phenomena at different levels of abstraction.
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Figure 1. Core Object Recognition
Core object recognition is the ability to rapidly (<200 ms viewing duration) discriminate a given visual object (e.g., a car, top row) from all other possible visual
objects (e.g., bottom row) without any object-specific or location-specific pre-cuing (e.g., DiCarlo and Cox, 2007). Primates perform this task remarkably well,
even in the face of identity-preserving transformations (e.g., changes in object position, size, viewpoint, and visual context).
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‘‘Phenomena’’ at one level of abstraction (e.g., behavioral

success on well-designed benchmark tests) are best explained

by ‘‘mechanisms’’ at one level of abstraction below (e.g.,

a neuronal spiking population code in inferior temporal cortex,

IT). Notably, these ‘‘mechanisms’’ are themselves ‘‘phenomena’’

that also require mechanistic explanations at an even lower level

of abstraction (e.g., neuronal connectivity, intracellular events).

Progress is facilitated by good intuitions about the most useful

levels of abstraction as well as measurements of well-chosen

phenomena at nearby levels. It then becomes crucial to define

alternative hypotheses that link those sets of phenomena and

to determine those that explain the most data and generalize

outside the specific conditions on which they were tested. In

practice, we do not require all levels of abstraction and their links

to be fully understood, but rather that both the phenomena and

the linking hypotheses be understood sufficiently well as to

achieve the broader policy missions of the research (e.g.,

building artificial vision systems, visual prosthetics, repairing

disrupted brain circuits, etc.).

To that end, we review three sets of phenomena at three levels

of abstraction (core recognition behavior, the IT population

representation, and IT single-unit responses), and we describe

the links between these phenomena (sections 1 and 2 below).

We then consider how the architecture and plasticity of the

ventral visual stream might produce a solution for object recog-

nition in IT (section 3), and we conclude by discussing key open

directions (section 4).

1. What IsObjectRecognition andWhy Is ItChallenging?
The Behavioral Phenomenon of Interest: Core Object

Recognition

Vision accomplishes many tasks besides object recognition,

including object tracking, segmentation, obstacle avoidance,

object grasping, etc., and these tasks are beyond the scope of

this review. For example, studies point to the importance of the

dorsal visual stream for supporting the ability to guide the eyes

or covert processing resources (spatial ‘‘attention’’) toward

objects (e.g., Ikkai et al., 2011; Noudoost et al., 2010; Valyear
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et al., 2006) and to shape the hand to manipulate an object

(e.g., Goodale et al., 1994; Murata et al., 2000), and we do not

review that work here (see Cardoso-Leite and Gorea, 2010;

Jeannerod et al., 1995; Konen and Kastner, 2008; Sakata

et al., 1997). Instead, we and others define object recognition

as the ability to assign labels (e.g., nouns) to particular objects,

ranging from precise labels (‘‘identification’’) to course labels

(‘‘categorization’’). More specifically, we focus on the ability to

complete such tasks over a range of identity preserving transfor-

mations (e.g., changes in object position, size, pose, and back-

ground context), without any object-specific or location-specific

pre-cuing (e.g., see Figure 1). Indeed, primates can accurately

report the identity or category of an object in the central visual

field remarkably quickly: behavioral reaction times for single-

image presentations are as short as �250 ms in monkeys

(Fabre-Thorpe et al., 1998) and �350 ms in humans (Rousselet

et al., 2002; Thorpe et al., 1996), and images can be presented

sequentially at rates less than �100 ms per image (e.g., Keysers

et al., 2001; Potter, 1976). Accounting for the time needed to

make a behavioral response, this suggests that the central

visual image is processed to support recognition in less than

200 ms, even without attentional pre-cuing (Fabre-Thorpe

et al., 1998; Intraub, 1980; Keysers et al., 2001; Potter, 1976;

Rousselet et al., 2002; Rubin and Turano, 1992). Consistent

with this, surface recordings in humans of evoked-potentials

find neural signatures reflecting object categorization within

150 ms (Thorpe et al., 1996). This ‘‘blink of an eye’’ time scale

is not surprising in that primates typically explore their visual

world with rapid eye movements, which result in short fixations

(200–500 ms), during which the identity of one or more objects

in the central visual field (�10 deg) must be rapidly determined.

We refer to this extremely rapid and highly accurate object

recognition behavior as ‘‘core recognition’’ (DiCarlo and

Cox, 2007). This definition effectively strips the object recog-

nition problem to its essence and provides a potentially trac-

table gateway to understanding. As describe below, it also

places important constraints on the underlying neuronal codes

(section 2) and algorithms at work (section 3).



Neuron

Perspective
The Crux Computational Problem: Core Recognition

Requires Invariance

To gain tractability, we have stripped the general problem of

object recognition to the more specific problem of core recog-

nition, but we have preserved its computational hallmark—the

ability to identify objects over a large range of viewing condi-

tions. This so-called ‘‘invariance problem’’ is the computational

crux of recognition—it is the major stumbling block for

computer vision recognition systems (Pinto et al., 2008a; Ull-

man, 1996), particularly when many possible object labels

must be entertained. The central importance of the invariance

problem is easy to see when one imagines an engineer’s task

of building a recognition system for a visual world in which

invariance was not needed. In such a world, repeated encoun-

ters of each object would evoke the same response pattern

across the retina as previous encounters. In this world, object

identity could easily be determined from the combined

responses of the retinal population, and this procedure would

easily scale to a nearly infinite number of possible ‘‘objects.’’

This is not object recognition, and machine systems that

work in these types of worlds already far outperform our own

visual system.

In the real world, each encounter with an object is almost

entirely unique, because of identity-preserving image transfor-

mations. Specifically, the vast array of images caused by

objects that should receive the same label (e.g., ‘‘car,’’ Figure 1)

results from the variability of the world and the observer: each

object can be encountered at any location on the retina (posi-

tion variability), at a range of distances (scale variability), at

many angles relative to the observer (pose variability), at a range

lighting conditions (illumination variability), and in new visual

contexts (clutter variability). Moreover, some objects are

deformable in shape (e.g., bodies and faces), and often we

need to group varying three-dimensional shapes into a common

category such as ‘‘cars,’’ ‘‘faces,’’ or ‘‘dogs’’ (intraclass vari-

ability). In sum, each encounter of the same object activates

an entirely different retinal response pattern and the task of

the visual system is to somehow establish the equivalence of

all of these response patterns while, at the same time, not

confuse any of them with images of all other possible objects

(see Figure 1).

Both behavioral (Potter, 1976; Thorpe et al., 1996) and

neuronal (Hung et al., 2005) evidence suggests that the visual

stream solves this invariance problem rapidly (discussed in

section 2). While the limits of such abilities have only been partly

characterized (Afraz and Cavanagh, 2008; Bülthoff et al., 1995;

Kingdom et al., 2007; Kravitz et al., 2010, 2008; Lawson, 1999;

Logothetis et al., 1994), from the point of view of an engineer,

the brain achieves an impressive amount of invariance to iden-

tity-preserving image transformations (Pinto et al., 2010). Such

invariance not only is a hallmark of primate vision, but also is

found in evolutionarily less advanced species (e.g., rodents; Ta-

fazoli et al., 2012; Zoccolan et al., 2009). In sum, the invariance of

core object recognition is the right place to drive a wedge into

the object recognition problem: it is operationally definable, it

is a domain where biological visual systems excel, it is experi-

mentally tractable, and it engages the crux computational diffi-

culty of object recognition.
The Invariance of Core Object Recognition: A Graphical

Intuition into the Problem

A geometrical description of the invariance problem from a

neuronal population coding perspective has been effective for

motivating hypothetical solutions, including the notion that the

ventral visual pathway gradually ‘‘untangles’’ information about

object identity (DiCarlo and Cox, 2007). As a summary of those

ideas,consider the responseofapopulationofneurons toapartic-

ular view of one object as a response vector in a space whose

dimensionality is defined by the number of neurons in the popula-

tion (Figure 2A).When an object undergoes an identity-preserving

transformation, such as a shift in position or a change in pose, it

produces a different pattern of population activity, which corre-

sponds to a different response vector (Figure 2A). Together, the

response vectors corresponding to all possible identity-

preserving transformations (e.g., changes in position, scale,

pose, etc.) define a low-dimensional surface in this high-dimen-

sional space—an object identity manifold (shown, for the sake

of clarity, as a line in Figure 2B). For neurons with small receptive

fields that are activated by simple light patterns, such as retinal

ganglion cells, each object manifold will be highly curved. More-

over, the manifolds corresponding to different objects will be

‘‘tangled’’ together, like pieces of paper crumpled into a ball

(see Figure 2B, left panel). At higher stages of visual processing,

neurons tend to maintain their selectivity for objects across

changes in view; this translates to manifolds that are more flat

and separated (more ‘‘untangled’’) (Figure 2B, right panel). Thus,

object manifolds are thought to be gradually untangled through

nonlinear selectivity and invariance computations applied at

each stage of the ventral pathway (DiCarlo and Cox, 2007).

