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Introduction to neurons and the brain
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Santiago Ramén y Cajal: nerve cells are discrete entities and communicate
by synapses.




Nerve cells

Associates, Inc.

A) Diagram of nerve cells and their component parts. B) Axon initial segment (blue)
entering a myelin sheath (gold).




Nerve cells

(A) (C) Synaptic endings

NEUROSCIENCE, Third Edition, Figure 1.3 (Part 2) © 2004 Sinauer Associates, Inc.

C) Terminal boutons (blue) loaded with synaptic vesicles (arrowheads) forming synapses
(arrows) with a dendrite (purple). D) Transverse section of axons (blue) ensheathed by
the processes of oligodendrocytes (gold).




Nerve cells

(E) Dendrites
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NEURQSCIENCE, Third Edition, Figure 1.3 (Part 3) © 2004 Sinauer Associales, Inc.

E) Apical dendrites (purple) of cortical pyramidal cells.




Nerve cells

(A)

NEUROSCIENCE, Third Edition, Figure 1.3 (Part 4) © 2004 Sinauer Associates, Inc

F) Nerve cell bodies (purple) occupied by large round nuclei.




Nerve cells

(A) (G) Myelinated axon and node
: of Ranvier

NEURQSCIENCE, Third Edition, Figure 1.3 (Part 5) © 2004 Sinauer Associales, Inc.

G) Portion of a myelinated axon (blue) illustrating the intervals between adjacent
segments of myelin (gold) referred to as nodes of Ranvier (arrows).




(A) Neurons in mesencephalic (B) Retinal (C) Retinal ganglion cell

nucleus of cranial nerve V bipolar cell
Dendrites { Dendrites
l()zsg‘es Cell body ~_ Celliige., (D) Retinal amacrine cell
i
Dendrites< QAL
PR Axon — || 4 { ¥ e
xon

Axons ( “
]
Cell body .
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(E) Cortical pyramidal cell (F) Cerebellar Purkinje cells
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NEUROSCIENCE, Third Edition, Figure 12 (Part 3) ©2004 Sinaver Associaes, Inc

a) muscle cell b-d) retinal cell e) Cortical pyramidal cell f) Cerebellar Purkinje cell




Cells communicate through synapses

1) (2) (3)

NEUROSCIENCE, Third Edition, Chapter 5, Box A © 2004 Sinauer Associates, Inc.




The nervous system
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NEUROSCIENCE, Third Edition, Figure 1.10 (Part 2) © 2004 Sinauer Associates, Inc.

NEUROSCIENCE, Third Edition, Figure 1.10 (Part 1) © 2004 Sinauer Associates, Inc.

Figure 1: The major components of the nervous system. The peripheral nervous system
receives sensory input and outputs motor commands. The central nervous system provides

the 'mapping’ from sensory input to motor output.




Periphery
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Figure 2: A simple reflex circuit, the knee-jerk response, illustrates several points about
the functional organization of neural circuits. Stimulation of a muscle stretch receptor
initiates action potentials that travel centrally along the afferent axons of the sensory
neurons. This information stimulates spinal motor neurons by means of synaptic contacts.
The action potentials generated in motor neurons travel peripherally in efferent axons,

giving rise to muscle contraction.
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Figure 3: A) The terms anterior, posterior, superior, and inferior refer to
the long axis of the body. B) The major planes of section used in cutting
or imaging the brain. C) The subdivisions and components of the central

nervous system.
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Brainstem contains structures, such as the superior colliculus that is involved
In eye movement.

Cerebellum involved in coordination of motor activity, posture and
equilibrium.

Hippocampus is involved in the storage of episodic memories.




Some features of the cortex
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Figure 4: A) Cellular composition of the six layers of the neocortex. B) Brodmann
areas. Red: primary motor cortex, blue: the primary somatic sensory cortex, green: the
primary auditory cortex and yellow the primary visual cortex. All other Brodmann areas

are considered association cortex.

The cortical tissue consists for about 80 % of pyramidal cells and the
remainder are so called inter-neurons.
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NEUROSCIENCE, Third Edition, Figure 25.3 © 2004 Sinauer Associates, Inc.

Figure 5: Canonical neo-cortical circuitry. Green arrows indicate outputs to the major
targets of each of the neo-cortical layers in humans; orange arrow indicates thalamic input
(primarily to layer 1V); purple arrows indicate input from other cortical areas: and blue

arrows indicate input from the brainstem to each layer.




Receptive field

The receptive field of a neuron is the collection of all stimuli that elicit an
electrical response in that neuron.
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NEUROSCIENCE, Third Edition, Figure 1.15 (Part 2) © 2004 Sinauer Associates, Inc.

Figure 6: Single-unit electrophysiological recording from cortical pyramidal neuron,

showing the firing pattern in response to a specific peripheral stimulus. A) Typical

experimental set-up. B) Defining neuronal receptive fields.




Orientation selective cells
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NEUROSCIENCE, Third Edition, Figure 11.9 ©® 2004 Sinauer Associates, Inc.

Figure 7: Neurons in the visual cortex respond selectively to oriented edges. A) An
anesthetized cat focuses on a screen, where images can be projected; an extracellular
electrode records the responses of neurons in the visual cortex. B) Orientation selectivity

of neurons in the visual cortex.




Cortical columns

Nearby pyramidal cells make synaptic connections and have correlated
activity.
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NEUROSCIENCE, Third Edition, Figure 11.10 (Part 2) © 2004 S

Figure 8: The LGN receives inputs from both eyes but in separate neuron populations.
The inputs from the two eyes remain segregated in the ocular dominance columns of layer
IV. A) Ocular dominance stripes in LGN and layer IV primary visual cortex. B) Pattern of

ocular dominance columns in human striate cortex.




Cortical maps
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Figure 9: Columnar organization of orientation selectivity in the monkey striate cortex.
Vertical electrode penetrations encounter neurons with the same preferred orientations,
whereas oblique penetrations show a systematic change in orientation across the cortical

surface.

