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Abstract

We address the question of explaining the computation of the posterior probability of a
node in a Bayesian network. In polytrees, this probability can be explained by decom-
posing it into a product of causal terms (from the ancestors) and diagnostic terms (from
the descendants). In models with loops, this decomposition is in general not valid. To
proceed, we propose a scheme to approximate the posterior of a loopy model locally by a
polytree. In this approximating model, the node probability can again be decomposed into
causal and diagnostic terms. This decomposition can then be used as a rough explanation
of reasoning for a user. The method is illustrated by numerical examples.

1 Introduction

One of the advantages of Bayesian networks
(Pearl, 1988; Jensen, 1996; Castillo et al., 1997)
is their model transparency. Reasoning in a
Bayesian network, on the other hand, is often
a complex computational process. For a hu-
man user, it is often difficult to oversee this pro-
cess numerically. To help the human to under-
stand what is going on in a Bayesian network
a large number of explanation tools have been
proposed, see (Lacave and Diez, 2002) for an
overview. Here one can distinguish between sev-
eral types of explanation. The most important
ones are explanation of evidence and explana-
tion of reasoning. An example of explanation of
evidence is medical diagnosis. There the aim
is the determination of factors (diseases, dis-
orders) that caused —or explain— the observed
anomalies in patient findings, (symptoms, test
results outside the normal range etc.).

In this paper, we focus on explanation of rea-
soning. Explanation of reasoning is the explana-
tion of how the numerical value of the posterior
probability of a given node (the focal node) is
achieved, and what are the factors that led to
this probability. Understanding of reasoning in
an expert system can enhance the acceptance of
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the system by human users. In addition, it can
be helpful in building and debugging such sys-
tems. So, transparency of reasoning can be of
importance in the model choice. For example, a
nice property of a naive Bayes model is that the
posterior probability of the parent node (which
is typically the focal node) can be completely
understood in terms of its prior and the like-
lihoods of the evidence at the child nodes. In
polytrees (Pearl, 1988), a similar decomposition
is possible for every node in the model (Sem-
ber and Zukerman, 1989). However in more
general models, this factorization fails. For an
exact explanation of reasoning, one should in
principle consider the junction tree, or resort to
conditioning arguments. In complex networks,
both approaches will yield cumbersome, incom-
prehensible expressions. In this paper we aim
to simplify this explanation by defining an ap-
proximate polytree around the focal node. The
interactions of the focal node with its neighbors
are copied from the original model. The neigh-
boring nodes in the approximate model have
adaptive biases which are optimized to the orig-
inal model (with evidence). The approximate
polytree can again be decomposed, thus giving
an approximate explanation of reasoning.

This paper is organized as follow. In the re-
mainder of this section we review Bayesian net-



works. In the next section, we consider the case
of polytrees, and review how posterior probabil-
ities factorize into causal and diagnostic terms.
In section 3, we propose the approximate model,
and the optimization criteria. In section 4, we
present some numerical results on toy models
and we end in section 5 with discussion.

1.1 Bayesian networks

A Bayesian network is a probabilistic model P
on a finite directed acyclic graph (DAG). For
each node ¢ in the graph, there is a random
variables X; which can assume the states z;,
together with a conditional probability distri-
bution p(x;|zpaciy), where pa(i) are the parents
of ¢ in the DAG. In this paper, the number of
states that X; can assume is finite. The joint
distribution of the Bayesian network is
n
) Tp) = Hp(m'impa(i)) (1)

i=1

P(z) = P(z1,...

Since a Bayesian network is a probabilistic
model, one can compute marginal distributions,
and conditional distributions by applying the
standard rules of probability calculus. In gen-
eral networks, these computations involve sum-
mations over many states. To keep these op-
erations tractable, one often needs to order
these summations, e.g. by applying a cluster-
ing algorithm such as the junction tree algo-
rithm (Jensen, 1996; Castillo et al., 1997). In
this paper, we are particularly interested in the
the posterior distribution P(xz¢|e), which is the
conditional distribution of the focal node z
given the evidence e. The expression for this
conditional distribution is

Ez\:pf Hkg(kapa(k)) (2)

where it is understood that the summation is
over the states that are compatible with the ev-

idence. Z is a normalization factor, which is
equal to the evidence P(e).