Object recognition is the ability to separate images that contain

one particular object from images that do not (images of other

possible objects; Figure 1). In this geometrical perspective, this

amounts to positioning a decision boundary, such as a hyper-

plane, to separate the manifold corresponding to one object

from all other object manifolds. Mechanistically, one can think

of the decision boundary as approximating a higher-order neuron

that ‘‘looks down’’ on the population and computes object iden-

tity via a simple weighted sum of each neuron’s responses,

followedby a threshold. And thus it becomes clearwhy the repre-

sentation at early stages of visual processing is problematic for

object recognition: a hyperplane is completely insufficient for

separating one manifold from the others because it is highly

tangled with the other manifolds. However, at later stages, mani-

folds are flatter and not fused with each other, Figure 2B), so that

a simple hyperplane is all that is needed to separate them. This

conceptual frameworkmakesclear that information isnotcreated

as signals propagate through this visual system (which is impos-

sible); rather, information is reformatted in a manner that makes

information about object identity more explicit—i.e., available to

simple weighted summation decoding schemes. Later, we

extend insights from object identity manifolds to how the ventral

stream might accomplish this nonlinear transformation.

Considering how the ventral stream might solve core recogni-

tion from this geometrical, population-based, perspective shifts

emphasis away from traditional single-neuron response proper-

ties,which display considerable heterogeneity in high-level visual

areas and are difficult to understand (see section 2). We argue
Neuron 73, February 9, 2012 ª2012 Elsevier Inc. 417



Figure 2. Untangling Object
Representations
(A) The response pattern of a population of visual
neurons (e.g., retinal ganglion cells) to each image
(three images shown) is a point in a very high-
dimensional space where each axis is the
response level of each neuron.
(B) All possible identity-preserving transforma-
tions of an object will form a low-dimensional
manifold of points in the population vector space,
i.e., a continuous surface (represented here, for
simplicity, as a one-dimensional trajectory; see
red and blue lines). Neuronal populations in early
visual areas (retinal ganglion cells, LGN, V1)
contain object identity manifolds that are highly
curved and tangled together (see red and blue
manifolds in left panel). The solution to the
recognition problem is conceptualized as a series
of successive re-representations along the ventral
stream (black arrow) to a new population repre-
sentation (IT) that allows easy separation of one
namable object’s manifold (e.g., a car; see red
manifold) from all other object identity manifolds
(of which the blue manifold is just one example).
Geometrically, this amounts to remapping the
visual images so that the resulting object mani-
folds can be separated by a simple weighted
summation rule (i.e., a hyperplane, see black
dashed line; see DiCarlo and Cox, 2007).
(C) The vast majority of naturally experienced
images are not accompanied with labels (e.g.,
‘‘car,’’ ‘‘plane’’), and are thus shown as black
points. However, images arising from the same
source (e.g., edge, object) tend to be nearby in
time (gray arrows). Recent evidence shows that
the ventral stream uses that implicit temporal
contiguity instruction to build IT neuronal toler-
ance, and we speculate that this is due to an
unsupervised learning strategy termed cortical
local subspace untangling (see text). Note that,
under this hypothetical strategy, ‘‘shape coding’’
is not the explicit goal—instead, ‘‘shape’’ infor-
mation emerges as the residual natural image
variation that is not specified by naturally occurring
temporal contiguity cues.
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that this perspective is a crucial intermediate level of under-

standing for the core recognition problem, akin to studying aero-

dynamics, rather than feathers, to understand flight. Importantly,

this perspective suggests the immediate goal of determining

how well each visual area has untangled the neuronal represen-

tation, which can be quantified via a simple summation decoding

scheme (described above). It redirects emphasis toward deter-

mining the mechanisms that might contribute to untangling—

anddictateswhatmust be ‘‘explained’’ at the single-neuron level,

rather than creating ‘‘just so’’ stories based on the phenomenol-

ogies of heterogenous single neurons.
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2. What Do We Know about the
Brain’s ‘‘Object’’ Representation?
The Ventral Visual Stream Houses

Critical Circuitry for Core Object

Recognition

Decades of evidence argue that

the primate ventral visual processing

stream—a set of cortical areas arranged

along the occipital and temporal lobes
(Figure 3A)—houses key circuits that underlie object recognition

behavior (for reviews, see Gross, 1994; Miyashita, 1993; Orban,

2008; Rolls, 2000). Object recognition is not the only ventral

stream function, and we refer the reader to others (Kravitz

et al., 2010; Logothetis and Sheinberg, 1996; Maunsell and

Treue, 2006; Tsao and Livingstone, 2008) for a broader discus-

sion. Whereas lesions in the posterior ventral stream produce

complete blindness in part of the visual field (reviewed by Stoerig

and Cowey, 1997), lesions or inactivation of anterior regions,

especially the inferior temporal cortex (IT), can produce selective

deficits in the ability to distinguish among complex objects



Figure 3. The Ventral Visual Pathway
(A) Ventral stream cortical area locations in the macaque monkey brain, and flow of visual information from the retina.
(B) Each area is plotted so that its size is proportional to its cortical surface area (Felleman and Van Essen, 1991). Approximate total number of neurons (both
hemispheres) is shown in the corner of each area (M = million). The approximate dimensionality of each representation (number of projection neurons) is shown
above each area, based on neuronal densities (Collins et al., 2010), layer 2/3 neuronal fraction (O’Kusky and Colonnier, 1982), and portion (color) dedicated to
processing the central 10 deg of the visual field (Brewer et al., 2002). Approximate median response latency is listed on the right (Nowak and Bullier, 1997;
Schmolesky et al., 1998).
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(e.g., Holmes and Gross, 1984; Horel, 1996; Schiller, 1995; Wei-

skrantz and Saunders, 1984; Yaginuma et al., 1982). While these

deficits are not always severe, and sometimes not found at all

(Huxlin et al., 2000), this variability probably depends on the

type of object recognition task (and thus the alternative visual

strategies available). For example, some (Schiller, 1995; Wei-

skrantz and Saunders, 1984), but not all, primate ventral stream

lesion studies have explicitly required invariance.

While the human homology to monkey IT cortex is not well es-

tablished, a likely homology is thecortex in andaround thehuman

lateral occipital cortex (LOC) (see Orban et al., 2004 for review).

For example, a comparison of monkey IT and human ‘‘IT’’

(LOC) shows strong commonality in the population representa-

tion of object categories (Kriegeskorte et al., 2008). Assuming

these homologies, the importance of primate IT is suggested by

neuropsychological studies of human patients with temporal

lobedamage,whichcansometimesproduce remarkably specific

object recognition deficits (Farah, 1990). Temporary functional

disruptionof parts of thehumanventral stream (using transcranial

magnetic stimulation, TMS) can specifically disrupt certain types

of object discrimination tasks, such as face discrimination

(Pitcher et al., 2009). Similarly, artificial activation of monkey IT

neurons predictably biases the subject’s reported percept of

complex objects (Afraz et al., 2006). In sum, long-term lesion

studies, temporary activation/inactivation studies, and neuro-

physiological studies (described below) all point to the central

role of the ventral visual stream in invariant object recognition.

Ventral Visual Stream: Multiple, Hierarchically

Organized Visual Areas

The ventral visual stream has been parsed into distinct visual

‘‘areas’’ based on anatomical connectivity patterns, distinctive
anatomical structure, and retinotopic mapping (Felleman and

Van Essen, 1991). Complete retinotopic maps have been re-

vealed for most of the visual field (at least 40 degrees eccentricity

from the fovea) for areas V1, V2, and V4 (Felleman and Van Es-

sen, 1991) and thus each area can be thought of as conveying

a population-based re-representation of each visually presented

image. Within the IT complex, crude retinotopy exists over the

more posterior portion (pIT; Boussaoud et al., 1991; Yasuda

et al., 2010), but retinotopy is not reported in the central and

anterior regions (Felleman and Van Essen, 1991). Thus, while

IT is commonly parsed into subareas such as TEO and TE (Jans-

sen et al., 2000; Saleem et al., 2000, 1993; Suzuki et al., 2000;

Von Bonin and Bailey, 1947) or posterior IT (pIT), central IT

(cIT), and anterior IT (aIT) (Felleman and Van Essen, 1991), it is

unclear if IT cortex is more than one area, or how the term

‘‘area’’ should be applied. One striking illustration of this is recent

monkey fMRI work, which shows that there are three (Tsao et al.,

2003) to six (Tsao et al., 2008a) or more (Ku et al., 2011) smaller

regions within IT that may be involved in face ‘‘processing’’ (Tsao

et al., 2008b) (also see Op de Beeck et al., 2008; Pinsk et al.,

2005). This suggests that, at the level of IT, behavioral goals

(e.g., object categorization) (Kriegeskorte et al., 2008; Naselaris

et al., 2009) many be a better spatial organizing principle than

retinotopic maps.