Topographical map: stimulus features are mapped continuously onto the
spatial location in the cortex.




Example: Auditory cortex
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NEUROSCIENCE, Third Edition, Figure 12.15 (Part 1) © 2004 Sinauer Associates, Inc.




Example: Somatosensory cortex
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NEUROSCIENCE, Third Edition, Figure 8.8 (Part 1) © 2004 Sinauer Associates, Inc.

(B) ©
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NNEUROSCIENCE, Third Edition, Figure 8.8 (Part 2) ©2004 Sinauer Associates, Inc.

Typically, maps are deformed representations.




Summary
The brain contains a large number of systems and subsystems.
Information processing is electrical.

Neurons have specialized function: receptive fields

Cortex is organized in columns and maps.




Electrical properties of cells

Nerve cells generate electrical signals that transmit information.

Neurons are not good conductors of electricity
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The resting potential and the action potential can be understood in terms
of the nerve cell's selective permeability to different ions and the relative
concentrations of these ions inside and outside the cell.




lon channels
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NEUROSCIENCE, Third Edition, Figure 2.3 © 2004 Sinauer Associates, Inc.

Figure 10: lon pumps and ion channels are responsible for ionic movements across

neuronal membranes.

Electrical potentials across membrane results from concentration differences
and selective permeability.




Membrane channels can open or close in response to changes in their direct
vicinity (membrane potential, concentration of neurotransmitters, sensory
input).

Channels open and close rapidly in a stochastic manner.
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Figure 11: Open-shut gating of an ionic channel showing 8 brief openings. The
probability of opening depends on many factors. At -140 mV applied membrane potential,
one open channel passes 6.6 pA, corresponding to a flow of 4.1 x 107 ions per second.

The macroscopically observed permeability of the membrane is related to
the probability that the channel is open.




The Nernst equation

(A) (B)
Initial conditions —— At equilibrium

=\ — Voltmeter
) V=0

I1mMKCl | 1TmM KClI 10mMKCl 1mMKCl  10mMKCl 1 mM KCI

Permeable to K*

Membrane is only permeability to KT ions.

Concentration gradient drives KT ions to the right establishing a charge
difference.

Equilibrium: diffusion balances the electrical potential difference.

The equilibrium potential will be an increasing function of concentration
ratio of K*.




Boltzmann statistics: the probability P to encounter a system in equilibrium

in a state with energy u is proportional to

P x exp (—%) = exp (_R—UT>

with k is the Boltzmann constant and 7' is the absolute temperature.

U = Nju is the potential energy per mole
R=kN,=28.314 J mol~! K1 is the Gas constant.

The potential energy for potential V' is given by
U = ZseNAV = ZsFV

F =eNy = 9.648 x 10* C mol~! is called the Faraday constant.

™~ 7 . 1 - - — 1
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The Nernst equation and describes

e the equilibrium potential difference when we fix the concentration
differences

e the equilibrium concentration ratio when we apply an external potential
difference

The Nernst potential depends on temperature. At 7" = 20°C

1 Sy
WNernst = % 1Og10 (%) X 58 mV

For biological membranes, [Kt]o: : [KT]in = 1 : 10, yielding a Nernst
potential of -58 mV.
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NEUROSCIENCE, Third Edition, Figure 2.4 (Part 2) © 2004 Sinauer Associales, Inc.




The Goldman equation

In reality, not one but many types of ions are present each of which has its
own permeability.

lon Intracellular  Extracellular
Squid axon
K+ 400 20
Na™ 50 440
ClI™ 40-150 560
Ca*t 0.0001 10
Mammalian neuron
K™ 140 5
Na™ 5-15 145
ClI™ 4-30 110
Ca®t 0.0001 1-2
Py [KT] + PNa+[Na+]r + P [CI7];
V =logg - — X 58mV
P+ KT]; + PNa+[Na |1 + PC|—[C| |




The Nernst-Planck equation

v ok

Membrane of thickness a :
Vour =V (0) =0 Vin=V(a)=V
Different ions, each with its own concentration C;(x) and valence z;:

[Cilout = Ci(0) [Cilin = Ci(a)




Electrical and diffusive forces

The electric force per ion of type i is

dV(z)
dr

—z2;€

The number of ions per liter is NAoC;(x), with C;(x) in units of mol per
liter. Therefore, the electric force per unit volume is

dV(x)

—2;Ci(x) F
2;C;(x) o

The diffusive force on ion ¢ per unit volume is proportional to the
concentration gradient as well as the absolute temperature.

—RT
dx

in units of Newton per liter.




Current voltage relation

I; = uiziFy = uiz; —RTdCi(@ — zq;Cq;(x)FdV(x)
dx dr

u; is the mobility, related to permeability.

Given I; and V(x), this is a differential equation in C;(z) (Nernst-Planck
equation).

Note, the current is independent of x.

Assume: dV/dx = V/a for 0 < x < a.




Then

Jnae @rbitrary units

—uzz,?FV [Ci]out — [Oi]in eXp (

a
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Nernst-Planck

400

Relation between current and voltage in the presence of ionic concentration

difference shows rectification.

When [C;lout = [Cslin, the current voltage relation is linear as in Ohms law.




For i = Kt,Na™, Cl~,

—FVw — yef'V/ET

o+ 7+ —
I = I+, +1g = 0 1 _ oFV/RT
with
w = ug+[K ou + up,+[Na™Jou + ug- [Cl7 i
y = UK+[K+]in + uNa+[Na+]in + uCI_ [Cl_]OUt

The form is particularly simple because z; = +£1.

In the stationary case, there will be no net movement of charge

[=49Q =0

dt

Vo (Y
RT 5 Y

This is the Goldman equation.

and




Linearized system

For small currents, we can linearize the |-V relation around the stationary
solution.

G = al _ L wy log 2
- dVv=y, ay—w gw
I =~ GV -V +0(V—-V)?)

