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Figure 40: Time series of dx = dξ with
〈
dξ2

〉
= g(x)dt, with g(x) = 1+x2. Left time series has large deviations.

Right: stationary distribution coincides with 1/g(x)2

Plant

xt

ut

xt+dt

Figure 41: Reinforcement learning scenario. At each time step a control input ut is given that moves the plant
from the current state xt to a new state xt+dt. The state space is observed. In addition, at each iteration an
immediate reward V (xt) is observed.

In order to verify this example, consider the case J = 1, g(x) = 1 + x2 and R = 1. The choice of g is to ensure
that g becomes nowhere zero which would imply dx = 0. Then the dynamics is

dx = dξ′
〈
dξ′2

〉
= λg2(x)dt

which is a random walk with state dependent noise that increases for larger x. We predict the equilibrium
solution

ρ̃(x) ∝ 1
g2(x)

which has heavy tails. Note, that for g(x) = 1 we predict a flat distribution, as we expect. It is somewhat
surprising that the effect of state dependent noise is a more concentrated stationary distribution. In fig. ?? we
show an example of the time series and stationary distribution for g(x) = 1 + x2.

21 Path integral reinforcement learning

When the environment and the intrinsic dynamics are unknown, we can define a learning method similar to
RL. We call it Path Integral Reinforcement Learning (PIRL). We consider the following scenario as depicted
in Fig. ??. We must control a plant with unknown internal dynamics and an unknown rewards/costs. At each
time step t = 1, . . . we observe xt and the immediate reward V (xt) and can choose a control value ut and make
a dynamics step according to Eq. ??. Thus, we generate the trace of observed data:

x1, V (x1), u1, dξ1, x2, V (x2), u2, dξ2, x3, V (x3), . . .

where the subscripts on u, dξ, x are in units of dt. ut are not the optimal controls, but just some trial values.
Our goal is to choose ut such that we learn about the dynamics and the cost, such that we can converge to
optimal values of u as fast as possible.

Consider the standard path integral control problem at time t in state xt

dxi = fi(x, t)dt +
∑

a

gia(x, t)(ua(x, t)dt + dξa(t)) (308)
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C =

〈
φ(xT ) +

T−1∑

s=t

dt

(
1
2
uT

s Rus + V (xs, s)
)〉

41 (309)

If the ut are all zero, the optimal control at (x, t) is given by Eq. ??

uadt = 〈dξa〉 (x, t) (310)

and the expectation value is wrt to Eq. ??

p(xt+1:T |x, t) =
1

ψ(x, t)

T−1∏

s=t

p(xs+1|xs) exp(−φ(xT )/λ)

p(xs+1|xs) =
(

1
2π

)n/2 1√
det Ξ(xs)

exp
(
− 1

2λdt
(xs+1 − xs − f(xs, s)dt)TΞ(xs)−1(xs+1 − xs − f(xs, s)dt) − V (xs, s)dt/λ

)

We can compute 〈dξa〉 (x, t) using the uncontrolled dynamics. We generate a number of trajectories xµ
t:T using

noise dξµ
t:T−1, all initialized at xt = x, then

Sµ(x, t) =
T−1∑

s=t

V (xµ
s , s)dt + φ(xµ

T )

J(x, t) = −λ log
1
N

∑

µ

exp(−Sµ(x, t)/λ)

〈dξ〉 (x, t) =
∑

µ dξµ
t exp(−Sµ(x, t)/λ)

∑
µ exp(−Sµ(x, t)/λ)

where N is the number of sample trajectories. This is quite an important result. It means that when dξ is
observed, the optimal cost-to-go and the optimal control can be estimated by sampling from the uncontrolled
dynamics using a simulator without actually having to estimate fi and gi.

