Modeling Bayesian Networks by Learning from
Experts

Wim Wiegerinck

SNN, Radboud University Nijmegen, Geert Grooteplein 21,
6525 EZ Nijmegen, The Netherlands

Abstract

Bayesian network modeling by domain experts is still mainly a process
of trial and error. The structure of the graph and the specification of the
conditional probability tables (CPTs) are in practice often fiddled until a
desired model behavior is obtained. We describe a development tool in which
graph specification and CPT modeling are fully separated. Furthermore, the
tuning of CPTs is handled automatically. The development tool consists
of a database in which the graph description and the desired probabilistic
behavior of the network are separately stored. From this database, the graph
is constructed and the CPTs are numerically optimized in order to minimize
the error between desired and actual behavior. The tool may be helpful in
both development and maintenance of probabilistic expert systems. A demo
is provided. A numerical example illustrates the methodology.

1 Introduction

Probabilistic graphical models, and in particular Bayesian networks, are nowa-
days well established as a modeling tool for expert systems in domains with
uncertainty [1, 2]. The reason is that graphical models provide a powerful and
conceptual transparent representation for probabilistic models. Their graphical
structure, showing the conditional independencies between variables, allows for an
easy interpretation. On the other hand, since a graphical model uniquely defines
a joint probability model, the mathematical consistency and correctness are guar-
anteed. In other words, there are no assumptions made in the methodology. All
assumptions in the model are contained in the definition of variables, the graphical
structure of the model, and the parameters in the model.

The specification of a Bayesian network consists of two parts, a qualitative
and a quantitative part. The qualitative part is the specification of the graphical
structure of the network. The quantitative part consists of specification of the
conditional probability tables (CPTs) in the network. Ideally both specifications
are inferred from data. It practice, however, data is often insufficient even for the
quantitative part of the specification. The alternative is then to do the specifica-
tion of both parts by hand, by or in collaboration with a domain expert. In this
manual specification, the determination of graph structure is often considered as
a relatively straightforward task, since it usually fits well with knowledge that the

domain expert has about causal relationships between variables. The quantitative
part is considered a much harder or even impossible task. Often, domain experts
do have ideas about at least a subset of quantitative probabilistic relations that
should hold in the model. The problem is that these relations often do not directly
translate in CPT parameters. An example of such a relation is a conditional prob-
ability in the ‘wrong direction’, from ‘effect’ to ‘cause’ (according to the graph).
It is our experience that domain experts often model by fiddling the CPTs, and
sometimes even both the structure and the CPTs, until some desired behavior in
the network is achieved. A detailed discussion about the problem of modeling and
some tools such as sensitivity analysis to guide the knowledge elicitation can be
found in [3] and references therein.

In order to overcome the modeling problem methods have been proposed that
automatically match model parameters to domain knowledge. One of these ap-
proaches [4] goes back to at least the early 90 ’s, inspired on the idea of backprop-
agation in neural networks. In [4], a methodology for computing derivatives of
probabilities with respect to model parameters is described. These are to be used
for sensitivity analysis to guide the knowledge elicitation process. As a remark,
the paper also proposes to use them in gradient descent algorithm to maximize a
measure of goodness-of-fit to local and global (‘holistic’) probability assessments.
In this paper, we will further explore this direction and we will describe a general
development tool that automatically generates a model from a knowledge base
according to the method outlined in [4].

This paper is organized as follows. In section 2, we briefly review Bayesian
networks. In section 3, we describe the method and we discuss various choices
that can be made. In section 4, the tool is applied to a toy problem. We end the
paper with a short discussion in section 5.

2 Probabilistic models and Bayesian networks

We restrict ourselves to probabilistic models P(X) with a finite set of random
variables, i.e. X = (X1,..., Xn). Each variable X; can assume a finite number of
states z; € {1,...,n;}. Throughout the paper, we use small caps for the state of a
variable, and in particular we use the notation P(x;) = P(X; = x;). Furthermore,
we will often use sets as sub-indices to denote sub-vectors of z = (z1,...,ZN) as
in e.g. [5], e.g. if @ ={1,3,8}, z, stands for z, = (21,23, 3).