(3 has units of Q7! per liter and is called the conductance and is the inverse
resistance.

Vi the equilibrium membrane potential given by the Goldman equation.




The Hodgkin-Katz experiment

Squid axon Nernst potentials:
Vk+ = —58mV, VNa+ ~ +56mV

Vk+ is close to the resting membrane potential (-65 mV).

This fact suggests that the resting membrane is more permeable to K than
to the other ions.

This implies that membrane rest potential depends on (external) KT
concentration.




The Hodgkin-Katz experiment
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NNEUROSCIENCE, Third Edition, Figure 2.7 (Part 1) © 2004 Sinauer Associates, Inc. , Figure 2.7 (Part 2) © 2004 Sinaver Associates, Inc.




The role of Na™

During an action potential the membrane resting potential reverses from
negative to positive, near the Na™ Nernst potential.

(D) 100
(A) (©)
- _ TS 80
% 440 __—i .g +40 i__i g £
2 g 2L 60
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NEUROSCIENCE, Third Edition, Figure 2.8 (Part 1) © 2004 Sinaver Associates, Ic Third Edit

Changing the external sodium concentration

affects the size and rise time of the action potential.

does not affect the resting membrane potential.

Membrane becomes membrane is very permeable to Na™ during action
potential.




Permeability changes during action potential

We can use the Goldman equation to investigate the change in the membrane
potential when we change the concentrations of the ions outside the cell.

vV _ log (uK+[K+]out + uNa+[Na+]out T Ug- [CI_]in)
RT uK+[K+]in + uNa+[Na+]in + U1 [CI_]out
[KT]; = 345mM, [Na™t]; = 72mM, [CI7]; = 61mM

Varying the ion concentrations outside the cell we find membrane potential
in agreement with the Goldman equation:

e resting membrane potential: Pér ; P,Q,: : P =1:0.04:0.45
e the peak of the action potential: PQL : P,\]La : Py =1:20:0.45

e the refractory period: PPQL ; P,\J,; : P =18:0:045

™~ 7 . 1 - - —



TaBLE 7.

Change in membrane
potential on substituting
Composition of test solution for oA water Permeability co-

test solution or artificial sea water  ellivients wsed in
—_——— —— caleulation
K Na Cl Observed  Caleulated
State of nerve  Solution mw,  mM. mm. m¥y, mV, Py Py Pg
Resting A Q 465 587 + 3 + &
H 15 450 58T - 2 -2
C 20 445 587 -4 -4
D 7 324 484 0 +1
i} b 227 270 + 2 + 2 =1 004 045
F 3 152 180 + 2 4 2 —_—
G 2 a1 108 + 4 + 3
H 10 673 658 + 1 0
i 1o 711 796 - 2 0
Active (peak of A 0 485 587 4 -1
spike)y B 15 430 5RT7 +1 0
c 20 445 587 + 6 =1
b 7 324 384 + 8 + 8
1 i3 227 270 +21 4+ L6 I 20 045
F 3 152 180 +44 +25
G 2 9 108 +59 +38
H 10 b3 658 -3 - 5
1 10 711 796 -9 - -10
Refractory A o 4685 it +13 +12
(mpaximum of B 15 450 887 -8 -3
positive phase) 2 20 445 587 =10 -9
D T 324 38 + 1 + 1
B 5 227 270 + 4 + 2 18 o 0-45
F 3 152 180 + 4 + 3
G 2 a1 108 0 + 3
H 0 &73 858 + 1 + 1
I LU R 796 0 + 3
Membrane potential at rost in ses water +48+dJ +59 )
Membrane potentizl at height of activity ~40 4+ J —38
in sea water
Membrane potential at maximum of posi- +82+ +74 As above
tive phase
Action potential in sen water 88 47
Positive phase in sea water 14 15

Solutions A, B and C were®ested apuinat an artificial sea-water solulion containing 10 mu-I{
456 wy-Na, 587 mu-CL. Solgbions D-T were tested against sea waler containing approximately
10mu-K, 455 mm-Na, 540 mm-Cl, Caleulated potentials were obtained from equation 4 using values
of (K); =345 mm., (Na); =72 m., {CH); =61 mm. J is the liguid junetion potential between the

axopiasm and the sea water in the microcloctrode.
. B




Summary

The resting membrane potential is the result of
different ions concentrations inside and outside the cell
the specific permeability of the membrane to different ions

The relation between ionic concentrations and equilibrium membrane
potential is described by the Nernst equation for single ions and by the
Goldman equation for multiple ions.

At rest, the nerve cell is mainly permeable to K™ ions resulting in a negative
resting membrane potential.

During the action potential, the Na™ permeability dominates and the
membrane potential reverses sign. The increased Na™ permeability is short,
resulting in a short voltage spike.

As we will see, the change in the neural membrane potential itself affects
the membrane permeability.




The voltage clamp technique
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NEUROSCIENCE, Third Edition, Chapter 3, Box A © 2004 Sinauer Associates, Inc.

Figure 12: 1) One internal electrode measures membrane potential and is connected to
the voltage clamp amplifier. 2) Amplifier compares membrane potential to the desired
potential. 3) When different, the amplifier injects current into the axon through a second

electrode, and is measured (4).




Two types of voltage dependent ionic currents

In the late 1940s, Alan Hodgkin and Andrew Huxley used the voltage
clamp technique to work out the permeability changes underlying the action
potential.

Giant neuron of the squid because its large size (up to 1 mm in diameter)
allowed insertion of the electrodes necessary for voltage clamping.

To investigate the voltage dependent permeability of the membrane they
asked whether ionic currents flow across the membrane when its potential

Is changed.




Two types of voltage dependent ionic currents

(A) HYPERPOLARIZATION
—65 mV

Em I -130 mV
o
Im
(mA/cm?) 0
1 [
(B) DEPOLARIZATION
EM I 0mV
—65 mV
Squid axon
1 l
Im
(mA/cm?) 0 \/ -
-1

Hyper-polarization to -130 mV vyields very little current.

