
Inference in the Promedas medical expert

system

Bastian Wemmenhove1, Joris M. Mooij1, Wim Wiegerinck1, Martijn Leisink1,
Hilbert J. Kappen1, and Jan P. Neijt2

1 Department of Biophysics, Radboud University Nijmegen, 6525 EZ Nijmegen, The
Netherlands

2 Internal Medicine, University Hospital Utrecht Utrecht, the Netherlands

Abstract. In the current paper, the Promedas model for internal medicine,
developed by our team, is introduced. The model is based on up-to-date
medical knowledge and consists of approximately 2000 diagnoses, 1000
findings and 8600 connections between diagnoses and findings, covering
large parts of internal medicine. Promedas is currently being evaluated
informally by specialists in internal medicine at the Utrecht university
hospital and is receiving positive responses. We show that Belief Propaga-
tion (BP) can be successfully applied to approximate inference problems
in the Promedas network. BP converges on all patient test cases, which
were generated with the help of the model itself. In some cases, however,
we find errors that are too large for this application. We apply a recently
developed method that improves the BP results by means of a loop ex-
pansion scheme. This method, termed Loop Corrected (LC) BP, is able
to improve the marginal probabilities significantly, leaving a remaining
error which is acceptable for the purpose of medical diagnosis.

1 Introduction

Modern-day medical diagnosis is a very complex process, requiring accurate
patient data, a profound understanding of the medical literature and many years
of clinical experience. This situation applies particularly to internal medicine,
because it covers an enormous range of diagnostic categories. As a result, internal
medicine is differentiated in super-specializations.

Diagnosis is a process, by which a doctor searches for the cause (disease)
that best explains the symptoms of a patient. The search process is sequential,
in the sense that patient symptoms suggest some initial tests to be performed.
Based on the outcome of these tests, a tentative hypothesis is formulated about
the possible cause(s). Based on this hypothesis, subsequent tests are ordered to
confirm or reject this hypothesis. The process may proceed in several iterations
until the patient is finally diagnosed with sufficient certainty and the cause of
the symptoms is established.

A significant part of the diagnostic process is standardized in the form of
protocols. These are sets of rules that prescribe which tests to perform and in
which order, based on the patient symptoms and previous test results. These



rules form a decision tree, whose nodes are intermediate stages in the diagnostic
process and whose branches point to additional testing, depending on the current
test results. The protocols are defined in each country by a committee of medical
experts.

In the majority of the diagnoses that are encountered, the guidelines are
sufficiently accurate to make the correct diagnosis. For these “routine” cases, a
decision support system is not needed. In 10-20 % of the cases, however, the di-
agnostic process is more difficult. As a result of the uncertainty about the correct
diagnosis and about the next actions to perform, the decisions made by differ-
ent physicians at different stages of the diagnostic process do not always agree
and lack “rationalization”. In these cases, normally a particularly specialized
colleague or the literature is consulted.

For these difficult cases computer based decision support may be of added
value. Its strength is that it can give valuable information support for those
patients of medical specialists that suffer from a disease that is outside his or
her super-specialization. It may thus result in an improved and more rational-
ized diagnostic process, as well as higher efficiency and cost-effectiveness. The
benefits of a successful decision support system for internal medicine could be
far-reaching. Since 1996, we have been developing a clinical diagnostic decision
support system for internal medicine, called Promedas. In this system, patient
information, such as age and gender, and findings, such as symptoms, results
from physical examination and laboratory tests can be entered. The system
then generates patient-specific diagnostic advice in the form of a list of likely
diagnoses and suggestions for additional laboratory tests that are expected to be
particularly informative to establish or rule out any of the diagnoses considered.

The system is intended to support diagnostics in the setting of the outpatient
clinic and for educational purposes. Its target users are general internists, super
specialists (i.e. endocrinologists, rheumatologists, etc.), interns and residents,
medical students and others working in the hospital environment.

The Promedas model, which we present in this paper, is based on a Bayesian
network structure for which the calculation of marginal probabilities is tractable
for almost all cases encountered in practice. For those cases that are intractable
(i.e. a junction tree algorithm is not applicable), alternative algorithms are re-
quired. A suitable candidate for this task is Belief Propagation (BP), which is a
state-of-the art approximation method to efficiently compute marginal probabil-
ities in large probability models [1, 2]. Over the last years, BP has been shown to
outperform other methods in rather diverse and competitive application areas,
such as error correcting codes [3, 4], low level vision [5], combinatoric optimiza-
tion [6] and stereo vision [7].

In medical expert systems, so far the success of BP has been limited. Jaakkola
and Jordan [8] successfully applied variational methods to the QMR-DT network
[9] but BP was shown not to converge on these same problems [2]. We find that
BP does converge on all Promedas cases studied in the current paper. Although
this does not guarantee convergence in all possible cases, we note that double
loop type extensions to BP [10] may be applied when convergence ceases.



