Classification with Multiple Latent Variable Models
using Maximum Entropy Discrimination

Machiel Westerdijk
Wim Wiegerinck

MACHIELQMBFYS.KUN.NL
WIMWQ@MBFYS.KUN.NL

Foundation for Neural Networks, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

Abstract

In this paper we propose a method to use
multiple generative models for classification
tasks. The standard approach to use genera-
tive models for classification is to train a sep-
arate model for each class. A novel data point
is then classified by the model that gives it
the highest probability. The algorithm we
propose alters the parameters of the models
to improve the classification accuracy. The
algorithm is based on the maximum entropy
discrimination method, recently introduced
by T. Jaakkola. Our approach is made com-
putationally tractable by assuming that each
of the models is deterministic, by which we
mean that a data-point is associated to only
a single latent or hidden state. The resulting
algorithm is an interesting variant of the sup-
port vector machine learning algorithm. We
show and compare test results on a handwrit-
ten digit recognition problem.

1. Introduction

Probabilistic graphical models, such as hidden Markov
models (Baum et al., 1970) , sigmoid belief networks
(Neal, 1991) and hierarchical mixtures of experts (Jor-
dan & Jacobs, 1994) are excellently suited to discover
hidden structures in complex data. In particular if
prior knowledge is available about the sources that
generate the observed data, such generative models can
provide a compact representation of data that reflects
its underlying mechanisms. However, in their stan-
dard use, generative models are less suited for clas-
sification tasks, since they have been optimized for
likelihood estimation, and are not optimally tuned to
model the classification boundary. On the other hand,
models that are optimized for classification, such as
support vector machines (Vapnik, 1995), often oper-
ate like black-boxes and lack insight into underlying

generative mechanisms.

Recently, however, Jaakkola et al. (1999) proposed a
general framework in which they tune a given set of
probabilistic models such that classification error on
training data is minimized. The method is based on
the maximum entropy principle. As a special case, this
framework includes support vector machines.

However, application of this framework on a set of
probabilistic generative models with a layer of latent
variables is computationally intractable. Variational
techniques which can be used to optimize the log-
likelihood of such models are not applicable, since in
this scheme they do not provide a lower bound of the
objective function any more. In this paper we deal
with this problem by using deterministic generative
models, which have been introduced recently (Wester-
dijk et al., 1999b; Westerdijk et al., 1999a). In these
models, the layer of latent variables is represented by a
single state, which simplifies the framework consider-
ably, while the principle of hidden explanatory features
of the data is retained.

The paper is organized as follows. In Section 2 we
briefly review Jaakkola’s framework. In Section 3 we
review the deterministic generative vector quantiza-
tion (GVQ) models. In Section 4 we describe how
Jaakkola’s framework can be applied to GVQ models.
In addition we describe the incremental algorithm to
optimize the GVQ models. In Section 5 we describe
simulation results. We end with a discussion in Section
6.

2. Maximum Entropy Discrimination

In this section we briefly discuss the maximum entropy
classification framework which was originally formu-
lated in Jaakkola et al. (1999). As in the original
paper, we will restrict ourselves to two-class classifica-
tion problems with class labels ¢ € {—1,1}.

Assume that for a given class ¢ we have a probability

distribution p(x|F*) of patterns x. The distribution
is determined by class specific parameters F¢. The
decision rule to classify a data point x with a given
parameter setting F' is given by the sign of the dis-
criminant function

p (x|F")

L (x|F) =log P GIF) (1)

Classification on basis of the whole distribution p(F’)
is done using the average value of the discriminant
function at point x,

/ p(F)L (x|F). @)
F

The parameter distribution p(F') that makes the least
assumptions about the choice of the parameters F
while obeying the constraint that the training data
are separated well can be found with the maximum
entropy method. More precisely: Suppose we have a
set of training data {xt}le with corresponding class
labels {yt}f: 1- The maximum entropy method maxi-
mizes the entropy of the distribution p(F') subject to
the classification constraints

/F p(FYyL (xe|F) > 3)

where ; are the desired classification margins.