Depolarization of the membrane potential to 0 mV produces a rapidly rising
inward ionic current, which later changes into an outward current.




Dependence of currents on voltage

+90 mV
Em 0- - T T
—60 mV—!
Em (mV)
90
i 70
50
2 -
30
— F 10
~
g ~10
3 b
g0
=
—-oL
L ] L 1 |
0 2 4 6

Time (ms)

Im (mA/CmZ).T

Early current first decreases then increases with voltage. Changes sign at
~ 50mV . Suggest that Na™ is involved.

The late current increases monotonically with

membrane potentials.

increasingly positive




Separating the currents

-9 mV

—_  &5mV

17 10% Na
i
M 0

100% Na

Time (ms)

Reducing the external Na™ concentration by factor 10 removes early current.

In this case, both internal and external Na™ concentrations are approximately
equal and the Na™ Nernst potential is close to 0 mV.

The reduction of external Na™ has no effect on the outward current.




Pharmacological separation
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Figure 13: Panel 1 shows the current that flows when the membrane potential of a
squid axon is depolarized to -10 mV in control conditions. 2) Treatment with tetrodotoxin
causes the early Na™ currents to disappear but spare the late K* currents. 3) Addition of
tetraethyl-ammonium blocks the K™ currents without affecting the Na™ currents.




Voltage dependent conductance
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Voltage dependent conductance

From the |-V measurements and
L= g(V.t)(V = V), i=K*"Na

one can compute the peak conductance g;(V') as a function of voltage.

The peak magnitude of Na™ conductance and steady-state value of KT
conductance both increase steeply as the membrane potential is depolarized.




lllustration of voltage
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Conductance dynamics

(A) Na CONDUCTANCE (B) K CONDUCTANCE

2 -
0 L —
44 mV -
0 2 °
N
D
N —W

—27 mV -
‘M\ W

mS/cm?)

Conductance

The conductances change over time.

Na™ is fast. Activates and inactivates.
K™ is slower.




The Hodgkin-Huxley model

lonic currents:

L =gV, t)(V-V;), i=KT, Na™, leak

Capacitative current:




The K™ conductance

(A) Na CONDUCTANCE (B) K CONDUCTANCE

20 -
44 mV -
44 mV
0 2o _océ
23 mV
23 mV
o} —_

9: = gx+n’
dn

Tn(v)a

= Noo(V) — 1

Conductance modeled as a dynamic quantity.




The K™ conductance

Depolarization

EMJ l Repolarization
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Conductance modeled as a dynamic quantity.




Voltage dependence of the constants

Squid axon  6.3°C

Tm (MS) my Ty (mMs) h« N
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The Na' conductance

The Na™ conductance depends on independent activation and inactivation
processes.

(A) Na CURRENT (B) ANALYSIS

—60 _;7 I T (Ms)
1.0T7 5

, - Node of Ranvier  22°C

THh 414

— 67.5  pheenierianastminren o Ao
\
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-75 ‘L_—--—a—m 0.5+

v

E=-15mV
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Figure 14: Sodium currents elicited by test pulses to -15 mV after 50 milliseconds
pre-pulses to three different levels. The peak value of the Na™ current decreases with
increasing pre-step membrane potential due to Na™ inactivation. B) The inactivation
1 — hs is an increasing function of the membrane potential.




The Na' conductance
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The Na' conductance

Squid axon 6.3°C
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Action potentials

Summary of the Hodgkin Huxley model:
Ic + I|\|3+ + IK+ + Ileak + Iext =0

leads to 4 non-linear first order differential equations:

dV
C% = _mStha—l—(V - VNa—I-) - n4gK+(V - VK‘l‘)
_gleak(v — Weak) — Iext(t>
dn dm _ e —h
Tndt = N n det—moo m Thdt_ 00

V; and g;,7 = KT, Na+, leak are constants

Trn,m,h and Noo, Moo and h, are voltage dependent




Spike wave form

The HH equations not only describe the voltage clamp experiments, but
also correctly generate the form and time course of the action potential
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Figure 15: A) The solution of the Hodgkin-Huxley eqs. for the membrane potential V

and the conductances g+ and g,,+ as a function of time.




Spike propagation

Stimulus — Membrane depolarization — rapid opening of Na™ channels —
inrush of Na™ ions — further depolarization of the membrane potential.

Slower inactivation of Na™ and activation of KT channels restores the
membrane potential below its resting value.
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Spike velocities

Neural information processing depends on spike propagation from one cell
to the next. The action potential lasts about 1 usec and travels at 1-100
m /sec.

Table |. Conduction Velocities in Nerve and Muscle

Tissue Temperature  Myelinated (M) Fibre Velocity  Notes
PG or Diameter  mfsec.
unmyelinated (U) n

Cat myclinated 38 M 2-20 10-100 a
nerve fibres

Catl unmyelinated 18 U 0:3-13 0:7-2:3 a
nerve fibres

Frog myelinated 24 M 3-16 6-32 b
nerve fibres

Prawn myelinated 20 M 35 20 4
nerve fibres

Crab large nerve 20 u 30 5 d
fibres

Squid giant axon 20 u 500 25 d
Frog muscle fibre 20 U 60 1-6 d

(a) References, particularly Hursh (1939) in Patton (1960).
(b) Tasaki (1953).

(c) Holmes, Pumphrey & Young (1942).

(d) References and data in Katz (1948).

For myelinated fibres the figure given is the external diameter of the myelin.

Spike propagation is an active process, more like burning a fuse than
electrical signaling in copper wire.




Axon longitudinal resistance is exceedingly high due to small diameter.

pl md?
R=F AT
A’ 4
Axoplasm resistivity p = 100€2cm, diameter d = 1um, [ = 1m yields
R = 10%2Q. This is the resistance of about 10'°km copper wire.