Plzgle) =

2 The posterior distribution in
polytrees

A polytree is a Bayesian network with a singly
connected DAG. The message propagation al-

Figure 1: Markov blanket of node f in a poly-
tree. pa are the parents of node f, ch are the
children of node f, and cp are the co-parents of
the children of node f.

gorithm by Pearl (Pearl, 1988) immediately im-
plies that the posterior distribution in poly-
trees completely factorize into contributions
from each of the parents and each of the chil-
dren. We will rederive this result shortly in a
slightly different way, by first considering the
posterior on the Markov blanket (Pearl, 1988).

2.1 Markov blanket

The Markov blanket mb(7) of node i consists, its
parents pa(7), its children ch(7) and its coparents
(the other parents of its children), cp(7). In this
paper, we also consider the extended Markov
blanket emb(7) which is the Markov blanket to-
gether with the node i itself, emb(i) = mb(7) Uq.
For notational convenience, the 7 dependence is
suppressed if the node in question is the focal
node f (i.e. emb =emb(f), etc.). See figure 1.

In general, the posterior probability distribu-
tion of the extended Markov blanket of the focal
node f is given by

% Z Hp(xk|xpa(k))

I\memb k

P(zemple) =

1
= Zp(xﬂmpa) H P(x;]Tpa(j))
jEch

X P (Tmb) (3)
Again the summation is over states that are

compatible with the evidence. Z is a normal-
izing constant, and

Pamp) = >, ] pilzean) (@)
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(again with summation compatible with the ev-
idence). If we define the ‘reduced model’ P
as the original model P from which f and all
the incoming links to the children k£ € ch are
removed,

H p mz|$pa (5)
i\{f.ch}

then (4) shows that the ‘potential’ ¢ is propor-
tional to the conditional probability on mb in
the reduced model P ;

P(zmb) o< P f(Zmble) (6)

If P is a polytree, the graph of P con-
sists of disconnected subgraphs, and we can fac-
torize ¢ into potentials 1;(z;) (ox P r(zjle))
for each of the parents j and (2 pak)\ f)
(oc P\ f(Tk pa(k)\ sl€)) for each of the children F,

i.e.,

P\ p(z\f) o

xmb H ¢] $] H ¢k Lk pa(k \f) (7)

j€Epa kech

Substitution of (7) into (3) shows that the
posterior distribution on the extended Markov
blanket can be expressed as

—p(zf|7pa) H ¥j(z;)

JjEpa

)k (Trpak)n ) (8)

Ppolytree (xemb|e) =

X H b xk|xpa

kech

Defining 7;(z;) = 1(x;) for the parents and

Ak(zf) = Z

Lk pa(k)\ f

DUk (T pa(i)\ f)
(9)

for the children, we can express the posterior
distribution of node f in polytrees as

Zp Tf|zpa) H mj(;)

Tpa J€Epa

x [T Ae(ep) (10)

kech

p(mk|xpa(k

Ppolytree "L'f|

By summing over the parents we obtain Pearl’s
expression for the posterior distribution in poly-
trees,

Ppolytree($f|e) (&8 71-($f) H Ak(xf) (11)
ké€ch

with

=D p(aslrea) [ mi(z;)  (12)

Tpa j€Epa

In polytrees, we can explain the posterior dis-
tribution (in the form (10)) in terms of causal
support m;(z;) contributed by each of the par-
ents and diagnostic support Ag(zx) contributed
by each of the children (Sember and Zukerman,
1989).

In models that are not polytrees, the poste-
rior of the focal node may still be explained in
this way as long as the extended Markov blanket
at the focal node factorizes as in (8). In other
cases, the posterior distribution cannot be ex-
plained in terms of individual causal and diag-
nostic supports. In some cases one can cluster
parent nodes into non-overlapping parent super-
nodes vy and children nodes into non-overlapping
children super-nodes « such that the posterior

assumes the form
E :p |7pa) H oy ()
Tpa yCpa

X H An(xf) (13)

kCch

Pejystertree 37f|

with

Z Hp $k|$pa

Trpa(r)\f KER

)V (T pa(is)\ 1)

(14)
where pa(x) is the union of all parents of chil-
dren node k € k. In cases where this is not
possible (e.g., where parents and children of f
are not separated by f), one can try to present
the expressions for the posterior in some other
way. This approach is expected to give cum-
bersome expressions, which will be difficult to
comprehend by a user. Therefore we do not
pursue this direction. Our approach is still to
try to give an explanation in terms of individual
causal and diagnostic supports. This explana-
tion is not exact, but in some way approximate.