Here we compute the marginal errors of BP and apply a novel algorithm,
termed Loop Corrected Belief Propagation (LCBP) [11] to cases in which the
error becomes unacceptable. We argue that this method potentially reduces the
error to values acceptable for medical purposes.

Promedas is still under development. A preliminary version of Promedas is
currently being evaluated informally, during the weekly meeting of specialists
in internal medicine at the Utrecht university hospital and is receiving positive
responses.

2 Promedas, the model

The global architecture of diagnostic model in Promedas is similar to QMR-DT
[9]. It consists of a diagnosis-layer that is connected to a layer with findings.
Diagnoses (diseases) are modeled as a priori independent binary variables. Find-
ings are modeled as binary noisy-OR gates with relevant diagnoses as parents.
In the user interface, a significant part of the findings are presented as contin-
uous variables. These are discretized in a medically sensible way, and internally
modeled as groups of binary noisy-OR gates. The disease nodes are coupled to
risk factors, such as, e.g., concurrent diagnoses and nutrition. Risk factors are
assumed to be observed and to modify the prevalences of the diagnoses.

The model is based on medical expert knowledge, acquired from the medi-
cal literature and textbooks by the medical specialists in our project team. The
expert knowledge is stored in a database, in such a way that extension and
maintenance of the expert knowledge is easily facilitated. The database specifies
the connections between variables as well as the model parameters. The param-
eters of a noisy-OR gate are the coupling strengths and the leak. The coupling
strength to a certain disease is the probability that a finding occurs when only
that disease is present and all other causes are absent. This is closely related to
the sensitivity of a finding in relation to a disease when prior disease probabilities
are low. The leak is the probability that the finding occurs when all the modeled
diseases are absent. Prevalences range from 0.001 to 0.1. From this database,
the graphical model and a user-interface for Promedas are automatically com-
piled (see fig. 2). This automatic procedure greatly facilitates changes in the
model, such as adding or removing diseases, as required in the design phase of
the model.

The version of Promedas that is studied in this paper contains over 10000
variables, including about 2000 diagnoses, and 8600 connections between diag-
noses and findings.

Once the graphical model has thus been generated, we use Bayesian inference
to compute the probability of all diagnoses in the model given the patient data.
Such computation can become prohibitive in particular due to the large number
of parents that nodes can have. Before computation, we remove all unclamped
findings from the graph, and we absorb negative findings in the prevalences [8].
Thus, only a network of positively clamped findings and their parents remain.
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Fig. 1. Organization of PROMEDAS development.

In addition, we use efficient implementation of noisy-OR relations as proposed
by [12] to reduce the size of these tables.

Despite these measures computation can still be intractable when the number
of positive patient findings becomes large [8]. In that case, we must resort to
approximations. The feasibility of this approach is studied in the remainder of
the paper.

3 Inference in the graphical model

Diagnoses (diseases) are modeled as a priori independent binary variables dj ∈
{0, 1}, j ∈ {1, . . . , ND}, causing a set of symptoms or findings. The symptoms
themselves, or findings fi ∈ {0, 1}, i ∈ {1, . . . , NF} constitute the bottom layer.
The interaction between diagnoses and findings is modeled with a noisy-OR
structure, indicating that each parent j has an individual probability of causing
a certain finding i to be true if it is in the parent set V (i) of i, and there is an
independent probability λi that the finding is true without being caused by a
parent (disease). Thus

p(fi = 0|d) = [1 − λi]
∏

j∈V (i)

[1 − wijdj ]

p(fi = 1|d) = 1 − p(fi = 0|d) (1)

The parameters {λi}, {wij}, together with the disease prevalences (ranging from
0.001 to 0.1) are the model parameters determined by the medical experts.

Once a graphical model has been generated based on the above definitions, we
use Bayesian inference to compute the probability of all diagnoses in the model
given the patient data. Such computation can become prohibitive in particular
due to the large number of parents that nodes can have. Before computation, we
remove all unclamped findings from the graph, and we absorb negative findings
in the prevalences [8]. Thus, only a network of positively clamped findings and
their parents remain. In addition, we use efficient implementation of noisy-OR
relations as proposed by [12] to reduce the size of these tables.



Despite these measures computation can still be intractable when the number
of positive patient findings becomes large [8]. In that case, we must resort to
approximations. The feasibility of this approach is studied in the remainder of
the paper.