In a probabilistic model, one can compute marginal distributions P(z,), and
conditional distributions P(z,|ys) by applying the standard rules of probability
calculus,

P(z,) = Z P(z) = Z H 5z’j,sz($l) (1)

z\Za z’ j€a
P(.’L‘a, yb)

P(zalys) = “Plys) (2)

where 0, ,. = 1if 2’ = z; and 0 otherwise.
% J J

A Bayesian network is a probabilistic model P on a directed acyclic graph
(DAG). Each node i in the graph corresponds to a random variable X; together
with a conditional probability table (CPT) P(x;|z(;)), where 7(i) are the parents
of ¢ in the DAG. The joint distribution of the Bayesian network then factorizes as

n

Pla) = Plar,.. - 20) = [] Pladan) 3)
i=1

Since a Bayesian network is a probabilistic model, marginal and conditional distri-
butions of sets of nodes can be computed according to rules of probability calculus
described above. In this paper, we assume that all required computations can be
done efficiently, e.g., by using the junction tree algorithm [2].

2.1 Network parameters

A Bayesian network is specified in terms of the CPTs. Each of the CPTs in turn
can be parameterized in a certain form,

P(i|zx,) = Perype(®ilzx,, 0:) (4)

with PType indicating the type of parameterization, and g; the parameter vector
of node ¢ with components 8;,. The dimension of the parameter vector depends
on the PType and the number of parents of i. An exponential parametric form is
often convenient, e.g.,

. exp(0i,z:,2.(:))
Praple(zi|zx;,0;) = D exlt:(;z N) ?
! 4T (i)

. exp(zifio + D e (i) TibikTh)
Psigm (@], 05) = for zi, 2, +1) (6
Sig (-’Ezlx i z) Za:’. exp(ajgeio + Eken(i) $;01k$k) (or T;, T) ()

Other parametric CPTs, such as noisy-OR and noisy-MAX are more conveniently
modeled as composition of several CPTs with additional hidden variables. For
example, the noisy-OR can be parameterized by a deterministic OR applied to
noisy copies of the parents [1, 2].

3 The development tool

The idea of the development tool is that the domain expert specifies all his knowl-
edge in a database — the knowledge base. From the knowledge base, a model is
then generated. Thus, the knowledge base should contain all the information that
is needed for the definition of the Bayesian network. We identify several items
that are relevant for the definition of a Bayesian network model.

1. Specification of the relevant variables X;, and specification of the possible
states x; of each variable.

2. Specification of the parameterization (PType) of the CPT of each of the
variables, (tables, noisy-OR, etc.). Of course this may differ from variable
to variable.

3. Specification of the DAG.
4. Specification of the actual parameters of the CPTs.

The domain expert is assumed to be able to supply the information needed for item
1 to 3 in three separate tables in the knowledge base. The CPT parameterizations,
i.e. the PTypes, is to be selected from a predefined library of available PTypes in
the system.

The direct specification of parameters (item 4) is assumed to be too difficult for
the expert. The knowledge base will contain a table with a first guess for the model
parameters. These can be useful if the expert is indeed able to specify a parameter
value. If the expert is certain about a parameter value, he can in addition indicate
that the parameter in question is not adaptive. Otherwise, parameters may be set
to a default value suggested by the tool.

The poor specification of model parameters is to be compensated by another
table in the knowledge base, in which the expert can specify a number of prob-
abilistic statements that should hold in the model. Typically such a statement
is that a certain conditional probability has a certain target value, i.e., P(X =
1Y =2,Z =1) =t (where Y and Z do not need to be parents of X in the graph).
Another type of statement is, e.g., P(X = 1|Y = 1) < P(Z=2]Y =2,U =1).

Given the information in the knowledge base, the procedure will be to tune
the parameters such that the desired model behavior expressed in the statements
is approximated as close as possible. For this purpose, an error measure between
desired model behavior and actual model behavior is needed. This is achieved by
expressing each statement in terms of a cost function.