3 Approximate explanation

3.1 Desiderata

The goal of this paper is to approximately ex-
plain the posterior distribution of a focal node in



terms of causal support from each of the parents
and diagnostic support from each of the chil-
dren. This goal is not exactly defined. There-
fore we define some desiderata for our proce-
dure.

e If an exact explanation is possible, then the
procedure should reproduce this explana-
tion.

e The explanation should reflect the interac-
tions of the focal node with its direct neigh-
bors.

e The reconstruction of the focal node proba-
bility from the causal and diagnostic terms
should be equal to the exact posterior of
the focal node.

e If the probability can be factorized into
cluster factors, the method should respect
this factorization. In particular, if a cluster
contains only a single node (parent or child
of the focal node), the corresponding causal
or diagnostic term should be recovered.

3.2 Approximating Markov blanket
posterior

Our approach is to explain the posterior of the
focal node by first approximating the poste-
rior of the extended Markov blanket, and then
do the explaining in this approximating model.
Our approximating extended Markov blanket
posterior will be of the form

Qxems) = p(eslaga) T 5(ay)
j€Epa

< T p(@klzpa) bk (@rpay ) (15)

kech

in which the tables p(zf|zpa) and p(zx|Tpak))
are copied from the original model P and kept
fixed. The potentials ¢ are to be optimized.
The factor Z is for normalization.

Note that the model @ is of the same func-
tional form as (8). However, since parents and
co-parents of f may intersect, or different chil-
dren may share some other parents other than
f, in other words, if the extended Markov blan-
ket of f contains loops, this functional form is

@”ﬂa @) ()

Figure 2: Left: Example a network such that
the extended Markov blanket of focal node x is
loopy. Right: Inclusion of cloned nodes iy, i;
that clones i (i.e. p(z; |z;) =1 if z;, = x; and
0 otherwise) remove loops from the extended
Markov blanket of focal node f without chang-
ing the model.

not sufficient for the model to be a local poly-
tree. To remedy this, we insert cloned nodes
in the original model where necessary. For ex-
ample if child & and child [ share the parent %,
we insert clones i; and 7; of ¢ and make them
parents of node k and [ respectively. The node
1 is disconnected from k and [, and connected
as a parent to its clones ¢ = 7 and ¢ = 4; with
probability table

1 ifz,. =z

0 otherwise (16)

pclone($c|$k) = {
This procedure is illustrated in figure 2. Since
cloned nodes are hard-coupled to their parent,
it will not have any effect on the probability of
the original nodes. However, the inclusion of
cloned nodes guarantees that the approximat-
ing extended Markov blanket posterior (15) is
indeed a polytree as desired.

3.3 Optimizing the approximating
model
It is tempting to optimize the parameters ¢

by directly minimizing the Kullback-Leibler di-
vergence (Whittaker, 1990) between P(zemple)

and Q(Zemp),

KL(P(Xemb|6)||Q(Xemb)) _
Z P(Zemble) log Q(emb)

— 17
{CEemb} P(l‘emb|e) ( )



This procedure would lead to an approximation
in which the node probabilities Q(z;) equal the
node probabilities P(x;|e) for all the nodes ex-
cept for, unfortunately, the focal node f !. It is
desirable to have at least the focal node right,
and therefore, we adapt this procedure by min-
imizing KL under the constraint that the focal
node has the right probability. Since there is no
guarantee (at least not known to us) that there
is a solution which satisfies the constraint, we
implement the constraint as a penalty term and
minimize F(Q),

/BE(Q) = KL( ( emb| )||Q( emb))

+ BRL(P(Xfle)l|Q(Xy)) (18)

in the limit 8 — oc.

However, even this minimization may yield
undesired effects. For instance in a model with
only one parent of f, and in which ancestors
of f are separated from the descendants of f
(so the causal support 7(z) is well defined), the
outcome of the procedure may yield a causal
support that is not equal to the true causal sup-
port. Such a deviation in causal support can be
the result of a compensation of the misfit in x
due to fitting the node probabilities of the chil-
dren. To remedy this compensation effect that
mix causal and diagnostic support, we will first
disentangle them before we optimize the model
parameters. After disentangling, we will opti-
mize the parameters for causal and diagnostic
support separately, which guarantee that they
will not be mixed.