All visual cortical areas share a six-layered structure and the

inputs and outputs to each visual area share characteristic

patterns of connectivity: ascending ‘‘feedforward’’ input is

received in layer 4 and ascending ‘‘feedforward’’ output origi-

nates in the upper layers; descending ‘‘feedback’’ originates in

the lower layers and is received in the upper and lower layers

of the ‘‘lower’’ cortical area (Felleman and Van Essen, 1991).
Neuron 73, February 9, 2012 ª2012 Elsevier Inc. 419
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These repeating connectivity patterns argue for a hierarchical

organization (as opposed to a parallel or fully interconnected

organization) of the areas with visual information traveling first

from the retina to the lateral geniculate nucleus of the thalamus

(LGN), and then through cortical area V1 to V2 to V4 to IT (Felle-

man and Van Essen, 1991). Consistent with this, the (mean) first

visually evoked responses of each successive cortical area are

successively lagged by �10 ms (Nowak and Bullier, 1997;

Schmolesky et al., 1998; see Figure 3B). Thus, just�100ms after

image photons impinge on the retina, a first wave of image-

selective neuronal activity is present throughout much of IT

(e.g., Desimone et al., 1984; DiCarlo and Maunsell, 2000; Hung

et al., 2005; Kobatake and Tanaka, 1994a; Logothetis and Shein-

berg, 1996; Tanaka, 1996). We believe this first wave of activity is

consistent with a combination of intra-area processing and feed-

forward inter-area processing of the visual image.

The Ventral Stream Cortical Code

The only known means of rapidly conveying information through

the ventral pathway is via the spiking activity that travels along

axons. Thus, we consider the neuronal representation in a given

cortical area (e.g., the ‘‘IT representation’’) to be the spatiotem-

poral pattern of spikes produced by the set of pyramidal neurons

that project out of that area (e.g., the spiking patterns traveling

along the population of axons that project out of IT; see

Figure 3B). How is the spiking activity of individual neurons

thought to encode visual information?

Most studies have investigated the response properties of

neurons in the ventral pathway by assuming a firing rate (or,

equivalently, a spike count) code, i.e., by counting how many

spikes each neuron fires over several tens or hundreds of milli-

seconds following the presentation of a visual image, adjusted

for latency (e.g., see Figures 4A and 4B). Historically, this

temporal window (here called the ‘‘decoding’’ window) was justi-

fied by the observation that its resulting spike rate is typically well

modulated by relevant parameters of the presented visual

images (such as object identity, position, or size; Desimone

et al., 1984; Kobatake and Tanaka, 1994b; Logothetis and

Sheinberg, 1996; Tanaka, 1996) (see examples of IT neuronal

responses in Figures 4A–4C), analogous to the well-understood

firing rate modulation in area V1 by ‘‘low level’’ stimulus

properties such as bar orientation (reviewed by Lennie andMov-

shon, 2005).

Like all cortical neurons, neuronal spiking throughout the

ventral pathway is variable in the ms-scale timing of spikes, re-

sulting in rate variability for repeated presentations of a nominally

identical visual stimulus. This spike timing variability is consistent

with a Poisson-like stochastic spike generation process with an

underlying rate determined by each particular image (e.g., Kara

et al., 2000; McAdams and Maunsell, 1999). Despite this vari-

ability, one can reliably infer what object, among a set of tested

visual objects, was presented from the rates elicited across the

IT population (e.g., Abbott et al., 1996; Aggelopoulos and Rolls,

2005; De Baene et al., 2007; Heller et al., 1995; Hung et al., 2005;

Li et al., 2009; Op de Beeck et al., 2001; Rust and DiCarlo, 2010).

It remains unknown whether the ms-scale spike variability found

in the ventral pathway is ‘‘noise’’ (in that it does not directly help

stimulus encoding/decoding) or if it is somehow synchronized

over populations of neurons to convey useful, perhaps ‘‘multi-
420 Neuron 73, February 9, 2012 ª2012 Elsevier Inc.
plexed’’ information (reviewed by Ermentrout et al., 2008).

Empirically, taking into account the fine temporal structure of

IT neuronal spiking patterns (e.g., concatenated decoding

windows, each less than 50 ms) does not convey significantly

more information about object identity than larger time windows

(e.g., a single, 200 ms decoding window), suggesting that the

results of ventral stream processing are well described by a firing

rate code where the relevant underlying time scale is �50 ms

(Abbott et al., 1996; Aggelopoulos and Rolls, 2005; Heller

et al., 1995; Hung et al., 2005). While different time epochs rela-

tive to stimulus onset may encode different types of visual infor-

mation (Brincat and Connor, 2006; Richmond and Optican,

1987; Sugase et al., 1999), very reliable object information is

usually found in IT in the first �50 ms of neuronal response

(i.e., 100–150 ms after image onset, see Figure 4A). More specif-

ically, (1) the population representation is already different for

different objects in that window (DiCarlo and Maunsell, 2000),

and (2) responses in that time window are more reliable because

peak spike rates are typically higher than later windows (e.g.,

Hung et al., 2005). Deeper tests of ms-scale synchrony hypoth-

eses require large-scale simultaneous recording. Another chal-

lenge to testing ms-scale spike coding is that alternative putative

decoding schemes are typically unspecified and open ended;

a more complex scheme outside the range of each technical

advance can always be postulated. In sum, while all spike-timing

codes cannot easily (if ever) be ruled out, rate codes over�50ms

intervals are not only easy to decode by downstream neurons,

but appear to be sufficient to support recognition behavior (see

below).

The IT Population Appears Sufficient to Support Core

Object Recognition

Although visual information processing in the first stage of the

ventral stream (V1) is reasonably well understood (see Lennie

and Movshon, 2005 for review), processing in higher stages

(e.g., V4, IT) remains poorly understood. Nevertheless, we

know that the ventral stream produces an IT pattern of activity

that can directly support robust, real-time visual object catego-

rization and identification, even in the face of changes in object

position and scale, limited clutter, and changes in background

context (Hung et al., 2005; Li et al., 2009; Rust and DiCarlo,

2010). Specifically, simple weighted summations of IT spike

counts over short time intervals (see section 2) lead to high rates

of cross-validated performance for randomly selected popula-

tions of only a few hundred neurons (Hung et al., 2005; Rust

and DiCarlo, 2010) (Figure 4E), and a simple IT weighted sum-

mation scheme is sufficient to explain a wide range of human

invariant object recognitionbehavior (Majaj et al., 2012). Similarly,

studies of fMRI-targeted clusters of IT neurons suggest that

IT subpopulations can support other object recognition tasks

such as face detection and face discrimination over some iden-

tity-preserving transformations (Freiwald and Tsao, 2010).

Importantly, IT neuronal populations are demonstrably better

at object identification and categorization than populations

at earlier stages of the ventral pathway (Freiwald and Tsao,

2010; Hung et al., 2005; Li et al., 2009; Rust and DiCarlo,

2010). Similarly, while neuronal activity that provides some

discriminative information about object shape has also been

found in dorsal stream visual areas at similar hierarchical levels



Figure 4. IT Single-Unit Properties and Their Relationship to Population Performance
(A) Poststimulus spike histogram from an example IT neuron to one object image (a chair) that was the most effective among 213 tested object images (Zoccolan
et al., 2007).
(B) Left: the mean responses of the same IT neuron to each of 213 object images (based on spike rate in the gray time window in A). Object images are ranked
according to their effectiveness in driving the neuron. As is typical, the neuron responded strongly to �10% of objects images (four example images of nearly
equal effectiveness are shown) and was suppressed below background rate by other objects (two example images shown), with no obvious indication of what
critical features triggered or suppressed its firing. Colors indicate highly effective (red), medium-effective (blue), and poorly effective (green) images. Right: data
from a second study (new IT neuron) using natural images patches to illustrate the same point (Rust and DiCarlo, unpublished).
(C) Response profiles from an example IT neuron obtained by varying the position (elevation) of three objects with high (red), medium (blue), and (low) effec-
tiveness. While response magnitude is not preserved, the rank-order object identity preference is maintained along the entire tested range of tested positions.
(D) To explain data in (C), each IT neuron (right panel) is conceptualized as having joint, separable tuning for shape (identity) variables and for identity-preserving
variables (e.g., position). If a population of such IT neurons tiles that space of variables (left panel), the resulting population representation conveys untangled
object identity manifolds (Figure 2B, right), while still conveying information about other variables such as position, size, etc. (Li et al., 2009).
(E) Direct tests of untangled object identity manifolds consist of using simple decoders (e.g., linear classifiers) to measure the cross-validated population
performance on categorization tasks (adapted from Hung et al., 2005; Rust and DiCarlo, 2010). Performance magnitude approaches ceiling level with only a few
hundred neurons (left panel), and the same population decode gives nearly perfect generalization across moderate changes in position (1.5 deg and 3 deg shifts),
scale (0.53/23 and 0.333/33), and context (right panel), which is consistent with previous work (Hung et al., 2005; right bar) and with the simulations in (D).
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(Sereno andMaunsell, 1998), a direct comparison shows that it is

not nearly as powerful as IT for object discrimination (Lehky and

Sereno, 2007).

Taken together, the neurophysiological evidence can be

summarized as follows. First, spike counts in �50 ms IT decod-
ing windows convey information about visual object identity.