If we dont observe dξa, we can use the uncontrolled dynamics dxi = fi(x, t)dt + gia(x, t)dξa to write Eq. ??
as

〈dxi〉 = fi(x, t)dt + gia(x, t)ua(x, t)dt (311)

By computing local estimates of 〈dxi〉 , fi(x, t) and gia(x, t) we get an estimate of the optimal control ua(x, t).
We can improve the computation by using importance sampling. We generate a number of trajectories xµ

t:T
and controls uµ

t:T−1 and noise dξµ
t:T−1 initialized at xµ

t = x. Denote yt:T = xt:T , ut:T−1, dξt:T−1, then

S(yt:T , t) =
T−1∑

s=t

V (xs, s)dt + φ(xT ) +
T−1∑

s=t

dt

2
(ẋs − f(xs, s))TΞ−1(xs)(ẋs − f(xs, s))

−dt

2
(ẋs − f(xs, s) − g(xs, s)us+1)TΞ−1(xs)(ẋs − f(xs, s) − g(xs, s)us+1)

=
T−1∑

s=t

V (xs, s)dt + φ(xT ) + dξT
s Rus +

dt

2
uT

s Rus

〈dξ〉 (x, t) =
∑

µ(uµ
t dt + dξµ

t ) exp(−S(yµ
t:T , t)/λ)

∑
µ exp(−S(yµ

t:T , t)/λ)
(312)

with ẋt = (xt+dt − xt)/dt and where we have used the dynamical equations ẋs − f(xs, s) − g(xs, s)us =
g(xs, s)dξs/dt to eliminate f, g.

In the last line, we have used the reasoning as in section ??. We extend the m × m matrix R to n × n
with diagnonal contributions Rij = R∞δij , i, j = m + 1, . . . , n. We extend the n × m matrix g to n × n
with vectors gij , j = m + 1, . . . , n such that g is of rank n. Then it is easy to show that (gu0)TΞ−1gu0 =
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(u0)aRab(u0)b +
∑n

i=m+1(u0)2i R∞. in the limit of R∞ → ∞, u0 → 0 so that we can ignore the second term.
Note, that we can use importance sampling also without estimating f, g.

In order to use Eq. ??, one should in principle compute trajectories forward in time from any state that is
visited. This is time-consuming. Instead, one can at each time t compute controls at x from the previously
visited states xµ

t .
The simplest approximation is to ignore the difference between x and xµ

t which is equivalent to assuming
that in the area populated by x, xµ

t the control is state independent. A further refinement can be made by
fitting a linear model, either including all xµ

t or nearby points only. In either case, this approach yields controls
ut(x), t = 1, . . . , T . These controls can be used in a subsequent importance sampling.

When u is independent of µ, the update equation for u becomes

uk+1
t dt = uk

t dt + ηk

∑
µ dξµ

t exp(−S(yµ
t:T , t)/λ)

∑
µ exp(−S(yµ

t:T , t)/λ)
(313)

where k is the iteration index and we have introduced a ’learning rate’ ηk. 〈dξ〉kt is highly stochastic and the
equation converges to an asymptotic solution when we take ηk small, or anneal it to zero.

The algorithm becomes as follows:

• Initialize u1:T−1 = 0 and choose xµ
0 , µ = 1, . . . , ntraj (identical or different from a distribution).

• For k = 1, . . .

– Run ntraj trajectories using the controlled dynamics u1:T and noise ν resulting in yµ
0:T , µ = 1, . . . , ntraj.

– Compute the expected trajectory

x∗
0:T =

∑

x1:T

x0:T p(x1:T |x0)

or the most likely trajectory

x∗
0:T = argmax p(x1:T |x0)

– Estimate u(x∗
t , t) for each t using Eq. ??.