Therefore, one needs repeated amplification along the axon. Binary nature
of spike facilitates this.




Passive versus active flow

Membrane potential in passive axon attenuates with distance.
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Membrane potential in active axon does not attenuate with distance.
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Linear cable theory

="

1j (x-Ax,1) 1i (x,t)
Vi(x-Axt) —  Vi(xt) — V;{x+Ax,t)

—— MW AN M AN——

R R R

(1 [l []

\
e

Assumptions: Currents result from ion movement, which is due to the
electric field as well as due to diffusion. One can safely ignore the
contribution due to diffusion, ie. Ohms law is valid.

We assume a constant external potential independent of space and time.




Linear cable theory

R;A
Vin(@,t) = Vinlw + A t) = RI(a,t) R ===
oV,

ox

= r,Ax
(x,t) = —roli(z, 1)

with R the axial resistance of a cylinder of length Az, with R, the
intracellular resistivity.




Linear cable theory
Kirchhoff's law:

I;
b, A2+ L2, 1) — Lz~ Ar) =0 i(2,t) = — (a1

Combining these results yields

1 0%V,

r, O0x?

(x,t) = im(z, 1)




Linear cable theory

linjX:t)

im(x.t)

The membrane current through length Ax is

. Vm(CU, t) o V;est 8‘/(377 t)
m(x, ) Axr = C
im(x,t)Ax I + 5
A, mdAxr Ax
o ecol _ ecomdAx N

Ao, Ao,

— Iinj(xvt)




Linear cable theory

Thus,
_ V() ov(x,t) .
0%V oV
2 o .
Nouz T Tmp TV T Tmim

with \? = Tm/Ta and T, = 7rm,Cy the space and time constants and
V = Vm — ‘/rest-




Steady-state solution

Suppose, a constant current is injected at x = 0. The membrane potential
reaches the steady-state solution satisfying

2d2V(:c) . .
A s = V(x) — rmiini(x)

inj(z) = lod()

The solution is given by

V() = Voexp(—|z[/A)

We can compute V| by observing that

dv V CLI CL]—A a’'m
0 (@ =0) =0 oy = [0t Valm

2

%xzo N A




Space constant

The space constant, A = /r,,/r, controls the decay of the voltage away
from the site of current injection.
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Large r,, reduces membrane current and thus yields larger .

Since
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A o< v/d. Thick axons spread current over larger distance.

Typical values: R; = 200Qcm, R,,, = 20000Qcm?,d = 4pm, A = 1mm.




Propagation velocity

The capacitance of the ring is ¢,,Ax.

Approximating the membrane as two parallel plates, the capacitance is
proportional to the area of the ring:

A
Crr, X — X d.

A

Thus, the characteristic time scale 7,,, depends on the diameter as
Trn = T'mCm X d—+d = constant
The propagation velocity depends on the diameter of the axon as

v ox Vd

This requires very thick axons for fast propagation (eg. squid giant axon).




Propagation velocity

Examples of unmyelinated axons:

d(p) | v (m/sec) | v/Vd
Cat 0.3-1.3 0.7-2.3 | 1.3-2.0
Crab 30 5 0.91
Squid giant axon 500 25 1.1

This requires very thick axons for fast propagation (eg. squid giant axon).
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Myelin

Another way to increase the propagation velocity of spikes is by insulating
the axon with myelin.

Myelin

7




Myelin

The sheath is interrupted at intervals of about 1 mm by short gaps called

nodes of Ranvier.
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Axon length: ranges from less than a mm to several meters.




Propagation in myelinated axons

(A) Myelinated axon Node of ) g/OIigodendrocyte
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The effect of 250 layers of myelin is to increase the membrane resistance and
at the same time decrease the capacitance. The membrane time constant
is unaffected and the space constant is increased.




Propagation in myelinated axons

Thus, myelin increases the velocity of passive spread from 0.5-10 m/sec up
to 150 m/sec.

Action potentials are only generated at the nodes of Ranvier. This process
is called saltatory conduction.




Summary

Membrane permeability is sensitive function of membrane potential and
time and is ion specific. Permeabilities increase (K*), or increase and
decrease (Na™), as the membrane potential depolarizes.

For most types of axons, permeability changes consist of a rapid and
transient rise in the sodium permeability, followed by a slower but more
sustained rise in the potassium permeability. The HH model a complete
explanation of action potential generation.

Spike propagation results from passive spread, combined with active action
potential generation.

e The velocity of passive spread is  v/d and thus requires thick axons for
fast propagation.

e By covering the axon with myelin the velocity of passive spread can be
increased more effectively.




Synapses

Nerve cells interact through synapses. They come in two flavors:
electrical synapses, also called gap junctions;
and chemical synapses.

(C) Synaptic endings

Terminal boutons (blue) loaded with synaptic vesicles (arrowheads) forming synapses
(arrows) with a dendrite (purple).

Chemical synapses come in a large variety and have a complex internal
dynamics.




Some facts

Synapses typically connect the axon of one cell to the dendrite of another
cell.

Dendro-dendritic synapses occur, but are rare.

Autapses, an axon making connection onto its own dendritic tree, are rare
on pyramidal cells, but occur more frequently on some classes of cortical
inhibitory inter-neurons.

Synapses are small: about 0.5-1.0 um in diameter.

If their size is 1 um, one mm? full of synapses would contain 10” synapses. In
fact, the experimental estimate is very close to this: 8 x 10% synapses/mm?
In mouse cortex.

In addition, one mm?3 of brain tissue contains 100000 neurons, 4.1 km of
axon (d =~ 0.3p) and 456 m of dendrite (d ~ 0.94).




More facts

Thus, the average neuron in the mouse cortex is connected to 8000 other
neurons and uses 4 mm of dendrite wire and 4 cm of axon wire to connect
to other cells.

Since the total cortical surface in humans is about 100000 mm? and 2 mm
thick, there are about 2 x 10" neurons and 2 x 10** synapses in the human
brain.