3.1 Model cost

The cost functions E, (p%; fa) for a statement « is a function of the model proba-
bilities of interest for that statement

Py =P)7any) » o PR = P30l 00) M

The vector £ = t1,...tr is a set of additional parameters supplied by the domain
expert, e.g. to encode the target values. The cost function is designed in such a
way that in its minimum the desired probabilistic statement holds and E = 0.

The tool should contain a library of predefined cost functions EEType(ﬁ;f)
where the user can choose from, e.g.,

t 1-—-t¢
Exr—1(p1,t1) = t logp—l + (1 —t1)log 1 :
1

— P

Esq-rurn(p,t) = Z(pi_ti)2 9)

i

- if >
ENeq(p1,p2) {p1 p N PLop2 (10)

0 if pr<po

K nowledge base Tool library

. Cost functions (E-Types)
Variables CPTs (P-Types)
and states P
P +
arame- [——
trizations] >
——

Network —— - Optimization -
Structure N P]

Probabilistic |——

Statements] >

Figure 1: Development tool for Bayesian network expert system.

The function Eingq can be used to express the knowledge that a certain probability
p1 must be smaller than ps.
The local cost functions are added to a global cost function,

—

E(e) = Z waEEType(a) (p-a; .E‘a) (11)

where weights w, > 0 are supplied by the expert to express the relative impor-
tance, or relative confidence in the statements. .

Assuming that knowledge base is _f:llled, the the parameters 6 are optimized
such that the global cost function E(#) is minimized. The optimization may be
performed by a gradient based method, see appendix A. With the optimized
parameters, a network can be generated, see Figure 1.

A demo system (compiled Matlab for Windows), with some example knowledge-

bases can be downloaded from www.snn.ru.nl/~wimw/bnmodeler.

4 Toy example

In this toy example, a model with 15 binary (+1) variables is created The graphical
structure is generated by linking nodes ¢ with ¢ > 5 with three parents that where
randomly chosen from its predecessors. The PTypes were ‘sigmoidal’, as in (6).

The initial parameters were set to #;0 = —0.5 and 8;; = 0.5. The model is
optimized to reproduce probabilistic statements about the reversed probabilities
PX,=1X;=1) = 0.8 Vke (i) (12)

PX,=1X;,=-1) = 03 Vken(i) (13)

The cost function is taken to be Ekr—i. The Matlab optimization took about
half an hour. The statements are reproduced with a precision of about 2%. The
network is stored in BayesBuilder! ‘.bbnet’ format, and can be downloaded from

IFreely available for academic purposes from www.snn.ru.nl/nijmegen

www.snn.ru.nl/~wimw/bnmodeler /randmodel.bbnet.

5 Discussion

We described a tool for developing Bayesian networks based on a proposal by [4].
Advantages of modeling with the tool are the following: (1) it shortcuts trial
and error behavior of the modeler, and therefore it facilitates model development.
(2) Maintenance of the model is easier, since, for instance with new domain knowl-
edge only records in the database that are related to this new knowledge need to be
changed. By compilation, the expert system will be automatically adapted accord-
ingly. Another possibility is to compile networks from part of the database. (3) It
allows to test other different paradigms by applying different model structures
without changing the probability knowledge databases.

The development tool itself is very general and flexible. The libraries with
PTypes and ETypes are easily extended; data can be easily incorporated by adding
the data-likelihood to the cost function; Statements about constraints e.g. with
Eineq, can be included via cooling schedules (i.e. gradually increasing w, during
optimization when statement a is indicated to be a constraint).

The tool should be used with a little bit of care due to the issue of model
identifiability. If there are far more parameters than probabilistic statements, the
resulting model will depend strongly on the initial guessed parameters. Another
point of care is the possibility of local minima that might obstruct the optimization.

A demo of the tool is available via the web.

A Computing the gradient for optimization

A general method to minimize the error function is by a gradient based method,
such as the conjugate gradients algorithm for nonlinear optimization [6]. An im-
portant ingredient in these algorithms is the computation of the gradient of the
cost function. In this section, we explain how this computation can be performed
in the tool.