21.1 Learning a deterministic plant

Suppose now, that the plant we wish to control is deterministic, ie. noise is zero.

dxi = fi(x, t)dt +
∑

a

gia(x, t)uadt (314)

C =
∫ T

0

1
2
uT Ru + V (x, t) (315)

the problem is to compute the optimal control law ua(x).
Suppose that we choose random controls from a Gaussian distribution: uadt = dξa with dξ ∼ N (0, νdt) with

ν = λR−1 and λ some value and with these random controls we sample trajectories using the above dynamics.
Eq. ?? becomes

dxi = fi(x, t)dt +
∑

a

gia(x, t)dξa (316)

We can view Eq. ?? as the uncontrolled dynamics of the stochastic control

dxi = fi(x, t)dt +
∑

a

gia(x, t)(uadt + dξa) (317)

C =

〈∫ T

0

1
2
uT Ru + V (x, t)

〉
(318)

which is equivalent to the original control problem Eqs. ??-?? when λ → 0. This is the problem that we
considered above and we can obtain a solution for any x by considering sampled trajectories near x either using
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the uncontrolled dynamics or with importance sampling. Note, that in this setting dξ is observed, so that we
can compute the optimal control without ever estimating f and g.

Note, the role of λ. If λ is large, Eq. ?? will explore very well. The resulting solution, however, is optimal
for a very noisy problem, and may be quite suboptimal for the deterministic system. On the other hand, taking
λ small, exploration will be quite poor. A good value of λ balances good exploration and good approximation.

Since the problem is to find a deterministic control for a given initial state, we further simplify the algorithm
by computing a state-independent control at each time. The reason is that when the noise approaches zero, the
volume of states at each time shrinks to a single point. Thus, the optimal control then only depends on time. At
intermediate noise levels this control will be guiding the search but sub-optimal due to its state independence.
When noise approaches zero this control approaches the optimal value.

We test the time dependent, state independent version for the single quadratic well and for the acrobot
problem.

21.1.1 Single well

We consider the one-dimensional time dependent control problem

dx = udt + dξ

C =
a

2
x2

T +
∫ T

0
dt

R

2
u2

t

The optimal control solution is

ut =
−ax

R + a(T − t)

We simulate ntrials = 1000 trajectories starting at x0 = 2± 1 using the uncontrolled dynamics. The control is
computed at each time step t by selecting nneighbor = 200 nearest states (left subfigure). We also implemented
a version where states within a ball of fixed size ρ = 0.1 are chosen (right subfigure). A local linear model is
computed (but the correction do to the local linear model is negligible compared to the average term). ν = x2

0
2T

is chosen such that the probability at the target is maximal (which is unfair, since the target location is not
known, but alas).

We test the algorithm in fig. ??. Note, the good quality of the control solution (top figure subplot(3,2,5)
and bottom right figure subplot(5,2,3)) and state trajectory (bottom right figure subplot(5,2,1)).
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Figure 42: The quadratic control problem with end cost. At each iteration, ntraj = 50 stochastic trajectories
were generated from the same initial starting point x0 = 2. The new control was computed from a deterministic
trajectory (starting from x0), using Eq. ?? with ηk = 0.5 constant. A total of nref = 100 iterations were used.
Initial noise was ν = 1 which was lowered at each iteration with a factor 0.9. All trajectories were included
in the control computation. Horizon time is T = 1, control cost R = 1, endcost multiplier a = 5. TOP
FIGURE: Top left: −V (xT )/a (final height) for all ntraj solutions for each iteration k = 1, . . . , nref (red) and
−V (xT )/a for deterministic solution (blue). Top right: mean and std of 〈dξ〉tk over time, for each k. Second row
left: sample size versus iteration. Second row right: expected total cost to go (J) and end cost (Jphi) versus
iteration. Bottom row: mean and variance in the error in uk

t versus k (blue) and total quadratic error (red).
BOTTOM FIGURE: Control solution after the first iteration (left) and after the last iteration (right). Each
figure consists of 8 panels, which give 1) ten best trajectories x1(t) (color) and deterministic trajectory (black)
2) same for x2(t) 3) u(t) (blue) and optimal control (red) 4) number of trajectories considered in Eq. ?? 5) size
of neighborhood for inclusion of nearby states (all in this case) 6) effective sample size versus time 7) height of
the ten best acrobot solution versus time 8) x1(t) vs. x2(t) for 10 best solutions 9) histogram of state dependent
part of action S for ntraj trajectories 10) histogram of control part of action S for ntraj trajectories
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21.1.2 Acrobot