(6))] ) (3)
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Figure 16: Canonical chemical synapse model. Action potential causes an inrush
of Ca®" ions via voltage dependent Ca channels. 2) Elevated Ca®" concentration
allows one or more vesicles to fuse with the presynaptic neuron membrane, releasing its
neurotransmitter. 3) The neurotransmitter binds to postsynaptic receptors, increasing the
permeability of post-synaptic ion channels. An in- or out-rush of current temporarily
changes the post-synaptic potential (PSP).




Upon activation of a fast chemical synapse one can observe a rapid and
transient change in the postsynaptic potential. The response can be either
excitatory (EPSP) or inhibitory (IPSP). These EPSPs and IPSPs are caused

by excitatory and inhibitory post-synaptic currents (EPSCs and IPSCs).
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Activation of synapses made by the mossy fibers onto CA3 pyramidal cells in the rodent
hippocampus. A) The pyramidal cell is voltage clamped to different values and the clamp

current is recorded.




The synaptic current rises fast and decays to zero in 20-30 msec. The peak
current is linearly related to the membrane potential. This suggest that:

Isyn(t) = Gsyn(t)(Vin — Veyn)

The post-synaptic current is caused by a temporary increase in the membrane
conductance, modeled by gsn(t).
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Hippocampal formation is involved in transfer from short- to long-term memory. Granule
cells in the dentate gyrus send their output axons, so-called mossy fibers, to pyramidal
cells in the CA3 region. These pyramidal cells project, with so-called Schaffer collaterals

onto pyramidal cells in the CA1 region.
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Inserting this synapse in a patch of membrane:
de Vm T ‘/rest L
CW + gsyn(t)(Vm — ‘/syn) + R =0
av
T% = - (1 + Rgsyn) V — Rgsyn (V;est — V;yn)

with V =V, — Vit and 7 = RC.

When Vi, > Viest the current will depolarize the membrane. An example

Is the excitatory synapse using the neurotransmitter glutamate with Vg, —
‘/;*est:80mv




hE] ||
os |l
a,.m |
0.4 |
s Y
a2
|
gl
v} 10 20 aa 40
50 R
B} | '
!
D=
it 50 11
1 f
] 10 20 el 4
C) r
]
|| \
o,
v | \\“x.
i e
[} a [, . Tt e
_0_5 [ PO
R 20 Aan AD
t imsec)

1—t/t
A g =g —t (&
) syn peak ¥ l

for two different values of the synaptic reversal potential Vi, — Viet =80 mV (solid
line), -20 mV/(dotted line). C) Associated EPSP (solid line) and IPSP(dotted line).

R = 100M¢S2, 7 =10msec.

peak | ¢ 0k =0.5 msec, gpeak = 107701 B) Synaptic current




Reversal potentials
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Figure 17: Reversal potentials and threshold potentials determine postsynaptic excitation
and inhibition. A, C) If the reversal potential for a PSP (FE..,) is more positive than
the action potential threshold (-40 mV), the effect of a transmitter is excitatory, and it
generates an EPSP. B) If the reversal potential for a PSP is more negative than the action
potential threshold, the transmitter is inhibitory and generates IPSPs.




Summation of postsynaptic potentials
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Probabilistic response
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Chemical synapses were first studied at the neuromuscular junction.

Stimulation of presynaptic motoneurons leads under normal condition to
post synaptic action potentials and contraction of the muscle.

In the absence of stimulation, miniature EPSPs are observed as a result
of spontaneous neurotransmitter release, which are alway more or less

of the same size (inset). This suggest quantal (=constant) release of
neurotransmitter with EPSP of ~ 0.4 mV.




Probabilistic response
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Katz studied the neuromuscular junction at low external Ca*™ concentration.
Stimulation of presynaptic motoneurons leads to subthreshold post-synaptic
response in multiples of 0.4 mV.




Katz model of quantal release

Assume the junction has n release sites, each with an independent probability
p to release a vesicle after pre-synaptic stimulation. p depends of course on
the Ca®" concentration.

The probability that the synapse releases k£ quanta

pit) = ()t
m = (k)=np
o’ = (k*)—m”=np(l—p)

In the limit, p — 0,n — oo with m = pn constant, the binomial distribution
can be approximated by the Poisson distribution

mk

pn(k) — pm(k) = o exp(—m)




With m = 2.33, the expected and observed results for each k agree very

well.

np(k)

Observed

19
44

O© 0O N O O &~ W DN = Ol X
N
=

18
44

Table 1: Numerical comparison between observed quantal response
of synapse in neuro-muscular junction and prediction from binomial

distribution. n = 198, m = 2.33.

m = 2.33 < n due to low external Ca**. In normal operation m = O(n).




Central synapses are unreliable

In cortex mostly mono-synaptic connections and 0.1 < p < 0.9.
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Left. EPSC in CA 1 pyramidal cells. Only 3 out of 9 presynaptic stimuli produce a
response. In addition, the response is variable in strength. Right. Rat visual cortex. 4

EPSPs resulting from identical stimulation.




Habituation

Classical experiments on learning involve Pavlov's dog.
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Habituation: dog turns head (CR) on bell (CS). After repeated presentation,
the dog no longer responds.

No habituation: dog salivates (UR) on sight of meat (US). No matter how
often the stimulus is presented, the dog will always respond.




Classical conditioning

Consider two stimuli CS (bell) and US (meat). By itself CS does not yield
a response, but US does.

Classical conditioning is the phenomenon that when CS and US are presented
together for some time, the dog will start responding to CS alone.




Classical conditioning

R = O(J"“S" + J°S¢ — 0)

Before: J¢ < 0 and J“ >0

After: J¢ > 0 and J" > 6 through Hebbian learning

AJ x RS




Long term potentiation

Synaptic plasticity is the basis for learning, memory and permanent changes

in behavior.
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Figure 18: LTP in hippocampus: Single stimuli applied to a Schaffer collateral evokes
EPSPs in the post-synaptic CAl neuron, but no change in synaptic strength. When the
CAl neuron’'s membrane potential is depolarized in conjunction with the Schaffer collateral
stimuli, there is a persistent increase in the EPSPs, which can last for hours or days.