A.1 Gradient of the cost functions

To compute the gradient of the full E, we have to compute the partial derivatives
to all the parameters 6;,,,

6E(_’) _ Z We, aEEType(a) (p_ua f’a)
60w = 60zp
_ 6EEType(a) (P, i’a) 319?
= Zwa Z oo N (14)
o] k p=p

in which g™ is as in (7). Note that the functional form of the gradient of E, with
respect to p is independent of the actual value of the p*. In other words, it is a

property of the EType cost function,

6EEType (ﬁa t_j

G']lf]Type (ﬁ; t_) = 3pk

(15)

Each EType gradient can simply be stored together with the Etype cost func-
tion in the library of cost functions supplied by the tool. During optimization, it
can be loaded and evaluated at (p%,t%),

OB o O
O) S 0 Gy 7,7 25 (10
Gy 22 965,

A.2 Gradient of probabilities

To proceed, we need to evaluate the partial derivatives

aps 0P |7it) 9
96, 96;,

(17)

Due to the graphical structure of the DAG, only for a subset of ay’s the conditional
probabilities will be depend on the value of 0;. These relevant sets for i can
be computed in advance by graphical considerations only, using the notion of d-
separation [1]. The derivative of the conditional distribution of the relevant ay’s
(while dropping their labels for a moment) can be expressed in terms of derivatives
of unconditional distributions,

OP(zflr.) 1 <0P($f,wc)

OP(x.)
By Pla)) (18)

90, L@rled T5p-
in which P(z.) = 1 is to be substituted if ¢ =). Again, in a preprocessing step

the {f,c}’s and ¢’s that are relevant for ¢ can be determined.

A.3 Gradient of CPTs

To proceed, we need an expression for OP(z,)/00;,, where z, plays the role of
(zf,z.) and z. respectively. In our parameterized Bayesian network, this proba-
bility can be expressed as

o) = 2 Prtypen (i1, 0) [[P27)20, (19)
o' j#i

in which the CPT of node 7 is the only term that depends on 9; So the derivative
is

OP(z,) Z GPPTYPG(Z)(|x1r(z)’

N 601” HP]lxﬂ'(])) Ta,Th (20)

J#i

9,

z!

Now we note that the functional form of the derivative of Pprype(;) with respect
to 05, is a property of the PType of the CPT of node 1,

1 8PPType(ylym 5)
Perype(y|yr,0) 06,

The gradient of the (log) CPT of PType can be stored in the library of PTypes of
CPT parameterizations supplied by the tool. During the optimization it can be
loaded and evaluated at 6;. Then the derivative (20) can be expressed as

6P xa

Fll;Type(ya Yrs 0_‘) = (21)

Z FPType(z) ;7 m;r,) al)P(x’ILJ 'Z.{Il'i ’ xa) (22)

which only involves a probabilistic inference computation which can be computed
by our inference tool.

A.4 Full gradient

By combining (14), (16), (18) and (22), the full gradient of the cost function can be
computed. The main computational cost is the computation of P(x}, !, x?}“’c} (ak))

for each combination of ¢ and its relevant oy, which is needed for (22).

Acknowledgments

This research is part of the Intelligent Collaborative Information Systems (ICIS)
project, supported by the Dutch Ministry of Economic Affairs, grant BSIK03024.

References

[1] J. Pearl. Probabilistic Reasoning in Intelligent systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Inc., 1988.

[2] F.V. Jensen. An Introduction to Bayesian networks. UCL Press, 1996.

[3] M.J. Druzdzel and L.C. van der Gaag. Building probabilistic networks: ”where
do the numbers come from ?” guest editors introduction. IEEE Transactions
on Knowledge and Data Engineering, 12:481-486, 2000.

[4] K.B. Laskey. Sensitivity analysis for probability assessments in Bayesian net-
works. In UAT ’93: Proceedings of the Ninth Annual Conference on Uncertainty
in Artificial Intelligence, pages 136-142, 1993.

[5] J. Whittaker. Graphical Models in Applied Multivariate Analysis. Wiley, New
York, 1990.

[6] W. Press, B. Flannery, A. Teukolsky, and W. Vettering. Numerical Recipes in
C. Cambridge University Press, 1989.