Jaakkola et al. (1999) suggest an improvement to this
approach by including prior information about the pa-
rameter values F' and margin values v = (y1,... ,7Yp).
This is done by incorporating a prior distribution
po(F,7) into the maximum entropy framework. The
objective of this minimum relative entropy principle
is to minimize the relative entropy between the prior
distribution po(F') and the new distribution p(F’)

D(pllpo) = /F p(F,) log % (4)

subject to the classification constraints:
/F P(F,) [yeL(x¢|F) — 7] >0 Vt. (5)
”y

The decision rule for a data point x is
v=sien [nPL) ©)
F

The solution to this problem for the ‘posterior’ distri-
bution p(F,~) has the form

_ 1 Et At [ye L(xt)—7e]
p(F,) - Z()\)pO(Fafy)e) (7)

where
Z(\) = / po(F, v)ezt At [ytL(xt)_%]’ ®)
Fy

is the partition function which normalizes the distri-
bution p(F,v). The vector of Lagrange multipliers
A= (A,---,Ap) is given by the (unique) maximum
of

J(A) = —log Z(}), 9)
under the constraint A\; > 0 V¢

3. Generative Vector Quantization

As a generative model for the class specific probability
distribution p(x|F*¢) of the data we will use the Gen-
erative Vector Quantization representation discussed
in Westerdijk et al. (1999b). In this model, data
points are explained in terms of combinations of fea-
tures. This section reviews the basic idea of this tech-
nique. For notational convenience we will omit in this
section the class labels ¢ since here we are concerned
with finding a probability model for a single class only.

Consider a generative model with one hidden (latent)
layer of n binary units with states s € {0,1}" and a
continuous visible layer (the layer corresponding to the
data) with values x = (21,... ,Z4,... ,2p) € RP. For
a given set of model parameters F' such a generative
model has the form

p(x|F) = > p(x]s, F)p(s). (10)

In generative vector quantization the distribution
p(x|F) is parameterized by a real D x n matrix F
with columns f;,...f,. For a given state s the distri-
bution of x is Gaussian with mean F's =) | f;s; and
variance o

p(x[s, F) = (2m0?)~P/2e gz = Fsll”,

(11)

Each binary state s therefore corresponds to a cluster
center located at F's. The vectors f; corresponding to
the columns of F' will be called features.

An example of a set of clusters generated by three fea-
tures in a 2-dimensional space is shown in Figure 1.
The data points for which this clustering is found are
plotted with small dots. Note that the number of fea-
tures n is not related to the dimensionality of the data
space. Hence, considered as a basis, the feature set
may be under or over complete.

We will consider a special deterministic variant of the
model defined by (10) and (11). In the determinis-
tic case each data point x is associated with only one

- {0 (1)

@) -
"l oy g10) - O
-‘ ’ S

" o0o)

Figure 1. The cluster (circles) are generated by a small set
of basic features fi,f> and f3, which correspond to the
states (100), (010) and (001), respectively. The cluster cor-
responding to the state (011), for example, is given by the
sum of the features corresponding to the two states (001)
and 010 (see broken lines).

binary feature combination (cluster) F's, namely the
one which is closest to x in the Euclidian sense. In
more technical terms, the distribution p(s|x) of binary
states s for a given data point x is p(s|x) = § (s — sx)
which is equal to 1 if s = sy and equal to 0 otherwise.
The state sy is that state s for which ||x — Fs|? is
minimal. One can also view this deterministic model
as the Gaussian mixture model (10) with o — 0.

This deterministic model is closely related to the repre-
sentation used in standard vector quantization, see for
example Gray (1984).In standard vector quantization
too a data point is associated with only a single cluster
or codebook vector. The difference is that in the gen-
erative model, considered here, the clusters (codebook
vectors) are constructed out of a smaller set of basic
features f;.

Because of its connection to standard vector quanti-
zation we use the name generative vector quantization
(GVQ) for the 0 — 0 generative model.