We use the definition of the acrobot as in [?].

d11(q)q̈1 + d12(q)q̈2 + h1(q, q̇) + φ1(q) = 0
d21(q)q̈1 + d22q̈2 + h2(q, q̇) + φ2(q) = u

d11 = m1l
2
c1 + m2(l21 + l2c2) + I1 + I2 + 2m2l1lc2 cos q2 = c1 + 2 cos q2

d22 = m2l
2
c2 + I2 = 1.33

d12 = d21 = m2l
2
c2 + I2 + m2l1lc2 cos q2 = d22 + cos q2

c1 = 2.663
h1 = −m2l1lc2 sin(q2)

(
q̇2
2 + 2q̇1q̇2

)

h2 = m2l1lc2 sin(q2)q̇2
1

φ1 = (m1lc1 + m2l1)G cos(q1) + m2lc2G cos(q1 + q2)
φ2 = m2lc2G cos(q1 + q2)

where we have used the parameter values: m1 = m2 = 1, l1 = 1, l2 = 2, lc1 = 0.5, lc2 = 1, I1 = 0.083, I2 =
0.33, G = 9.8.

The determinant of the matrix d is given by

D = d11d22 − d2
12 = c1d22 − d2

22 − cos2 q2 = 1.77289− cos2 q2

which is always positive. Its inverse is

d−1 =
1
D

(
d22 −d12

−d12 d11

)

Thus, the equations of motion become
(

q̈1

q̈2

)
= −d−1

(
h1 + φ1

h2 + φ2 − u

)
=

1
D

(
−d22(h1 + φ1) + d12(h2 + φ2)
d12(h1 + φ1) − d11(h2 + φ2)

)
+

u

D

(
−d12

d11

)

Note, that the term multipying u depends on q2.
We can write these equations in standard form and introduce noise as

dxi = fi(x)dt + gi(x)(udt + dξ)

with x1 = q1, x2 = q2, x3 = q̇1, x4 = q̇2 and

f1(x) = x3 g1(x) = 0
f2(x) = x4 g2(x) = 0
f3(x) = −d22(h1+φ1)+d12(h2+φ2)

D g3(x) = − d12
D

f4(x) = d12(h1+φ1)−d11(h2+φ2)
D g4(x) = d11

D

We use as cost

V (x) = −a(l1 sin x1 + l2 sin x2)

which is minimal when both joints are up vertically. We can
We test the algorithm in fig. ?? in the case of endcost: C =

〈
V (xT ) +

∫
dt 1

2Ru2
t

〉
. The variance in 〈dξ〉 is an

indicator of the non-smoothness of the control and decreases with iteration (compare initial and final solution
of ut).