LTP as a cellular analog of classical conditioning

(A) Specificity (B) Associativity
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Figure 19: A) Strong activity initiates LTP at active synapses without
initiating LTP at nearby inactive synapses. B) Weak stimulation of pathway
2 alone does not trigger LTP. However, when the same weak stimulus to
pathway 2 is activated together with strong stimulation of pathway 1, both
sets of synapses are strengthened.




Hebbian learning

The simplest plasticity rule that follows the spirit of Hebb’s conjecture takes
the form

dw
Tw—— = VU — AW

dt

In the absence of neural activity (u = v = 0) the weight decays to zero.

Assume that u and v are randomly drawn from a probability distribution
p(u,v). Average synaptic weight satisfies




Ocular dominance

A single layer 4 cortical neuron that receives input from just two LGN
neurons with activity u;,71 =1, 2.

Two synaptic weights w;,7 = 1, 2 describe the synaptic connection strengths
of the LGN neurons with the cortical neuron.

The output activity we assume simply linear:

2
V = E w; U,
=1




Ocular dominance

dwi
Tw— = Zy: Qijw; — Aw;
Qij = (uiuy)

Q11 = Q22 = gs and Q12 = Q21 = qq.

de(wlthr wa) (gs + qa — A) (w1 + w2)
de(W1d; v2) = (gs — qa) (w1 —wa)

For X\ sufficiently large, the first equation will yield the asymptotic solution
w1 + Wy = 0.




Ocular dominance

Since qs — qq4 > 0, w1 — wo will grow indefinitely. Non-linearities in the
system will prevent this indefinite growth.

The final solution is then
W1 — W2 = W

with ws, a positive or negative value depending on the sign of the initial
value w1 (0) — ws(0).

For ws, > 0, the cortical neuron will be sensitive to eye 1 and insensitive to
eye 2, and vise versa.




Summary

There are chemical and electrical synapses. Chemical synapses are thought
to be implied in learning.

Synapses can be excitatory, inhibitory or shunting depending on the reversal
potential of the synapse relative to the membrane resting potential.

Synapses are stochastic elements: a presynaptic action potential yields a
postsynaptic response with a certain probability.

The most important mechanism for learning is called Hebbian learning. The
strength of a synapse increases when pre- and postsynaptic cell fire at the
same time. This is in agreement with the psychological phenomenon of
classical conditioning and also found as a mechanism for synaptic plasticity
in the brain.

Hebbian learning can be used to explain the receptive field properties of
many neurons, such as for instance ocular dominance.




Neural networks: Perceptrons

e single layer perceptrons

— binary
— linear

e multi layer perceptrons




Perceptrons

Perceptrons are feed-forward neural networks. Examples are given in Fig. 20.

(D)

Figure 20: A) Simple Perceptron B) Multi-layered Perceptron
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Consider a simple perceptron with one output:

o=g(h)=yg Z’wjfj—e =g Z’wjfj
= =0

with weights w; and inputs &;. § = —1 and 6 = wy. ¢ is a non-linear
function.




Learning
Given a number of input-output pairs (ff,g“),u =1,..., P, find w; such

that the perceptron output o for each input pattern &* is equal to the
desired output (*:

OM:g ijgf :CM7 ,uzl,,P
j=0




Threshold units

Consider the simplest case of binary threshold neurons:
g(h) =sign(h) (==l
Then, the learning condition becomes

sign(w-&*)=¢", pu=1,...,P
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Since (* = £1, we have
sign(w - EHCH) =1 or

with o = k¢,

w-xt >0
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Linear separation

Classification depends on sign of w - &. Thus, decision boundary is hyper
plane:

0=w-£=) wi&—0
j=1

Perceptron can solve linearly separable problems. An example of a linearly
separable problem is the AND problem: The output of the perceptron is 1
if all inputs are 1, and -1 otherwise

(D)




Linear separation

By definition, problems that are not linearly separable need more than one
separating hyper plane to separate the two classes.

Examples are the XOR problem and linearly dependent inputs.
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Perceptron learning rule

We have seen that the desired weight vector satisfies
w-x" >0, all patterns
We define the following perceptron learning rule:

new old .
w; = w; + Aw;

Aw; = O(-w- 2*)EHCH = nO(~w - 2}

n is the learning rate.

This learning rule is Hebbian.




Perceptron learning rule

1

lllustration on dataset consisting of three data patterns z', z? and 23 and

n=1.

Figure 21: Learning rule is applied to all patterns in some random or given order.
Learning stops, when a weight configuration is found that has positive inner product with

all training patterns.




Quality of the solution

Depending on the data, there may be many or few solutions to the learning
problem, or non at all!

Figure 22: A) Many solutions B) Few solutions.




Quality of the solution

Figure 23: Two admissible solutions w and w’ and their values of D respectively. Since
D(w'") > D(w), w’ is the preferred solution.




Quality of the solution

We define the quality of the solution w by the pattern that has the smallest
inner product with w.

1
D(w) = —minw - "
]| s

The best solution is given by Dy . = max,, D(w).

If we can find a w such that D(w) > 0 the problem is linearly separable
and learnable by the perceptron learning rule. If the problem is not linearly
separable not such solution exists.




Convergence of Perceptron rule

If the problem is linearly separable, the perceptron learning rule converges
in a finite number of steps.

We start with initial value w = 0. At each iteration, w is updated only if
w-x* < 0. M*" denote the number of times pattern © has been used to
update w. Thus,
w=mn Z MFzH
7

M = Zu M* is the total number of iterations in which the weight vector is
updated. If the learning rule converges, it means that M is finite and does
not grow indefinitely.