3.1 GVQ Learning

In GVQ each data point x is associated with a particu-
lar codebook vector corresponding to a unique binary
state sx. The squared Euclidian distance between the
whole data set D = {x!|t = 1,..., P} and its cluster
representation, {Fs,:|t =1,..., P}, is

P
E=Y|xt - Fs,|?, (12)
t=1

where s; is shorthand notation for s,:. The task is,
therefore, to find both the optimal associations of data

points to cluster centers, and the best feature vectors
in order to minimize E. Since the associations be-
tween data points and cluster centers will change if the
feature matrix F' is changed, minimizing (12) directly
with respect to F' and the associations is not practical.
For this reason a two-step iteration procedure is used.

After initialization of the features F' the GVQ learning
algorithm iterates between an association step 1 which
finds, for each data-point, the single most nearby clus-
ter center and a minimization step 2 which finds the
optimal feature configuration for the given association:

1. Fort=1,...,P

S; argmin||xt — Fs||2, (13)

F argminz [|xt — FStHZ (14)
F t

The first step, (13), is computationally difficult since,
in principle, it involves a search through all 2" binary
states s. There are different methods to find approxi-
mate solutions to (13). In a recent paper (Westerdijk
et al., 1999a) we compared different search methods
on a large variety of problems. The methods consid-
ered are the variational mean-field approximation and
methods from Bayesian inference: Belief Propagation
and Belief Revision. Depending on the structure of the
problem (e.g., correlations between binary units, spar-
sity of the feature matrix F', etc.) a different method
is preferred. In most situations it is possible to find a
good solution to (13) within reasonable time even for
large numbers of features.

The second step (14) is computationally straightfor-
ward since it involves an unconstrained minimization
of a simple quadratic form.

4. Maximum Entropy Discrimination
with Multiple GVQ Models

Suppose we have trained a separate GVQ feature
model F'¢ on each subset of the training data in which
all data points have the same class label y; = ¢. For
all data points x; (irrespective of its class) each GVQ
model F¢ has a closest cluster center. This cluster
center corresponds to the binary state s . A default
strategy to classify a novel example x is to classify the
example with class label ¢ corresponding to that GVQ
model with the smallest distance ||x — F°s¢||? to x.
However, the objective function with which we found
the feature representations (12) is not optimally tuned
for finding the best decision boundary.

Our aim is to apply the Maximum Entropy Discrimi-
nation method to tune the features F° of each model to
improve the decision boundary. As we will see shortly,
however, direct application of the Maximum Entropy
Discrimination method is intractable. Therefore we
propose a two-step incremental procedure, similar to
GVQ learning. In the first step, the associations are
computed given the feature matrices F° (see (13)). In
the second step, the associations are hold constant and
the (prior) features of each model are slightly updated
F§ — F§ + AF°. Under the assumption is that the
associations computed with F§ and F§ + AF° do not
differ significantly, the iterative procedure gradually
improves the classification boundary. In this section
we will elaborate the update AF° of the feature ma-
trix.

4.1 The Discriminant Function

The full GVQ model F consists of a class 1 feature
matrix F' and a class —1 matrix F~! je., F =
{F~',F'}. Data points are classified according to
their distance to the GVQ models or equivalently to
the sign of the discriminant function:

L(x|F) = Bllx — F'sH|” = Bllx — Fls,ll?,
(15)

where 8 = 1/(20?%) (see (11)) and s~ ! resp. s! are
the binary states corresponding to those class —1 and
class 1 cluster centers which are closest to data point
X.

4.2 Prior Distributions

As explained in section 2 we need to specify a prior
probability po(F,~y) distribution over the features F’
and margins v. We take a distribution which factorizes
over the classes and margins

po(F,7) ZPO(Fl)po(F_l)Hpo(%)- (16)

We assign the prior distribution over the features of
each class in terms of initial models F§§

1 c

P§(F) = et IHHI (17)

Z6
A sensible choice for the prior distribution of the mar-
gins as proposed by Jaakkola et al. (1999) is given
by

po(y) = Ke Ko=) for Y < Y0, (18)

and po(y:) =0 for ¢ > v. With this choice for the
prior, negative margin values -; have a small but fi-
nite probability. This makes it possible to find decision

boundaries also if the data is non-separable, for exam-
ple due to intrinsic noise. In that case a small fraction,
controlled by K, of the training data is allowed to be
at the wrong side of the decision boundary. In section
4.3 we will show that K becomes an upper bound for
the solution of the Lagrange multipliers A.