Second, this information is available in the IT population begin-

ning �100 ms after image presentation (see Figure 4A). Third,

the IT neuronal representation of a given object across changes

in position, scale, and presence of limited clutter is untangled
Neuron 73, February 9, 2012 ª2012 Elsevier Inc. 421
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from the representations of other objects, and object identity can

be easily decoded using simple weighted summation codes (see

Figures 2B, 4D, and 4E). Fourth, these codes are readily

observed in passively viewing subjects, and for objects that

have not been explicitly trained (Hung et al., 2005). In sum, our

view is that the ‘‘output’’ of the ventral stream is reflexively ex-

pressed in neuronal firing rates across a short interval of time

(�50 ms) and is an ‘‘explicit’’ object representation (i.e., object

identity is easily decodable), and the rapid production of this

representation is consistent with a largely feedforward, nonlinear

processing of the visual input.

Alternative views suggest that ventral stream response prop-

erties are highly dependent on the subject’s behavioral state

(i.e., ‘‘attention’’ or task goals) and that these state changes

may bemore appropriately reflected in global network properties

(e.g., synchronized or oscillatory activity). While behavioral state

effects, task effects, and plasticity have all been found in IT, such

effects are typically (but not always) small relative to responses

changes driven by changes in visual images (Koida and Ko-

matsu, 2007; Op de Beeck and Baker, 2010; Suzuki et al.,

2006; Vogels et al., 1995). Another, not-unrelated view is that

the true object representation is hidden in the fine-grained

temporal spiking patterns of neurons and the correlational struc-

ture of those patterns. However, primate core recognition based

on simple wighted summation of mean spike rates over 50–

100 ms intervals is already powerful (Hung et al., 2005; Rust

and DiCarlo, 2010) and appears to extend to difficult forms of

invariance such as pose (Booth and Rolls, 1998; Freiwald and

Tsao, 2010; Logothetis et al., 1995). More directly, decoded IT

population performance exceeds artificial vision systems (Pinto

et al., 2010; Serre et al., 2007a) and appears sufficient to explain

human object recognition performance (Majaj et al., 2012). Thus,

we work under the null hypothesis that core object recognition is

well described by a largely feedforward cascade of nonlinear

filtering operations (see below) and is expressed as a population

rate code at �50 ms time scale.

A Contemporary View of IT Single Neurons

How do these IT neuronal population phenomena (above)

depend on the responses of individual IT neurons? Under-

standing IT single-unit responses has proven to be extremely

challenging and while some progress has been made (Brincat

and Connor, 2004; Yamane et al., 2008), we still have a poor

ability to build encoding models that predict the responses of

each IT neuron to new images (see Figure 4B). Nevertheless,

we know that IT neurons are activated by at least moderately

complex combinations of visual features (Brincat and Connor,

2004; Desimone et al., 1984; Kobatake and Tanaka, 1994b; Per-

rett et al., 1982; Rust and DiCarlo, 2010; Tanaka, 1996) and that

they are often able to maintain their relative object preference

over small to moderate changes in object position and size (Brin-

cat and Connor, 2004; Ito et al., 1995; Li et al., 2009; Rust and

DiCarlo, 2010; Tovée et al., 1994), pose (Logothetis et al.,

1994), illumination (Vogels and Biederman, 2002), and clutter

(Li et al., 2009; Missal et al., 1999, 1997; Zoccolan et al., 2005).

Contrary to popular depictions of IT neurons as narrowly

selective ‘‘object detectors,’’ neurophysiological studies of IT

are in near universal agreement with early accounts that describe

a diversity of selectivity: ‘‘We found that, as in other visual areas,
422 Neuron 73, February 9, 2012 ª2012 Elsevier Inc.
most IT neurons respond to many different visual stimuli and,

thus, cannot be narrowly tuned ‘detectors’ for particular

complex objects.’’ (Desimone et al., 1984). For example,

studies that involve probing the responses of IT cells with large

and diverse stimulus sets show that, while some neurons appear

highly selective for particular objects, they are the exception not

the rule. Instead, most IT neurons are broadly tuned and the

typical IT neuron responds to many different images and objects

(Brincat and Connor, 2004; Freedman et al., 2006; Kreiman et al.,

2006; Logothetis et al., 1995; Op de Beeck et al., 2001; Rolls,

2000; Rolls and Tovee, 1995; Vogels, 1999; Zoccolan et al.,

2007; see Figure 4B).

In fact, the IT population is diverse in both shape selectivity

and tolerance to identity-preserving image transformations

such as changes in object size, contrast, in-depth and in-plane

rotation, and presence of background or clutter (Ito et al.,

1995; Logothetis et al., 1995; Op de Beeck and Vogels, 2000;

Perrett et al., 1982; Rust and DiCarlo, 2010; Zoccolan et al.,

2005, 2007). For example, the standard deviation of IT receptive

field sizes is approximately 50% of the mean (mean ± SD: 16.5�

± 6.1�, Kobatake and Tanaka, 1994b; 24.5� ± 15.7�, Ito et al.,

1995; and 10� ± 5�, Op de Beeck and Vogels, 2000). Moreover,

IT neurons with the highest shape selectivities are the least

tolerant to changes in position, scale, contrast, and presence

of visual clutter (Zoccolan et al., 2007), a finding inconsistent

with ‘‘gnostic units’’ or ‘‘grandmother cells’’ (Gross, 2002), but

one that arises naturally from feedforward computational models

(Zoccolan et al., 2007).

Such findings argue for a distributed representation of visual

objects in IT, as suggested previously (e.g., Desimone et al.,

1984; Kiani et al., 2007; Rolls and Tovee, 1995)—a view that

motivates the population decoding approaches described

above (Hung et al., 2005; Li et al., 2009; Rust and DiCarlo,

2010). That is, single IT neurons do not appear to act as sparsely

active, invariant detectors of specific objects, but, rather, as

elements of a population that, as awhole, supports object recog-

nition. This implies that individual neurons do not need to be

invariant. Instead, the key single-unit property is called neuronal

‘‘tolerance’’: the ability of each IT neuron to maintain its prefer-

ences among objects, even if only over a limited transformation

range (e.g., position changes; see Figure 4C; Li et al., 2009).

Mathematically, tolerance amounts to separable single-unit

response surfaces for object shape and other object variables

such as position and size (Brincat and Connor, 2004; Ito et al.,

1995; Li et al., 2009; Tovée et al., 1994; see Figure 4D). This

contemporary view, that neuronal tolerance is the required and

observed single-unit phenomenology, has also been shown for

less intuitive identity-preserving transformations such as the

addition of clutter (Li et al., 2009; Zoccolan et al., 2005).

The tolerance of IT single units is nontrivial in that earlier

visual neurons do not have this property to the same degree. It

suggests that the IT neurons together tile the space of object

identity (shape) and other image variables such as object

retinal position. The resulting population representation is

powerful because it simultaneously conveys explicit information

about object identity and its particular position, size, pose, and

context, even when multiple objects are present, and it avoids

the need to re-‘‘bind’’ this information at a later stage (DiCarlo
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and Cox, 2007; Edelman, 1999; Riesenhuber and Poggio,

1999a). Graphically, this solution can be visualized as taking

two sheets of paper (each is an object manifold) that are

crumpled together, unfurling them, and aligning them on top of

each other (DiCarlo and Cox, 2007). The surface coordinates

of each sheet of paper correspond to identity-preserving

object variables such as retinal position and, because they are

aligned in this representation, this allows downstream circuits

to use simple summation decoding schemes to answer ques-

tions such as: ‘‘Was there an object in the left visual field?’’ or

‘‘Which object was on the left?’’ (see Figure 2B; DiCarlo and

Cox, 2007).

3. What Algorithm Produces the IT Population
Representation?
The results reviewed above argue that the ventral stream

produces an IT population representation in which object identity

and some other object variables (such as retinal position) are

explicit, even in the face of significant image variation. But how

is this achieved? Exactly what algorithm or set of algorithms is

at work? We do not know the answer, but we have empirical

data from neuroscience that partly constrain the hypothesis

space, as well as computational frameworks that guide our intu-

ition and show promise. In this section, we stand on those shoul-

ders to speculate what the answer might look like.

The Untangling Solution Is Probably Implemented

in Cortical Circuitry

Retinal and LGN processing help deal with important real-world

issues such as variation in luminance and contrast across each

visual image (reviewed by Kohn, 2007). However, because

RGC and LGN receptive fields are essentially point-wise spatial

sensors (Field et al., 2010), the object manifolds conveyed to

primary visual cortical area V1 are nearly as tangled as the pixel

representation (see Figure 2B). As V1 takes up the task, the

number of output neurons, and hence the total dimensionality

of the V1 representation, increases approximately 30-fold (Ste-

vens, 2001); Figure 3B). Because V1 neuronal responses are

nonlinear with respect to their inputs (from the LGN), this dimen-

sionality expansion results in an overcomplete population re-

representation (Lewicki and Sejnowski, 2000; Olshausen and

Field, 1997) in which the object manifolds are more ‘‘spread

out.’’ Indeed, simulations show that a V1-like representation is

clearly better than retinal-ganglion-cell-like (or pixel-based)

representation, but still far below human performance for real-

world recognition problems (DiCarlo and Cox, 2007; Pinto

et al., 2008a).