3.3.1 Step 1: Disentangling causal and

diagnostic support

We disentangle causal and diagnostic infor-
mation as follows: We clone the focal node f
by ¢ in the original model, disconnect f from
its other children and connect these to g. Next
we decouple f and g. Since g is now a root,
it needs a prior r(z4). The table values of this

!This can be verified by computing the gradient of
(17) with respect to ¢; and ¢, (where j € pa and
k € ch) and setting it to zero . The resulting station-
ary equations are Q(z;) = P(xjle) and Q(xy pak)\f) =
P (2 par)\fle)-

prior is to be choosen. Below, we propose a pro-
cedure for choosing these values. The resulting
distribution of the disentangled model R, is

plaflzpa)r(zg) [] plzilzeae) (19)
i#f,9

R.(x) =

The subindex r is to indicate that the model
dependents on the choice of r. The procedure
is sketched in figure 3.

If P would be a model where ancestors and
descendants are separated by the focal node, —
for instance if P is a polytree — then it is clear
that the total causal contribution is m,.(zf) =
R,(zs|e) and the total diagnostic contribution
is proportional to j\r(xg) = R.(z4le)/r(z4), re-
gardless the table values of r. Defining A (x)
as the table for z; with the same table values
as j\r(xg), the posterior is proportional to the
product of both terms,

P(zsle) o< mp(xf)Ar(2f) (20)

If there are other connections from ancestors
to descendants, the choice of » matters and gives
different results (the higher r, the more will be
explained by ¢ and less by ancestors of f). In
addition, (20) will not hold in general. Since
one of the desiderata is that (20) does hold, we
consider the product of causal and diagnostic
terms

prr(xf) X 71'7"(1:f)>‘r($f) (21)

and tune r such that pr, matches the exact pos-
terior as close as possible. Using the KL to mea-
sure the mismatch, the optimal rop; is

ropt = argmin KL(P(Xyle)||pr,(Xf))  (22)

and our final disentangled model is R = R

Topt *

3.3.2 Step 2: Optimizing the causal
terms

Now that we have disentangled the total
causal from the total diagnostic support, we
can further factorize the total causal support
(2 fpa) = R(zfpale). First we try to find non-
overlapping clusters v such that

R(zpale) H R(ze) (23)
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Figure 3: Disentangling causal from diagnos-
tic support. Left: original model P with focal
node f. Middle: original model with focal node
f and its clone g. Right: disentangling model R
in which f and ¢ are disconnected. The proba-
bility of 4, depends on the table values of r

If each cluster contains exactly one parent, we
are done. Otherwise we aim for each cluster y
to find a product distribution [];c, ¢;(z;) such
that

> o w(Xylzpa) [] ¢i(2j) = m(Xflwpar)  (24)
Ty JEY

for each state of the remaining parents. In such
a solution, the causal support from cluster v is
optimally preserved. The solution is the mini-
mum of the set of objective functions

E({¢j}j€7|mpa\7)
= KL m(Xglzpa)m(zy) ...

Ty
D (X plzpa) [ #i(5))) (25)
Ty Jje€y
for each state of the remaining parents. To com-
bine this into one cost function, we weight these
by the probability of the states,

E({¢j}jey) = Z 7T(xpa\fy)E({¢j}j€Ay|$pa\fy)
Tpa\y
(26)
This optimization problem is equivalent to

E({¢j}j€’7) = KL(W(Xf,pa\’y)"'
I 7Kg [T 56 20)

J€y
which can be viewed as a maximizing likelihood
problem with missing values and thus can be

solved by the Ezxpectation-Mazimization (E-M)
algorithm (Dempster et al., 1977). The result-
ing causal support is

molzy) =Y plaslze) [[ ¢i(=;) (28)
Tpa j
3.3.3 Step 3: Optimizing the diagnostic
terms

Finally, we have to factorize the diagnostic
support. Again we start with searching for non-
overlapping clusters x C ch N cp such that

R(mch,cp|$gae) = HR($n|xgaen) (29)
K

and we fit for each cluster the approximating
distribution

1

Qu(zgr) = mo(zy) [T plclzpam)
kechnk
X ¢k($k,pa(k)\g) (30)

parameterized by the potentials ¢ to the dis-
entangled distribution Ry, on the set kU g by
minimization of

IBE(QK) = KL(RWQ(XQ,N e)”Qn(Xg,'i))

+ OKL(Rro (Xyle)[|Qx(Xy)) (31)

in the limit 8 — oo.