4.3 The Objective Function for the Lagrange
Multipliers A

As explained in section 2 the distribution p(F') with
which we construct the new improved decision rule
(7) is specified in terms of a set of Lagrange multi-
pliers A = (A1,...,Ap). To construct the objective
function (9) for A we first need to compute the parti-
tion function (8). The partition function Z(A) for the
‘posterior’ distribution over features F' and margins y
is factorized as follows

ZA\) =Z'NZ TN Z7 (). (19)

The partition function for the margins is

Z7(\) = 1:[ﬁe—*t. (20)

The partition functions over features is more compli-
cated,

Z°(\) = i/ e~ VIF=FGI? ;=B), Myellxe—Fs7|?
25 Jr 1)

where ¢ € {—1,1} is the class index. Since the associ-
ations s{ are in general functions of F', the integrand
in (21) is a very complicated function of F. However,
by keeping the associations fixed in the state defined
by F§, (21) reduces to a Gaussian integral which can
be easily computed. This approach, however, can only
make sense if the correct associations in the posterior
distribution of F' are not too much different from the
associations defined by Fj. Therefore, the posterior
distribution should differ only slightly from the prior
distribution. To achieve this, the parameter settings
should be such that v > 1.

With constant associations, (21) can be computed by
Gaussian integration,

—1,2
Z¢(\) :|7TAC 1| 2 ezd[%bﬁTA“_lbg—Cg]
c)
% (22)

where

A =vI+cBY Ayesisi. (23)
t

Note that A¢ is defined in terms of direct products
s¢s¢” defining a matrix with elements s7s5. The vector
b, in (22) is given by

bg = —2¢f Z AtYLT e, S; (24)
t
and the scalar C§ is
Cq=cp Z Ay’ (25)
t

The training points x{ are given relative to the cluster
centers x{ = x; — F’s§.

Now we are able to compute the objective function
J(A) = =3 .log Z¢(\) which consists of terms

—1ogZC(A):KC—21(bS)" (A°)” +ch,
d

d

26)

where K¢ is a constant which does not depend on .
Because of the matrix A and its inverse, J(\) has a
complicated dependency on the Lagrange multipliers
A. However, since we assumed v > 1, the off-diagonal
elements of A in (23) are small compared to its diag-
onal elements and A. This motivates us to make the
following approximation

At %5,,-. (27)
With this approximation the augmented objective
function J'(\) (omitting the constant terms) becomes

=Y log(1 — A/K) + LTA = ATQ,
? (28)

where

=% + Z Z 23” (29)

and

2

4
Qup =) sy Z S{st Z$§t$fit'- (30)
c d

To find the Lagrange multipliers A, (28) needs to be
maximized under the constraints Ay > 0. The logarith-
mic term in (28) ensures that the solution will satisfy
At < K i.e., the constant K is an upper bound for the
Lagrange multipliers. As an approximation we discard
the logarithmic terms from (28) and instead optimize

J*(N) = LTA = \TQ\ (31)

under the constraints 0 < A\ < K.

4.4 Computation of the Classifier

Having obtained the Lagrange multipliers by maximiz-
ing (31) we are able to compute the augmented classi-
fier (6)

v =sien [- PP -1 (FE))

To evaluate (32) we have to compute integrals of the
form:

/ Ix — Fs,|*p(F). (33)
F

This amounts to evaluating first and second moments
of a Gaussian distribution, the result of which is

D
[I = PoalPo(F) = lix = Mol + 5 T4 55,
" (34)

where M = Fy + cfY, MypA7 x4 (s)T is the aug-
mented feature matriz. Again, the direct product
x4(s¢)T in M defines a matrix with elements ;;s;.
With the approximation (27) the classifier then be-
comes

D
y(x) = sign (nx— Mg = = ML + 2 as?
14

(

where
M~ F§ + AFf (36)

with
r __ B C.C
AFy = c Z AtysXys; (37
¢
Furthermore, AS? in (35) is defined as

(IIS’1II2 — lIsxll?) (38)

The parameter 8/v in (37) behaves as a learning pa-
rameter. In the limit 8/v — 0 we retain the original
discriminant function (15) defined by Fp.