Global-Scale Architecture: A Deep Stack

of Cortical Areas

What happens as each image is processed beyond V1 via the

successive stages of the ventral stream anatomical hierarchy

(V2, V4, pIT, aIT; Figure 3)? Two overarching algorithmic frame-

works have been proposed. One framework postulates that each

successive visual area serially adds more processing power so

as to solve increasingly complex tasks, such as the untangling

of object identity manifolds (DiCarlo and Cox, 2007; Marr,

1982; Riesenhuber and Poggio, 1999b). A useful analogy here

is a car assembly production line—a single worker can only

perform a small set of operations in a limited time, but a serial
assembly line of workers can efficiently build something much

more complex (e.g., a car or a good object representation).

A second algorithmic framework postulates the additional idea

that the ventral stream hierarchy, and interactions between

different levels of the hierarchy, embed important processing

principles analogous to those in large hierarchical organizations,

such as the U.S. Army (e.g., Lee and Mumford, 2003; Friston,

2010; Roelfsema and Houtkamp, 2011). In this framework, feed-

back connections between the different cortical areas are critical

to the function of the system. This view has been advocated in

part because it is one way to explicitly enable inference about

objects in the image from weak or noisy data (e.g., missing or

occluded edges) under a hierarchical Bayesian framework (Lee

and Mumford, 2003; Rust and Stocker, 2010). For example, in

the army analogy, foot soldiers (e.g., V1 neurons) pass uncertain

observations (e.g., ‘‘maybe I see an edge’’) to sergeants (e.g.,

V2), who then pass the accumulated information to lieutenants,

and so on. These higher agents thus glimpse the ‘‘forest for the

trees’’ (e.g., Bar et al., 2006) and in turn direct the lowest levels

(the foot soldiers) on how to optimize processing of this weak

sensory evidence, presumably to help the higher agents (e.g.,

IT). A related but distinct idea is that the hierarchy of areas plays

a key role at a much slower time scale—in particular, for learning

to properly configure a largely feedforward ‘‘serial chain’’ pro-

cessing system (Hinton et al., 1995).

A central issue that separates the largely feedforward ‘‘serial-

chain’’ framework and the feedforward/feedback ‘‘organized

hierarchy’’ framework is whether re-entrant areal communication

(e.g., spikes sent from V1 to IT to V1) is necessary for building

explicit object representation in IT within the time scale of natural

vision (�200 ms). Even with improved experimental tools that

might allow precise spatial-temporal shutdown of feedback

circuits (e.g., Boyden et al., 2005), settling this debate hinges

on clear predictions about the recognition tasks for which that

re-entrant processing is purportedly necessary. Indeed, it is

likely that a compromise view is correct in that the best descrip-

tion of the system depends on the time scale of interest and the

visual task conditions. For example, the visual system can be put

in noisy or ambiguous conditions (e.g., binocular rivalry) in which

coherent object percepts modulate on significantly slower time

scales (seconds; e.g., Sheinberg and Logothetis, 1997) and

this processing probably engages inter-area feedback along

the ventral stream (e.g., Naya et al., 2001). Similarly, recognition

tasks that involve extensive visual clutter (e.g., ‘‘Where’s

Waldo?’’) almost surely require overt re-entrant processing

(eye movements that cause new visual inputs) and/or covert

feedback (Sheinberg and Logothetis, 2001; Ullman, 2009) as

do working memory tasks that involve finding a specific object

across a sequence of fixations (Engel and Wang, 2011).

However, a potentially large class of object recognition tasks

(what we call ‘‘core recognition,’’ above) can be solved rapidly

(�150 ms) and with the first spikes produced by IT (Hung et al.,

2005; Thorpe et al., 1996), consistent with the possibility of little

to no re-entrant areal communication. Even if true, such data do

not argue that core recognition is solved entirely by feedforward

circuits—very short time re-entrant processing within spatially

local circuits (<10 ms; e.g., local normalization circuits) is likely

to be an integral part of the fast IT population response. Nor
Neuron 73, February 9, 2012 ª2012 Elsevier Inc. 423
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does it argue that anatomical pathways outside the ventral

stream do not contribute to this IT solution (e.g., Bar et al.,

2006). In sum, resolving debates about the necessity (or lack

thereof) of re-entrant processing in the areal hierarchy of ventral

stream cortical areas depends strongly on developing agreed-

upon operational definitions of ‘‘object recognition’’ (see section

4), but the parsimonious hypothesis is that core recognition does

not require re-entrant areal processing.

Mesoscale Architecture: Inter-Area and Intra-Area

Cortical Relationships

One key idea implicit in both algorithmic frameworks is the idea

of abstraction layers—each level of the hierarchy need only be

concerned with the ‘‘language’’ of its input area and its local

job. For example, in the serial chain framework, while workers

in the middle of a car assembly line might put in the car engine,

they do not need to know the job description of early line workers

(e.g., how to build a chassis). In this analogy, the middle line

workers are abstracted away from the job description of the early

line workers.

Most complex, human-engineered systems have evolved to

take advantage of abstraction layers, including the factory

assembly line to produce cars and the reporting organization

of large companies to produce coordinated action. Thus, the

possibility that each cortical area can abstract away the details

below its input areamay be critical for leveraging a stack of visual

areas (the ventral stream) to produce an untangled object iden-

tity representation (IT). A key advantage of such abstraction is

that the ‘‘job description’’ of each worker is locally specified

and maintained. The trade-off is that, in its strongest instantia-

tion, no one oversees the online operation of the entire process-

ing chain and there are many workers at each level operating in

parallel without explicit coordination (e.g., distant parts of V1).

Thus, the proper upfront job description at each local cortical

subpopulation must be highly robust to that lack of across-

area and within-area supervision. In principle, such robustness

could arise from either an ultraprecise, stable set of instructions

given to each worker upfront (i.e., precise genetic control of all

local cortical synaptic weights within the subpopulation), or

from a less precise ‘‘meta’’ job description—initial instructions

that are augmented by learning that continually refines the daily

job description of eachworker. Such learningmechanisms could

involve feedback (e.g., Hinton et al., 1995; see above) and could

act to refine the transfer function of each local subpopulation.

Local Architecture: Each Cortical Locus May Have

a Common Subspace-Untangling Goal

We argue above that the global function of the ventral stream

might be best thought of as a collection of local input-output

subpopulations (where each subpopulation is a ‘‘worker’’) that

are arranged laterally (to tile the visual field in each cortical

area) and cascaded vertically (i.e., like an assembly line) with little

or no need for coordination of those subpopulations at the time

scale of online vision. We and others advocate the additional

possibility that each ventral stream subpopulation has an iden-

tical meta job description (see also Douglas and Martin, 1991;

Fukushima, 1980, Kouh and Poggio, 2008; Heeger et al.,

1996). We say ‘‘meta’’ because we speculate about the implicit

goal of each cortical subpopulation, rather than its detailed

transfer function (see below). This canonical meta job description
424 Neuron 73, February 9, 2012 ª2012 Elsevier Inc.
would amount to an architectural scaffold and a set of learning

rules describing how, following learning, the values of a finite

number of inputs (afferents from lower cortical level) produce

the values of a finite number of outputs (efferents to the next

higher cortical level; see Figure 5). We would expect these

learning rules to operate at a much slower time scale than online

vision. This possibility is not only conceptually simplifying to us

as scientists, but it is also extremely likely that an evolving

system would exploit this type of computational unit because

the same instruction set (e.g., genetic encoding of that meta

job description) could simply be replicated laterally (to tile the

sensory field) and stacked vertically (to gain necessary algo-

rithmic complexity, see above). Indeed, while we have brought

the reader here via arguments related to the processing power

required for object representation, many have emphasized the

remarkable architectural homogeneity of the mammalian

neocortex (e.g., Douglas and Martin, 2004; Rockel et al., 1980);

with some exceptions, each piece of neocortex copies many

details of local structure (number of layers and cell types in

each layer), internal connectivity (major connection statistics

within that local circuit), and external connectivity (e.g., inputs

from the lower cortical area arrive in layer 4, outputs to the

next higher cortical area depart from layer 2/3).

For core object recognition, we speculate that the canonical

meta job description of each local cortical subpopulation is

to solve a microcosm of the general untangling problem

(section 1). That is, instead of working on a �1 million dimen-

sional input basis, each cortical subpopulation works on

a much lower dimensional input basis (1,000–10,000; Figure 5),

which leads to significant advantages in both wiring packing

and learnability from finite visual experience (Bengio, 2009).

