
Figure 54: Pairing presynaptic and postsynaptic activity causes LTP.

strongly activated, both synaptic pathways undergo LTP. Note, that this is
a cellular analog of the previously discussed mechanism for classical condi-
tioning.

5.7 Hebbian learning

The simplest plasticity rule that follows the spirit of Hebb’s conjecture takes
the form

τw
dw

dt
= vu − λv (20)

where w is the synaptic strength, τw is a time constant that controls the
rate at which the weights change, and u and v are the neural activity of the
pre- and post-synaptic cell, respectively. The first term on the right hand
side of Eq. 20 is the Hebbian term and increases the synapses proportional
to the product of pre- and post-synaptic activity. Hebbian plasticity is a
positive-feedback process because effective synapses are strengthened, mak-
ing them even more effective. This tends to increase post-synaptic firing
rates excessively.

The second term is an effective way of controlling this instability and
decreases the synapse proportional to the total post-synaptic activity. λ is
an adjustable constant. For one presynaptic neuron and one post-synaptic
neuron the net effect is that the synapse is increased (decreased) when the
pre-synaptic activity u > λ (u < λ).

When u and v are changing with time, w will also change with time
according to Eq. 20. A nice simplification can be made when we assume that
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Figure 55: A) Strong activity initiates LTP at active synapses without ini-
tiating LTP at nearby inactive synapses. B) Weak stimulation of pathway
2 alone does not trigger LTP. However, when the same weak stimulus to
pathway 2 is activated together with strong stimulation of pathway 1, both
sets of synapses are strengthened.

u and v are randomly drawn from a probability distribution p(u, v). In this
case the average synaptic weight satisfies

τw
dw

dt
= 〈vu〉 − λ 〈v〉

with 〈uv〉 =
∫

dudvp(u, v)uv and 〈v〉 =
∫

dudvp(u, v)v.
When a neuron receives input from n synapses with strength wi, the

deterministic rule becomes

τw
dwi

dt
= vui − λv, i = 1, . . . , n (21)

Note, that the change of each synapse depends on the value of all other
synapses through v. For instance, if we assume that v depends linearly on
the inputs v =

∑n
i=1 wiui.

5.7.1 Ocular dominance

Hebbian plasticity is often used to model the development and activity-
dependent modification of neuronal selectivity to various aspects of a sen-
sory input, for example the selectivity of visually responsive neurons to the
orientation of a visual image. This typically requires competition between
synapses, so that the neuron becomes unresponsive to some features while
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growing more responsive to others. The above Hebbian rule Eq. 21 introduces
such competition, as we will show now.

We consider the highly simplified case of a single layer 4 neuron that
receives input from just two LGN neurons with activity ui, i = 1, 2. Two
synaptic weights wi, i = 1, 2 describe the synaptic connection strengths of
the LGN neurons with the cortical neuron. The output activity we assume
simply linear:

v =
2
∑

i=1

wiui (22)

Thus, Eq. 21 becomes

τw
dwi

dt
=

∑

j

Qijwj − λ(w1 〈u1〉 + w2 〈u2〉)

Qij = 〈uiuj〉 (23)

Using the symmetry property that both eyes are equal, we can parameterize
the matrix as Q11 = Q22 = qs, Q12 = Q21 = qd and 〈u1〉 = 〈u2〉 = 〈u〉.
We can solve Eq. 23 by changing to the basis of eigenvectors of Q. Stated
differently, the dynamical equations for w1 + w2 and w1 − w2 decouple:

τw
d(w1 + w2)

dt
= (qs + qd − 2λ 〈u〉)(w1 + w2) (24)

τw
d(w1 − w2)

dt
= (qs − qd)(w1 − w2) (25)

For λ sufficiently large, the first equation will yield the asymptotic solution
w1 + w2 = 0. Under normal circumstances, the cross correlation between
eyes qd is smaller than the autocorrelation qs. Therefore, qs − qd > 0 and
w1 − w2 will grow indefinitely. In reality, there will be non-linearities in the
system (in Eq. 20 and Eq. 22) that will prevent this indefinite growth. The
final solution is then

w1 = −w2 = w∞ (26)

with w∞ a positive or negative value depending on the sign of the initial
value w1(0)−w2(0). For w∞ > 0, the cortical neuron will be sensitive to eye
1 and insensitive to eye 2, and vise versa. Thus, we have shown that ocular
dominance can explained as a consequence of Hebbian learning.
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