AS? =

As an illustration, consider the special case that each
feature set consists of only one feature fy. In that case

AS? =0 and the new class ¢ = 1 feature f,,, is

frew Z Aeyi(xi —) (39)

From this expression we see that the features are pulled
towards the center of gravity of patterns (weighted
with the positive values \) with the correct label y; = 1
and are pushed away from patterns with the opposite
class label y; = —1.

DT R HLRING
<00 By T B O M
LB hewWwh~\C
CH R AR L SN e R
LR b 1N T SR LR R
N D A ™S
e T L R JRCHD S Y
iR L B TR i #
0% -G (P00 T
MW ALY el

Figure 2. A sample of binary images of handwritten digits.

4.5 Practical Implementation

Our method for doing the constraint maximization of
(31) is related to the Sequential Minimal Optimization
algorithm (Platt, 1999) which is developed for optimiz-
ing Support Vector Machines (SVMs). At each stage
in this algorithm two Lagrange Multipliers); are se-
lected for optimization while holding the others fixed.
This is repeated until the error is within a e distance
from the (unique) minimum. The difference with our
implementation is that we do not have the additional
SVM constraint), ;A = 0. Therefore we can max-
imize J*(A) by doing 1-dimensional optimizations (it-
eratively updating a single A; at a time) which can be
done analytically making the optimization very fast.

5. Application to Handwritten Digit
Recognition

The data set we used to test our method consisted of
11000 handwritten digits compiled by the U.S. Postal
Service Office of Advanced Technology. We used the
same preprocessed data as Saul et al. (1996) and Sal-
lans et al. (1998). Each processed image is built up
out of 8 x 8 black and white pixels. A data sample of
each digit class is shown in Figure 2. We used the same
partitioning of the data into a training set and a test
set as Saul et al. (1996) and Hinton et al. (1995). The
training set consisted of 700 examples of each digit and
the test set consisted of 400 examples of each digit.

The multi-class classification problem was split up into
10 binary classification problems for which we trained
20 models in total. For each digit, we constructed a
classification boundary between the training examples
of that digit and the examples of the other digits. To
do this we used the iterative Maximum Entropy proce-

dure to train two GVQ models for each digit class, one
for the positive training examples (the 700 examples
corresponding to the digit) and one for the negative
training examples (the 9 x 700 = 6300 examples cor-
responding to the remaining digits).

Cross-validation within the training set, where we var-
ied the number of latent states from 1 to 8, revealed
that we needed to choose at least 8 hidden units for
each model. To restrict the computational overhead
we did not investigate the performance of larger num-
bers of units. The reason for this is that, for the pur-
pose of this paper, we did not incorporate any approx-
imating techniques to find the associations s for each
data pattern. As explained in section 3.1 the exact
algorithm scales exponentially with the number of fea-
tures. As mentioned in the same section, there exist
different accurate algorithms (such as mean-field) to
speed up the association step. With the 8 latent unit
configuration the CPU time needed for a 500 MHz
Pentium IIT to fit a positive and negative model for
one digit was 1.4 hours.

As a parameter setting we used € = /v = 0.001, and
K =1 for the upper bound. Following Jaakkola et
al. (1999), we chose 9 = 1 for the position where the
margin prior, po(y), peaks. These choices gave good
convergence behavior i.e., the training score slowly in-
creases to a maximum without oscillations.

Figure 3 shows typical digit representations of each
positive and negative digit model. The positive mod-
els (top row) clearly correspond to the class they were
trained on. In some cases the negative models resem-
ble a specific digit. For example, the negative model of
digit 2 (third column, second row) looks like a 9. This
indicates that the digit with which a 2 is mostly con-
fused is a 9 and therefore the negative model emphasis
on the 9 to separate it from the 2.