We call this hypothesized canonical meta goal ‘‘cortically local

subspace untangling’’—‘‘cortically local’’ because it is the

hypothesized goal of every local subpopulation of neurons

centered on any given point in ventral visual cortex (see section

4), and ‘‘subspace untangling’’ because each such subpopula-

tion does not solve the full untangling problem, but instead

aims to best untangle object identity within the data subspace af-

forded by its set of input afferents (e.g., a small aperture on the

LGN in V1, a small aperture on V1 in V2, etc.). It is impossible

for most cortical subpopulations to fully achieve this meta goal

(because most only ‘‘see’’ a small window on each object), yet

we believe that the combined efforts of many local units each

trying their best to locally untangle may be all that is needed to

produce an overall powerful ventral stream. That is, our hypoth-

esis is that the parallel efforts of each ventral stream cortical

locus to achieve local subspace untangling leads to a ventral

stream assembly line whose ‘‘online’’ operation produces an un-

tangled object representation at its top level. Later we outline

how we aim to test that hypothesis.

‘‘Bottom-Up’’ Encoding Models of Cortical Responses

We have arrived at a putative canonical meta job description,

local subspace untangling, by working our way ‘‘top-down’’

from the overall goal of visual recognition and considering neuro-

anatomical data. How might local subspace untangling be

instantiated within neuronal circuits and single neurons?

Historically, mechanistic insights into the computations per-

formed by local cortical circuits have derived from ‘‘bottom-up’’



Figure 5. Abstraction Layers and Their Potential Links
Here we highlight four potential abstraction layers (organized by anatomical spatial scale) and the approximate number of inputs, outputs, and elemental subunits
at each level of abstraction (M = million, K = thousand). We suggest possible computational goals (what is the ‘‘job’’ of each level of abstraction?), algorithmic
strategies (howmight it carry out that job?), and transfer function elements (mathematical forms to implement the algorithm). We raise the possibility (gray arrow)
that local cortical networks termed ‘‘subspace untanglers’’ are a useful level of abstraction to connect math that captures the transfer functions emulated by
cortical circuits (right most panel), to the most elemental type of population transformation needed to build good object representation (see Figure 2C), and
ultimately to full untangling of object identity manifolds (as hypothesized here).
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approaches that aim to quantitatively describe the encoding

functions that map image features to the firing rate responses

of individual neurons. One example is the conceptual encoding

models ofHubel andWiesel (1962),whichpostulate theexistence

of two operations in V1 that produce the response properties of

the ‘‘simple’’ and ‘‘complex’’ cells. First, V1 simple cells imple-

ment AND-like operations on LGN inputs to produce a new

form of ‘‘selectivity’’—an orientation-tuned response. Next, V1

complex cells implement a form of ‘‘invariance’’ by making OR-

like combinations of simple cells tuned for the same orientation.

These conceptual models are central to current encoding

models of biological object recognition (e.g., Fukushima, 1980;

Riesenhuber and Poggio, 1999b; Serre et al., 2007a), and they

have been formalized into the linear-nonlinear (LN) class of en-

codingmodels inwhicheachneuronadds andsubtract its inputs,

followed by a static nonlinearity (e.g., a threshold) to produce

a firing rate response (Adelson and Bergen, 1985; Carandini

et al., 2005;Heeger et al., 1996;Rosenblatt, 1958).While LN-style

models are far from a synaptic-level model of a cortical circuit,

they are a potentially powerful level of abstraction in that they

can account for a substantial amount of single-neuron response

patterns in early visual (Carandini et al., 2005), somatosensory

(DiCarlo et al., 1998), and auditory cortical areas (Theunissen

et al., 2000). Indeed, a nearly complete accounting of early level
neuronal response patterns can be achieved with extensions to

the simple LN model framework—most notably, by divisive

normalization schemes in which the output of each LN neuron

is normalized (e.g., divided) by aweighted sumof apool of nearby

neurons (reviewed by Carandini and Heeger, 2011). Such

schemes were used originally to capture luminance and contrast

andother adaptation phenomena in the LGNandV1 (Mante et al.,

2008;Rust andMovshon, 2005), and they represent abroadclass

of models, which we refer to here as the ‘‘normalized LN’’ model

class (NLN; see Figure 5).

We do not know whether the NLN class of encoding models

can describe the local transfer function of any output neuron at

any cortical locus (e.g., the transfer function from a V4 subpop-

ulation to a single IT neuron). However, because the NLN model

is successful at the first sensory processing stage, the parsimo-

nious view is to assume that the NLNmodel class is sufficient but

that the particular NLN model parameters (i.e., the filter weights,

the normalization pool, and the specific static nonlinearity) of

each neuron are uniquely elaborated. Indeed, the field has

implicitly adopted this view with attempts to apply cascaded

NLN-like models deeper into the ventral stream (e.g., David

et al., 2006). Unfortunately, the approach requires exponentially

more stimulus-response data to try to constrain an exponentially

expanding set of possible cascaded NLN models, and thus we
Neuron 73, February 9, 2012 ª2012 Elsevier Inc. 425
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cannot yet distinguish between a principled inadequacy of the

cascaded NLN model class and a failure to obtain enough

data. This is currently a severe ‘‘in practice’’ inadequacy of the

cascaded NLN model class in that its effective explanatory

power does not extend far beyond V1 (Carandini et al., 2005).

Indeed, the problem of directly determining the specific image-

based encoding function (e.g., a particular deep stack of NLN

models) that predicts the response of any given IT neuron

(e.g., the one at the end ofmy electrode today) may be practically

impossible with current methods.

Canonical Cortical Algorithms: Possible Mechanisms of

Subspace Untangling

Nevertheless, all hope is not lost, and we argue for a different

way forward. In particular, the appreciation of underconstrained

models reminds us of the importance of abstraction layers in

hierarchical systems—returning to our earlier analogy, the

workers at the end of the assembly line never need to build the

entire car from scratch, but, together, the cascade of workers

can still build a car. In other words, building an encoding model

that describes the transformation from an image to a firing rate

response is not the problem that, e.g., an IT cortical neuron

faces. On the contrary, the problem faced by each IT (NLN)

neuron is a much more local, tractable, meta problem: from

which V4 neurons should I receive inputs, how should I weigh

them, what should comprise my normalization pool, and what

static nonlinearity should I apply?

Thus, rather than attempting to estimate the myriad parame-

ters of each particular cascade of NLN models or each local

NLN transfer function, we propose to focus instead on testing

hypothetical meta job descriptions that can be implemented to

produce those myriad details. We are particularly interested in

hypotheses where the same (canonical) meta job description is

invoked and set in motion at each cortical locus.

Our currently hypothesized meta job description (cortically

local subspace untangling) is conceptually this: ‘‘Your job, as

a local cortical subpopulation, is to take all your neuronal

afferents (your input representation) and apply a set of nonlinear-

ities and learning rules to adjust your input synaptic weights

based on the activity of those afferents. These nonlinearities

and learning rules are designed such that, even though you do

not know what an object is, your output representation will tend

to be one in which object identity is more untangled than your

input representation.’’ Note that this is not a meta job description

of each single neuron, but is the hypothesized goal of each local

subpopulation of neurons (see Figure 5). It accepts that each

neuron in the subpopulation is well approximated by a set of

NLN parameters, but that many of these myriad parameters are

highly idiosyncratic to each subpopulation. Our hypothesis is

that each ventral stream cortical subpopulation uses at least

three common, genetically encoded mechanisms (described

below) to carry out that meta job description and that together,

those mechanisms direct it to ‘‘choose’’ a set of input weights,

a normalization pool, and a static nonlinearity that lead to

improved subspace untangling. Specifically, we postulate the

existence of the following three key conceptual mechanisms:

(1) Each subpopulation sets up architectural nonlinearities

that naturally tend to flatten objectmanifolds. Specifically,
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even with random (nonlearned) filter weights, NLN-like

models tend to produce easier-to-decode object identity

manifolds largely on the strength of the normalization

operation (Jarrett et al., 2009; Lewicki and Sejnowski,

2000; Olshausen and Field, 2005; Pinto et al., 2008b),

similar in spirit to the overcomplete approach of V1

(described above).

(2) Each subpopulation embeds mechanisms that tune the

synaptic weights to concentrate its dynamic response

range to span regions of its input space where images

are typically found (e.g., do not bother encoding things

you never see). This is the basis of natural image statistics

and compression (e.g., Hoyer and Hyvärinen, 2002;

Olshausen and Field, 1996; Simoncelli and Olshausen,

2001) and its importance is supported by the observation

that higher levels of the ventral stream are more tuned to

natural feature conjunctions than lower levels (e.g., Rust

and DiCarlo, 2010).