The solution in fig. ?? is a not optimal. Running the algorithm with different random seeds we show in
fig. ?? another solution which has significantly lower total cost (J = −77 in fig. ?? vs J = −112 in fig. ??).
Whereas the first solution goes up in one swing, the second solution makes use of the inertia by swinging back
and forth once before reaching the goal state.
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Figure 43: The Acrobot problem with end cost. At each iteration, ntraj = 50 stochastic trajectories were
generated from the same initial starting point x0 = x[−π/2,−π/2, 0, 0]. The new control was computed from a
deterministic trajectory (starting from x0), using Eq. ?? with ηk = 0.5 constant. A total of nref = 100 iterations
were used. Initial noise was ν = 20 which was lowered at each iteration with a factor 0.95. All trajectories were
included in the control computation. Horizon time is T = 1, control cost R = 1, endcost multiplier a = 50. TOP
FIGURE: Top left: −V (xT )/a (final height) for all ntraj solutions for each iteration k = 1, . . . , nref (red) and
−V (xT )/a for deterministic solution (blue). Top right: mean and std of 〈dξ〉tk over time, for each k. Bottom
left: sample size versus iteration. Bottom right: expected cost to go versus iteration. BOTTOM FIGURE:
Control solution after the first iteration (left) and after the last iteration (right). Each figure consists of 8
panels, which give 1) ten best trajectories x1(t) (color) and deterministic trajectory (black) 2) same for x2(t) 3)
u(t) 4) number of trajectories considered in Eq. ?? 5) size of neighborhood for inclusion of nearby states (all in
this case) 6) effective sample size versus time 7) height of the ten best acrobot solution versus time 8) x1(t) vs.
x2(t) for 10 best solutions 9) histogram of state dependent part of action S for ntraj trajectories 10) histogram
of control part of action S for ntraj trajectories
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Figure 44: The Acrobot problem with end cost. Different random seed, different solution that is better than
the solution of fig. ??. All settings identical.
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21.2 Stationary case

We assume that the dynamics is given by Eq. ?? with f(x) and g(x) and V (x) independent of time, φ = 0, dξ
Gaussian noise with zero mean and unknown variance νdt, and u the control to be optimized. R, ν and T are
given.

We start from a random initial state and generate a trajectory xt using controls ut (initially zero) and noise
dξt. We denote yt1:t2 = (xt1:t2 , ut1:t2 , dξt1:t2). For each xt visited, we estimate the optimal control using all
nearby past states that have completed their update:

Nx = {s ∈ 1 : t − T − 1| ‖xs − x‖ < ρ}

ūt
adt =

∑
s∈Nx

(us
adt + dξs

a)ws

∑
s∈Nx

ws

This is a locally constant estimate that ignores the state dependence of the control within Nx.
we can compute a single trace estimate of ψ at that point as

wt = w(xt) = exp
(
−S(yt+1:t+T )/λ

)
(319)

S(yt+1:t+T ) =
t+T∑

s=t+1

V (xs)dt + (dξs)T Rus +
dt

2
(us)T Rus (320)

where superscripts denote time. This computation involves future states, but can be done on-line by executing
at time t:

wt = 1
wt−T :t−1 = wt−T :t−1 exp(−S(yt)/λ)

We get an improved locally linear estimate by making a linear model ut
a(x)dt =

∑
i vaixi + θa. We minimize

the weighted quadratic criterion

E =
1
2

∑

s∈Nx

ws
∑

a

(
us

adt + dξs
a − ut

a(x)dt
)2

vai =
∑

j

ηajχ
−1
ji

θa = d̄ξa −
∑

i

vaix̄i

ut
a(x)dt = ūt

adt +
∑

i

vai(xi − x̄i)

where we have defined the local statistics

x̄i =
∑

s∈Nx
wsxs

i∑
s∈Nx

ws

χij =
∑

s∈Nx
ws(xs

i − x̄i)(xs
j − x̄j)∑

s∈Nx
ws

ηai =
∑

s∈Nx
ws(dξs

a − d̄ξa)(xs
i − x̄i)∑

s∈Nx
ws

Instead of a neighborhood of fixed size ρ, we can define a neighborhood by considering the k states closest
to x. In either case, let k be the number of states in Nx.

• If k = 0 we can increase ρ upto a preset maximum ρmax. If k is still zero we must generate more sample
trajectories

• If k > 0, we can compute the above locally constant estimate.

• If k ≥ n, with n the dimension of x, we can compute a locally linear model using the inverse covariance
matrix χ. This is only useful when ‖x − x̄‖ < ‖δx‖, with x the current point, x̄ the (weighted) average
position of the k points and δx the variance in their position. We estimate ‖δx‖ by the square root of the
smallest eigenvalue of χ.