3.1 Reduction of noisy-or clique-size

Using standard techniques for the calculation of posterior distributions directly
on the factor graph in the above representation, either with a junction tree
algorithm or approximation techniques, is limited to cases in which the the size
|V (i)| of the interaction factors is not too large. In Promedas, however, sets
containing 30 nodes (i.e. findings that may have 30 different causes) are not
uncommon. Thus it is helpful to reduce the maximum number of members of
factor potentials, which may be achieved by adding extra (dummy) nodes to the
graph [13].

We have illustrated the reduction of the factor potential sizes using this prin-
ciple in figure 2. Note that there are many possibilities for different OR-chain
constructions for a given number of dummy variables. In principle, a differ-
ent choice may lead to different complexity of the resulting graph in terms of
treewidth for the junction tree algorithm, in particular when diagnoses are impli-
cated in multiple positive findings. We have distinguished between two general
strategies, the first corresponding to the sequential addition of new diagnosis
variables to a chain of OR-potentials (middle example in figure 2), the second
corresponding to the addition of a new dummy for each pair of diagnosis parents,
forming several branches of a tree (right in figure 2). Since the first construction
always led to smaller treewidths in the cases under study, we chose this strategy
in the graph construction.
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Fig. 2. Two alternatives (middle, right) for adaptation of the original graphical struc-
ture (left) by adding dummy nodes (white circles). The factor potentials (white squares)
connect to at most 3 nodes in the bottom graphs. Black circles are the diagnosis nodes
in the parent set of one finding node (grey circle).

3.2 Approximate inference techniques

After the reduction of the factor sizes by addition of dummy variables in one
of the ways described above, we may apply a junction tree algorithm [14], or
approximate inference algorithms. The complexity of the problem now depends
on the set of findings that is given as input. Especially in cases where findings



share more than one common possible diagnosis, and consequently loops occur,
the model can become complex. The treewidth of the junction tree, i.e. the
maximal clique size, is a relevant measure for the computational complexity of
the problem. When this approaches 30, the necessary exact summations over
all states within the clique (in this case 230 states) become problematic, and
approximate inference remains the only option.

The Bethe Approximation The Bethe approximation works particularly well
in cases where the graphical structure is close to treelike, since on a tree the
underlying hypothesis is true. This major underlying hypothesis is factorization
of the probability distribution over the Markov blanket of every node in the
graph when this node itself is absent.

The marginal probabilities produced by BP, when it converges, are often a
good approximation of the true marginals, and since the running time scales
roughly linearly with the system size on sparse graphs, it is of particular interest
for Promedas-type graphical models.

In our experiments, we added a preprocessing stage to the graph construct-
ing routine, where we merged potential factors sharing more than one common
variable node into superpotentials. Hereby a number of short loops that lead to
bad performance of BP are eliminated.

Loop Corrected Belief Propagation Recently, the idea to construct schemes
that improve the Bethe approximation based on expansion techniques has re-
sulted in various new methods [15–17]. The common factor in all these ap-
proaches is that the correction terms are in some way associated to loops in the
graph, that cause violations of the tree Ansatz.

Whenever a graph is not a tree, the removal of a node does not necessarily
decouple the neighbours of that node. On the contrary, loops in the graph connect
these neighbour nodes and cause nontrivial correlations between them even in
the absence of the central node. When the interaction between these variables
along the loop is small, or the loops are long, then the correlations die out, and
the Bethe approximation is relatively accurate. However, the accuracy may be
enhanced by taking into account these correlations, for which an estimate can be
obtained with the Bethe approximation itself. The specific approach we adopt in
this paper, the Loop Corrected BP (LCBP) algorithm presented in [11], is based
on this idea, by Rizzo and Montanari [15]. It amounts to an easily implemented
algorithm, without the need of detailed knowledge of the graph structure.

Since a detailed description of the algorithm is beyond the scope of this
article, we refer to [11].

4 Simulations with virtual patient data

The Promedas model consists of many diagnosis nodes and corresponding find-
ings. Since the relation between the two is given in terms of the probability



that a certain finding is true given that the patient has a disease, the model
itself is very suitable for generating virtual patient cases. All our current results
are based on such virtual patient data, which are generated as follows: first we
randomly (uniformly) choose a fixed number Nd of diseases to be set to the
true value. Each disease induces a set of true clamped findings according to the
probability given by the model parameters. This mimics the situation in which
a patient with Nd diseases reports findings that are abnormal only. With these
virtual patient-cases we neglect the effect of negative findings, which affect the
disease probability, but do not contribute to the computational complexity (for
the computation their effect may be absorbed in the priors). The marginal dis-
ease probabilities for this “patient” calculated with our approximate inference
algorithm may subsequently be compared to exact results obtained with the
junction tree algorithm, as long as the latter are available. Note that the num-
ber of diagnoses that needs to be considered for each patient is typically much
larger than the number of diagnoses Nd that generated the findings. The com-
plexity of the inference task thus depends on the patient case, and in particular
on the number of positive findings. Empirically we find that exact inference (the
junction tree method) can be applied to patient cases with less than 30 positive
findings, but this number may be significantly smaller, depending on the patient
case. It is therefore interesting to investigate whether approximate methods such
as BP provide a reliable alternative.