(3) Each subpopulation uses an unsupervised algorithm

to tune its parameters such that input patterns that

occur close together in time tend to lead to similar

output responses. This implements the theoretical idea

that naturally occurring temporal contiguity cues can

‘‘instruct’’ the building of tolerance to identity-preserving

transformations. More specifically, because each

object’s identity is temporally stable, different retinal

images of the same object tend to be temporally contig-

uous (Fazl et al., 2009; Foldiak, 1991; Stryker, 1992;Wallis

and Rolls, 1997; Wiskott and Sejnowski, 2002). In the

geometrical, population-based description presented in

Figure 2, response vectors that are produced by retinal

images occurring close together in time tend to be

the directions in the population response space that

correspond to identity-preserving image variation, and

thus attempts to produce similar neural responses for

temporally contiguous stimuli achieve the larger goal of

factorizing object identity and other object variables

(position, scale, pose, etc.). For example, the ability of IT

neurons to respond similarly to the same object seen at

different retinal positions (‘‘position tolerance’’) could be

bootstrapped by the large number of saccadic-driven

image translation experiences that are spontaneously

produced on the retinae (�100 million such translation

experiences per year of life). Indeed, artificial manipula-

tions of temporally contiguous experience with object

images across different positions and sizes can rapidly

and strongly reshape the position and size tolerance of

IT neurons—destroying existing tolerance and building

new tolerance, depending on the provided visual experi-

ence statistics (Li and DiCarlo, 2008, 2010), and predict-

ably modifying object perception (Cox et al., 2005). We

refer the reader to computational work on how such

learning might explain properties of the ventral stream

(e.g., Foldiak, 1991; Hurri and Hyvärinen, 2003; Wiskott

and Sejnowski, 2002; see section 4), as well as other

potentially important types of unsupervised learning that

do not require temporal cues (Karlinsky et al., 2008; Perry

et al., 2010).



Figure 6. Serial-Chain Discriminative
Models of Object Recognition
A class of biologically inspired models of object
recognition aims to achieve a gradual untangling
of object manifolds by stacking layers of neuronal
units in a largely feedforward hierarchy. In this
example, units in each layer process their inputs
using either AND-like (see red units) and OR-like
(e.g., ‘‘MAX,’’ see blue units) operations, and those
operations are applied in parallel in alternating
layers. The AND-like operation constructs some
tuning for combinations of visual features (e.g.,
simple cells in V1), and the OR-like operation
constructs some tolerance to changes in, e.g.,
position and size by pooling over AND-like units
with identical feature tuning, but having receptive
fields with slightly different retinal locations and
sizes. This can produce a gradual increase of the
tolerance to variation in object appearance along
the hierarchy (e.g., Fukushima, 1980; Riesenhuber
and Poggio, 1999b; Serre et al., 2007a). AND-like
operations and OR-like operations can each be
formulated (Kouh and Poggio, 2008) as a variant of
a standard LN neuronal model with nonlinear gain
control mechanisms (e.g., a type of NLN model,
see dashed frame).
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Testing Hypotheses: Instantiated Models of the Ventral

Stream

Experimental approaches are effective at describing undocu-

mented behaviors of ventral stream neurons, but alone they

cannot indicate when that search is complete. Similarly, ‘‘word

models’’ (including ours, above) are not falsifiable algorithms.

To make progress, we need to construct ventral-stream-

inspired, instantiated computational models and compare their

performance with neuronal data and human performance on

object recognition tasks. Thus, computational modeling cannot

be taken lightly. Together, the set of alternative models define

the space of falsifiable alternative hypotheses in the field, and

the success of some such algorithms will be among our first indi-

cations that we are on the path to understanding visual object

recognition in the brain.

The idea of using biologically inspired, hierarchical computa-

tional algorithms to understand the neuronal mechanisms under-

lying invariant object recognition tasks is not new: ‘‘The mecha-

nism of pattern recognition in the brain is little known, and it

seems to be almost impossible to reveal it only by conventional

physiological experiments.. If we could make a neural network
Neuron 73
model which has the same capability for

pattern recognition as a human being, it

would give us a powerful clue to the

understanding of the neural mechanism

in the brain’’ (Fukushima, 1980). More

recent modeling efforts have significantly

refined and extended this approach (e.g.,

Lecun et al., 2004; Mel, 1997; Riesen-

huber and Poggio, 1999b; Serre et al.,

2007a). While we cannot review all the

computer vision or neural network

models that have relevance to object

recognition in primates here, we refer
the reader to reviews by Bengio (2009), Edelman (1999), Riesen-

huber and Poggio (2000), and Zhu and Mumford (2006).

Commensurate with the serial chain, cascaded untangling

discussion above, some ventral-stream-inspired models imple-

ment a canonical, iterated computation, with the overall goal of

producing a good object representation at their highest stage

(Fukushima, 1980; Riesenhuber and Poggio, 1999b; Serre

et al., 2007a). These models include a handful of hierarchically

arranged layers, each implementing AND-like operations to build

selectivity followed by OR-like operations to build tolerance to

identity preserving transformations (Figure 6). Notably, both

AND-like and OR-like computations can be formulated as vari-

ants of the NLNmodel class described above (Kouh and Poggio,

2008), illustrating the link to canonical cortical models (see inset

in Figure 6). Moreover, these relatively simple hierarchical

models can produce model neurons that signal object identity,

are somewhat tolerant to identity-preserving transformations,

and can rival human performance for ultrashort, backward-

masked image presentations (Serre et al., 2007a).

The surprising power of suchmodels substantially demystifies

the problem of invariant object recognition, but also points out
, February 9, 2012 ª2012 Elsevier Inc. 427
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that the devil is in the details—the success of an algorithm

depends on a large number of parameters that are only weakly

constrained by existing neuroscience data. For example, while

the algorithms of Fukushima (1980), Riesenhuber and Poggio

(1999b), and Serre et al. (2007a) represent a great start, we

also know that they are insufficient in that they perform only

slightly better than baseline V1-like benchmark algorithms

(Pinto et al., 2011), they fail to explain human performance for

100 ms or longer image presentations (Pinto et al., 2010), and

their patterns of confusion do not match those found in the

monkey IT representation (Kayaert et al., 2005; Kiani et al.,

2007; Kriegeskorte et al., 2008). Nevertheless, these algorithms

continue to inspire ongoing work, and recent efforts to more

deeply explore the very large, ventral-stream-inspired algorithm

class fromwhich they are drawn is leading to evenmore powerful

algorithms (Pinto et al., 2009b) and motivating psychophysical

testing and new neuronal data collection (Pinto et al., 2010;Majaj

et al., 2012).

4. What Is Missing and How Do We Move Forward?
Do we ‘‘understand’’ how the brain solves object recognition?

We understand the computational crux of the problem (invari-

ance); we understand the population coding issues resulting

from invariance demands (object-identity manifold untangling);

we understand where the brain solves this problem (ventral

visual stream); and we understand the neuronal codes that are

probably capable of supporting core recognition (�50 ms rate

codes over populations of tolerant IT neurons). We also under-

stand that the iteration of a basic class of largely feedforward

functional units (NLN models configured as alternating patterns

of AND-like and OR-like operations) can produce patterns of

representations that approximate IT neuronal responses,

produce respectable performance in computer vision tests of

object recognition, and even approach some aspects of human

performance. So what prevents us from declaring victory?

Problem 1. We Must Fortify Intermediate Levels of

Abstraction

At an elemental level, we have respectable models (e.g., NLN

class; Heeger et al., 1996; Kouh and Poggio, 2008) of how

each single unit computes its firing rate output from its inputs.

However, we are missing a clear level of abstraction and linking

hypotheses that can connect mechanistic, NLN-like models to

the resulting data reformatting that takes place in large neuronal

populations (Figure 5).

We argue that an iterative, canonical population processing

motif provides a useful intermediate level of abstraction. The

proposed canonical processing motif is intermediate in its phys-

ical instantiation (Figure 5). Unlike NLN models, the canonical

processing motif is a multi-input, multi-output circuit, with

multiple afferents to layer 4 and multiple efferents from layer

2/3 and where the number of outputs is approximately the

same as the number of inputs, thereby preserving the dimen-

sionality of the local representation. We postulate the physical

size of this motif to be �500 um in diameter (�40K neurons),

with �10K input axons and �10K output axons. This approxi-

mates the ‘‘cortical module’’ of Mountcastle (1997) and the ‘‘hy-

percolumn’’ of Hubel and Wiesel (1974) but is much larger than

‘‘ontogenetic microcolumns’’ suggested by neurodevelopment
428 Neuron 73, February 9, 2012 ª2012 Elsevier Inc.
(Rakic, 1988) and the basic ‘‘canonical cortical circuit’’ (Douglas

andMartin, 1991). The hypothesized subpopulation of neurons is

also intermediate in its algorithmic complexity. That is, unlike

single NLN-like neurons, appropriately configured populations

of (�10K) NLN-like neurons can, together, work on the type of

population transformation that must be solved, but they cannot

perform the task of the entire ventral stream. We propose that

each processing motif has the same functional goal with respect

to the patterns of activity arriving at its small input window—that

is, to use normalization architecture and unsupervised learning

to factorize identity-preserving variables (e.g., position, scale,

pose) from other variation (i.e., changes in object identity) in its

input basis. As described above, we term this intermediate level

processing motif ‘‘cortically local subspace untangling.’’