Convergence of Perceptron rule

The proof goes as follows. Assume that the problem is linearly separable,
so that there is a solution w* with D(w*) > 0. We will show that

oWy < LY o

— wllfler]] —

Thus, M can not grow indefinitely and the perceptron learning rule
converges in a finite number of steps.




Convergence of Perceptron rule

The proof of the first inequality is elementary:

w-wt = nZM“’az“’-w* > nM minz? - w* = nM D(w™)||w™||
- p
Allwl* = Jlw+n2"|* — [lw]]* = 2nw - 2 + n*||2"]|* < n*[|l="|* = n°N

Jwl* < n°NM

Combining these two inequality, we obtain Thus,

w - w* D(w*)
> /M
jw||w| VN

Note, that the proof makes essential use of the existence of w* with
D(w*) > 0. If D(w*) < 0 the bound Eq. becomes a trivial statement and
does not yield a bound on M.




Convergence of Perceptron rule

If the problem is linearly separable, we can in conclude that the number of

weight updates:
N
M< ———
— DQ(UJ*)

where N is some trivial constant. We see that convergence takes longer for
harder problems (for which D(w*) is closer to zero).




Linear units

We now turn to a possibly simpler case of linear units:
[ — CH
ot = E w;&;
J

Desired behavior is that the perceptron output equals the desired output
for all patterns: o* = (*,u = 1,...,P. In this case, we can compute an
explicit solution for the weights. It is given by

1 1
W, = N Z Cp (Q_l)py 5; Q,ol/ — N ZS}OQ}V
pV J

(2 is a matrix with dimension P x P and contains the inner products between
the input patterns.




Linear units

To verify that Eq. solves the linear perceptron problem, we simply check
for one of the input patterns (£#) whether it gives the desired output:

Sugl = w3 @), ¢
J

pU,J
— Z Cp (Q_l)py Qu,u
p,U
_ Z NG
o)

(Q must be invertible. Therefore, the input patterns must be linearly
independent. Therefore P < N.




Linear units

: 1 -1 . .
When P < N the solution w; = NZP{’ ¢P (Q )pyf}b |s.not unique. In
fact, there exists a linear space of dimension N — P of solutions w. Namely,
let

1 — U
wj = 2 Q)8
pv
w; = w?—l—fL

with £ an n-dimensional vector that is perpendicular to all training patterns:
¢+ 1L {¢#). Then the output of the perceptron is unaffected by £+

(H = wajf;-j’ = Z(’U{? + ff)gf = ng)ﬁf
j J

J




Gradient descent learning

Often P > N, and thus patterns are linearly dependent.

General strategy is to define a learning rules through a cost function, such
as the quadratic cost:

E(w) = %Z C“’—Z’wjé#
e J




Gradient descent learning

The cost function can be minimized by the so-called gradient descent
procedure. We start with an initial random value of the weight vector w
and we compute the gradient in this point:

%:_Z CH = wgl | ¢
’ T j

We change w according to the 'learning rule

OF
8wi

w; = w; + Aw; Aw; = —n

and repeat this until the weights do not change any more.

When 7 is sufficiently small, the gradient descent procedure converges.




The value of 7

When 7 is very small, convergence is guaranteed, but may take long.
If n is large, however, convergence is no longer guaranteed.

The optimal choice of n is different for different components of the weight
vector w.

Error

Fattern
Subspace

Orthogonal Subspace




The value of 7

We can analyze the problem, by assuming that the energy has the form

= —Zaz —I-EO

with w* the location of the minimum, and a; the curvatures in the two
directions 1 = 1,2. Eq. becomes

OF
Aw; = —naw' = —2na; (w; —w;) = —2na;0w;

with dw; = w; — w;. The effect of learning step on dw; is

5w§1ew _ w@new . w;k _ old . 2?7&2521)01(1

—wi = (1 - 2na;)6w™

thus, dw,; converges asymptotically to zero iff for all ¢

|1 — 2776LZ| < 1.




The value of 7

More .
R

Figure 24: Behavior of the gradient descent learning rule Eq.
for the quadratic cost function F(wi,ws) = w? + 20ws for

n = 0.02,0.0476, 0.049, 0.0505.




Non-linear units

We can extend the gradient descent learning rule to the case that the
neuron has a non-linear output:

h” hH — Z wjfu

We use again the quadratic cost criterion:

Fi(w) = —Z o)’

Aw; = —np—=) (¢"=o")g(h)e!

7




Multi-layered perceptrons

(B}

Input variables &, output variable o;, hidden variables v;.

0i(§,w) = g (EJ: wijvj) =g (EJ: Wijg (2}; wjk€k>)




Multi-layered perceptrons

Given a set of P training patterns (£,,¢Y),u = 1,..., P, we again use
the gradient descent procedure to find the weights that minimize the total

quadratic error: .
_ % py 2
E(w) — 9 § Eﬂ:(‘% - ¢i)

with of = o;(w, ).




Generalization: prediction on novel data

I ]

o -

Figure 25: Network output versus network input. A) Network with a small number of
hidden units. B) Network with a large number of hidden units. Networks with more
hidden units can implement more complex functions and can better fit a given training

set. However, more complex networks do not necessarily generalize better on novel data.

Training data (x) and test data (o).




Summary

Perceptrons are simple models of feed-forward computation in a network
of neurons. Binary perceptrons can be used for classification problems.
Learning is done using the perceptron learning rule. The learning rule
converges in a finite number of iterations if and only if the problem is
linearly separable.

Perceptrons can also be constructed with continuous output, either using a
linear or non-linear transfer function. These perceptrons can be learned using
the gradient descent method. Gradient descent converges asymptotically
for any data set.

The quality of the perceptron can be significantly improved by using multiple
layers of hidden units. The multi-layered perceptron can learn any function
by using a sufficiently large number of hidden units. However, prediction
quality on novel data does not generally increase with the number of hidden
units. Optimal generalization is obtained for a finite number of hidden
units.
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