Again this KL minimization problem is closely
related to log-likelihood maximization problems
with missing values, and the E-M algorithm
may be invoked for the optimization. In prac-
tice, this minimization procedure involves a
cooling scheme, where one starts with minimiz-
ing with small 5. The optimized ¢’s are then
used as starting point in the next optimization
with larger 5. A two step approximation which
still seems to work (at least for small problems)
is obtained by setting the first 8 equal to 0 and
the second one to co.

After optimization, we have potentials for the
parents ¢; from minimizing (27) and potentials
for the children (and co-parents) ¢, from min-
imizing (31). With (15), these are recombined
to an approximating polytree on the extended
Markov blanket. By summing co-parents, and
then over children, approximating diagnostic
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Figure 4: Network structure in the numerical
experiments.
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Figure 5: Approximating posterior Q(zy)
against true posterior P(xzsle)

support terms A; can be computed. The final
result can be written in the form (10), and pre-
sented in some way to the user.

4 Numerical examples

In this section, we illustrate the method by some
results on toy problems. The toy model is a fully
connected model P(a)P(bla)P(c|a,b) as in fig-
ure 4. States are binary (0, 1). In the first prob-
lem, we check whether in this small network the
exact posterior distributions of the focal node
are recovered by the approximating distribution
of the focal node. We do this by defining ran-
dom tables, and randomly take node a or b as
the focal node z;. Node c is clamped to 1. In
all these networks the posterior P(z¢lc = 1)
is compared to Q(zs) achieved by the method.
The results are plotted in figure 5. These show
that, at least in these toy models, the exact pos-
terior is always recovered.

In the second experiment, we take a as the fo-
cal node, and node ¢ is again clamped to 1. We
take p(a) = 0.5 (using notation p(a) = p(a = 1)
and p(a) = p(a = 0)). Furthermore, we take
p(cla,b) = 0.99, p(cla,b) = p(c|a,b) = 0.099

0.8
<
=06

0.4

0.2
0 0.2 0.4 0.6

u

0.8 1

Figure 6: Diagnostic support A,(a) (stars) and
Ac(a) (diamonds) as a function of the interac-
tion strength u between a and b. See text for
more model details.

and p(c|@,b) = 0.0099. The probability of b is
parameterized as p(bla) = p(b|a) = u.

In figure 6, the outcomes of the normalized
diagnostic support A\y(a) and A.(a) are plot-
ted as function of the interaction strength w.
(normalization of the \’s means that we multi-
plied both components by a constant such that
A@) =1—X(a) ). We see that \.(a) is constant,
satisfying Ac(a) = 10A.(a). This is a natural
outcome since the state a is 10 times as likely as
the state a when the state ¢ is clamped, regard-
less of the probability of b. Furthermore, we see
that with increasing interaction term wu, the sup-
port via b increases, as expected. Note that with
u = 0.5, there is no interaction and there should
also be no support (A\y(a) = A\p(a) = 0.5) as is
indeed the case. With u smaller than 0.5, there
is ‘negative’ support. In this case a and b are
anti-correlated, and there is a significant prob-
ability that the evidence is explained by a, b.

5 Discussion

We presented a method for an approximate ex-
planation of the posterior distribution of a focal
node in terms of causal support from each of
its parents and diagnostic support from each of
the children. The method aims to make a de-
composition that looks similar to the exact de-
composition in polytrees. The method consists
of fitting a local polytree to posterior distribu-
tion of the extended Markov blanket around the



focal node.

We feel that there is need for such a decom-
position. It is our experience that in particular
users with superficial but non-zero acquaintance
with probabilistic models — typically this ac-
quaintance is limited to the naive Bayes model
(one parent connected to a number of children)
— tend to try to understand the posterior in
terms of influences of neighboring nodes. An
automated method to decompose the posterior
according some criteria could be advantageous
to a rough and more ad-hoc estimation by hand.

The notion of approximate explanation is
not well defined. In our paper, we made
several choices for this approximation. Some
of them may be better founded than oth-
ers, and certainly more discussion is needed
on the desiderata of an approximate method.
To find out whether the method is helpfull,
and to find out what is further needed for a
practical method, field tests with implementa-
tions in real-world expert systems with human
users/modelers need to be performed.

Finally, we would like to remark that the
method is very different from the loopy belief
propagation algorithm which recently received
much attention (Murphy et al., 1999). This lat-
ter algorithm is a global algorithm for approx-
imate inference in models for which the poste-
rior distribution is intractable for exact compu-
tation. Our method on the contrary, requires
the exact posterior distribution as an input to
make a local fit by a polytree.
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