We must fortify this intermediate level of abstraction and

determine whether it provides the missing link. The next steps

include the following: (1) We need to formally define ‘‘subspace

untangling.’’ Operationally, we mean that object identity will be

easier to linearly decode on the output space than the input

space, and we have some recent progress in that direction

(Rust and DiCarlo, 2010). (2) We need to design and test algo-

rithms that can qualitatively learn to produce the local untangling

described in (1) and seewhether they also quantitatively produce

the input-output performance of the ventral stream when ar-

ranged laterally (within an area) and vertically (across a stack

of areas). There are a number of promising candidate ideas

and algorithmic classes to consider (e.g., Hinton and Salakhutdi-

nov, 2006; Olshausen and Field, 2004; Wiskott and Sejnowski,

2002). (3) We need to show how NLN-like models can be used

to implement the learning algorithm in (2). In sum, we need to

understand the relationship between intermediate-complexity

algorithmic forms (e.g., filters with firing thresholds, normaliza-

tion, competition, and unsupervised, time-driven associative

learning) and manifold untangling (Figure 2), as instantiated in

local networks of �40K cortical neurons.

Problem2. The Algorithmic Solution Lives in a Very, Very

Large Space of ‘‘Details’’

We are not the first to propose a repeated cortical processing

motif as an important intermediate abstraction. Indeed, some

computational models adopt the notion of common processing

motif, and make the same argument we reiterate here—that an

iterated application of a subalgorithm is the correct way to think

about the entire ventral stream (e.g., Fukushima, 1980; Kouh and

Poggio, 2008; Riesenhuber and Poggio, 1999b; Serre et al.,

2007a; see Figure 6). However, no specific algorithm has yet

achieved the performance of humans or explained the popula-

tion behavior of IT (Pinto et al., 2011; Pinto et al., 2010).

The reason is that, while neuroscience has pointed to proper-

ties of the ventral stream that are probably critical to building

explicit object representation (outlined above), there are many

possible ways to instantiate such ideas as specific algorithms.

For example, there aremany possibleways to implement a series

of AND-like operators followed by a series of OR-like operators,

and it turns out that these details matter tremendously to the

success or failure of the resulting algorithm, both for recognition

performance and for explaining neuronal data. Thus, these are

not ‘‘details’’ of the problem—understanding them is the

problem.
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Our proposal to solve this problem is to switch from inductive-

style empirical science (where new neuronal data are used to

motivate a new ‘‘word’’ model) to a systematic, quantitative

search through the large class of possible algorithms, using

experimental data to guide that search. In practice, we need to

work in smaller algorithm spaces that use a reasonable number

of meta parameters to control a very large number of (e.g.)

NLN-like parameters (see section 3). For example, models that

assume unsupervised learning use a small number of learning

parameters to control a very large number of synaptic weight

parameters (e.g., Bengio et al., 1995; Pinto et al., 2009b;

Serre et al., 2007b), which is one reason that neuronal evidence

of unsupervised tolerance learning is of great interest to us

(section 3).

Exploration of these very large algorithmic classes is still in its

infancy. However, we and our collaborators recently used rapidly

advancing computing power to build many thousands of algo-

rithms, in which a very large set of operating parameters was

learned (unsupervised) from naturalistic video (Pinto et al.,

2009b). Optimized tests of object recognition (Pinto et al.,

2008a) were then used to screen for the best algorithms. The re-

sulting algorithms exceeded the performance of state-of-the-art

computer vision models that had been carefully constructed

over many years (Pinto et al., 2009b). These very large, instanti-

ated algorithm spaces are now being used to design large-scale

neurophysiological recording experiments that aim to winnow

out progressively more accurate models of the ventral visual

stream.

Problem3.We Lack a Systematic, Operational Definition

of Success

Although great strides have been made in biologically inspired

vision algorithms (e.g., Hinton and Salakhutdinov, 2006; Lecun

et al., 2004; Riesenhuber and Poggio, 1999b; Serre et al.,

2007b; Ullman and Bart, 2004), the distance between human

and computational algorithm performance remains poorly

understood because there is little agreement on what the bench-

marks should be. For example, one promising object recognition

algorithm is competitive with humans under short presentations

(20 ms) and backward-masked conditions, but its performance

is still far below unfettered, 200 ms human core recognition

performance (Serre et al., 2007a). How can we ask whether an

instantiated theory of primate object recognition is correct if

we do not have an agreed-upon definition of what ‘‘object recog-

nition’’ is? Although we have given a loose definition (section 1),

a practical definition that can drive progress must operationally

boil down to a strategy for generating sets of visual images or

movies and defined tasks that can be measured in behavior,

neuronal populations, and bio-inspired algorithms. This is

easier said than done, as such tests must consider psycho-

physics, neuroscience, and computer vision; even supposed

‘‘natural, real-world’’ object recognition benchmarks do not

easily distinguish between ‘‘state-of-the-art’’ computer vision

algorithms and the algorithms that neuroscientists consider to

be equivalent to a ‘‘null’’ model (e.g., performance of a crude

model V1 population; Pinto et al., 2008b). Possible paths forward

on the problem of benchmark tasks are outlined elsewhere (Pinto

et al., 2009a; Pinto et al., 2008b), and the next steps require

extensive psychophysical testing on those tasks to systemati-
cally characterize human abilities (e.g., Pinto et al., 2010; Majaj

et al., 2012).

Problem 4. Synergies Among the Relevant Domains of

Expertise Must Be Nurtured

At a sociological level, progress has been challenged by the fact

that the three most relevant research communities have histori-

cally been incentivized to focus on different objectives. Neuro-

scientists have focused on the problem of explaining the

responses of individual neurons (e.g., Brincat and Connor,

2004; David et al., 2006) or mapping the locations of those

neurons in the brain (e.g., Tsao et al., 2003), and using neuronal

data to find algorithms that explain human recognition perfor-

mance has been only a hoped-for, but distant future outcome.

For computer vision scientists that build object recognition algo-

rithms, publication forces do not incentivize pointing out limita-

tions or comparisons with older, simpler alternative algorithms.

Moreover, the space of alternative algorithms is vague because

industrial algorithms are not typically published, ‘‘new’’ object

recognition algorithms from the academic community appear

every few months, and there is little incentive to produce algo-

rithms as downloadable, well-documented code. Visual psycho-

physicists have traditionally worked in highly restricted stimulus

domains and with tasks that are thought to provide cleaner infer-

ence about the internal workings of the visual system. There is

little incentive to systematically benchmark real-world object

recognition performance for consumption by computational or

experimental laboratories.

Fortunately, we are seeing increasing calls for meaningful

collaboration by funding agencies, and collaborative groups

are now working on all three pieces of the problem: (1) collecting

the relevant psychophysical data, (2) collecting the relevant

neuroscience data, and (3) putting together large numbers of

alternative, instantiated computational models (algorithms) that

work on real images (e.g., Cadieu et al., 2007; Zoccolan et al.,

2007; Pinto et al., 2009b, 2010; Majaj et al., 2012).

Conclusion
Wedo not yet fully know how the brain solves object recognition.

The first step is to clearly define the question itself. ‘‘Core object

recognition,’’ the ability to rapidly recognize objects in the central

visual field in the face of image variation, is a problem that, if

solved, will be the cornerstone for understanding biological

object recognition. Although systematic characterizations of

behavior are still ongoing, the brain has already revealed its likely

solution to this problem in the spiking patterns of IT populations.

Human-like levels of performance do not appear to require

extensive recurrent communication, attention, task depen-

dency, or complex coding schemes that incorporate precise

spike timing or synchrony. Instead, experimental and theoretical

results remain consistent with this parsimonious hypothesis:

a largely feedforward, reflexively computed, cascaded scheme

in which visual information is gradually transformed and retrans-

mitted via a firing rate code along the ventral visual pathway, and

presented for easy downstream consumption (i.e., simple

weighted sums read out from the distributed population

response).

To understand how the brain computes this solution, we must

consider the problem at different levels of abstraction and the
Neuron 73, February 9, 2012 ª2012 Elsevier Inc. 429
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links between those levels. At the neuronal population level, the

population activity patterns in early sensory structures that

correspond to different objects are tangled together, but they

are gradually untangled as information is re-represented along

the ventral stream and in IT. At the single-unit level, this

untangled IT object representation results from IT neurons that

have some tolerance (rather than invariance) to identity-

preserving transformations—a property that neurons at earlier

stages do not share, but that increases gradually along the

ventral stream.

Understanding ‘‘how’’ the ventral pathway achieves this

requires that we define one or more levels of abstraction

between full cortical area populations and single neurons. For

example, we hypothesize that canonical subnetworks of �40K

neurons form a basic ‘‘building block’’ for visual computation,

and that each such subnetwork has the same meta function.

Even if this framework ultimately proves to be correct, it can

only be shown by getting the many interacting ‘‘details’’ correct.

Thus, progress will result from two synergistic lines of work. One

line will use high-throughput computer simulations to systemat-

ically explore the very large space of possible subnetwork algo-

rithms, implementing each possibility as a cascaded, full-scale

algorithm, and measuring performance in carefully considered

benchmark object recognition tasks. A second line will use

rapidly expanding systems neurophysiological data volumes

and psychophysical performance measurements to sift through

those algorithms for those that best explain the experimental

data. Put simply, we must synergize the fields of psychophysics,

systems neuroscience, and computer vision around the problem

of object recognition. Fortunately, the foundations and tools are

now available to make it so.
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