4.1 Belief Propagation results

We generated, 1000 patient cases with Nd = 1 and another 1000 with Nd = 4.The
first, rather surprising, result we report is the fact that on all cases that we
generated BP converged. This contrasts with previous results by Murphy et. al.
[2], found for the QMR-DT network, where the small prior probabilities seemed
to prevent convergence in a couple of complex cases. The maximal marginal
error in the BP results when compared with the exact JT method are shown
in fig. 3. Errors are typically small but may occasionally be rather large (fig. 3
left). In fig. 3 right we plot the error versus the tree width of the JT method,
which is an indication of the complexity of the inference task. From fig 3 right
we conclude that the quality of the BP approximation is only mildly dependent
on this complexity. It is thus expected that the BP error for complex patient
cases for which we cannot compute the exact result are equally reliable. We thus
conclude that for patient cases where exact computation is infeasible, BP gives a
reliable alternative for most cases.For those cases where the error is unacceptably
large we propose to use the so-called loop corrected BP method.

4.2 Loop correction results

In the right picture of figure 4, we have plotted results of applying LCBP to a
set of 150 Nd = 1 virtual patient cases. Horizontally, the maximal error in BP
single node marginals is plotted, and vertically the maximal error after applying
the loop correction scheme. Only cases for which the error is nonzero (i.e. loopy
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Fig. 3. Left: Histograms of the maximal BP single node marginal errors Right : BP
maximal error(◦) averaged over instances, maximum maximal error (+) as a function
of treewidth for Nd = 4. The squares mark instances which we have subjected to LCBP
(see table below).

graphs) are plotted, 86 in total. Clearly the maximal error in the marginals
produced by BP is usually about one order of magnitude larger than is the case
after LCBP. The maximal maximum over all cases in this sample reduced from
0.275 to 0.023.

As a second test, we applied the method to a few cases in the right picture of
figure 3, where we attempted to reduce the largest BP errors of these complex
multiple disease errors. A drawback of LCBP is its rather large computation
time. The computation time grows as N 2 (assuming constant maximal degree
per node), and grows exponentially in the number of nodes in the largest Markov
blanket in the implementation we used, since for each state in the Markov blanket
of each node, one has to run BP once. The exponential scaling of the algorithm in
Markov blanket size forced us to look at a few relatively easy cases only. Results
for the points marked by a black square in figure 3 are reported in table 1:

Table 1. LCBP results on complex instances with large errors:

Treewidth rms error BP max error BP rms error LCBP max error LCBP

6 0.0336 0.2806 0.0021 0.0197
7 0.0429 0.2677 0.0017 0.0102
11 0.0297 0.3494 T > Tmax T > Tmax

14 0.0304 0.3944 0.0011 0.0139

The maximal error of LCBP clearly reduces to acceptable levels, but the
computation time is prohibitive for complex cases. Clearly, in this form, the
algorithm is not suitable for graphical models with large Markov blankets. The
solution to this problem is an alternative implementation, that takes into account
only nontrivial correlations between pairs of variables in the Markov blanket



(see [15]), and would consequently scale polynomially in the Markov blanket
size. We did not consider this algorithm in the current investigation, since its
implementation is much more involved, but the promising results obtained here
motivate us to do so in the future.
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Fig. 4. maximal single node marginal error of LCBP (vertical) versus BP (horizontal).
All data lie on the side of the line where the LCBP error is smaller than the BP error.

5 Conclusions and discussion

In this paper we have shown that BP is an attractive alternative for complex
medical diagnosis inference tasks. In some isolated instances, BP produces large
errors and we have shown that loop corrected BP can significantly reduce these
errors. However, our current LCBP implementation should be improved before
this method can be used in practice. One such improvement was proposed in
[15].

Recently a company was founded that uses the Promedas network to de-
velop a commercially available software package for medical diagnostic advise.
A demonstration version can be downloaded from the website www.promedas.nl.
The software will become available as a module in third party software such as
laboratory or hospital information systems or stand alone designed to work in
a hospital network to assist medical specialists. In all cases the software will be
connected to some internally used patient information system.

This year the Promedas software will be available via a web portal as well.
This might be operational at the time of the AIME congress. Physicians can
visit the website, enter medical characteristics of a specific case and immediately
obtain a list of most probable diagnoses. The Promedas web portal uses the full
available database of diagnoses and findings.
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