At each iteration we computed the training set scores
on the binary classification problems. As can be seen
in the left subplot of Figure 4 the training score reaches
100% correct after about 10 iterations. The change in
the feature values ||AFy|| at each stage is plotted in
the right subplot.

At each iteration only a tiny fraction (=~ 1 out of 100)
of the training set patterns x; had a corresponding
Lagrange multiplier A\; > 0. Hence, the change in the
features AF (37) is specified in terms of only a few

' As explained in Jaakkola et al. (1999),the maximum
entropy framework can also be formulated for multi-class
classification problems in a direct way. On the other hand,
there are indications (Weston & Watkins, 1998) that, for
practical purposes, the multi-class formulation does not
have a great advantage over the multiple binary approach.

OXL I*ESLATFF
EVFPLAFEGY A

Figure 3. Typical GVQ representations that were learned
with the maximum entropy procedure. In each column,
the upper image corresponds to the GV(QQ representation
of the ‘positive’ class and lower image corresponds to the
‘negative’ class.

! 6
0.995
<
s —4
8 0.09 =
<
£0.985 =
i 2
0.98
0.975 0
0 5 10 15 0 5 10 15

of iterations # of iterations

Figure 4. Left subplot: The training set score after each
stage of adjusting the features F3'°™ < Fy + AF. Right
subplot: The change in the feature values ||AF|| at each
stage.

training patterns. This is analogous to what we see
in support vector machines where the decision bound-
ary is defined by a only few data points (the support
vectors).

To classify a test example x we computed its distance
Ef(x) = ming ||x — M(Cz.)s|| to both the positive ¢ =1
and negative ¢ = —1 models of each class i. We then
computed, for each digit ¢, the difference AF; between
the distances to the positive and negative model, ¢.e.,
AE; = E}(x) — E;'(x). The class i for which AE;
was minimal was then chosen to label the test example
x. This procedure corresponds to the intuitive notion
that an example belonging to a certain class should be
close to the model corresponding to that class and far
away from the negative model of that class.

The prior GVQ models (corresponding to Fp in (17))
misclassified 7.8% of the test patterns. After applica-
tion of the iterative Maximum entropy procedure the
test error reduced with 3% to 4.8%. A component wise
representation of this error is shown in Table 1 where
we printed the confusion matrix. The entry on the ith
row and jth column specifies how many times digit i
was classified as digit j.

Using exactly the same partitioning of the data set into

Table 1. Confusion matrix obtained with the GVQ model
after optimization with the maximum entropy procedure.

0 1 2 3 4 5 6 7 8 9
013 2 1 0 2 0 2 0 2 O
1 03 0 0 0 1 1 0 3 O
2 1 6 34 2 3 2 2 2 7 1
3 0 0 5 364 0 18 0 2 7 4
4 0 0 1 038 1 0 3 1 11
5 1 5 0 8 0379 3 1 3 0
6 1 4 2 0 0 3 38 0 2 0
7 0 1 2 0 1 0 0 38 4 6
8 1 14 2 2 1 12 2 5 357 4
9 12 0 0 1 0 0 5 2 38

Table 2. Test error rates on the digit recognition problem

GVQ | nearest | back | wake- | GVQ- | mean
prior | neighbor | prop. | sleep ME field
7.8% 6.7% 56% | 4.8 % | 4.8% | 4.6%

train- and test-set, Hinton et al. (1995) reported test
error rates of 6.7%, 5.6% and 4.8% obtained with near-
est neighbor classification, a back-propagation multi-
layer perceptron and generative models trained with
the wake-sleep algorithm, respectively. Again using
the same data partitioning, Saul et al. (1996) obtained
a slightly smaller error rate of 4.6% with sigmoid belief
networks. In that case a single network was trained
for each digit using standard (unconstrained) maxi-
mum likelihood optimization. Each network consisted
of an 8 x 8 grid of visible units, a middle layer of 24
binary hidden units and a top layer of 8 binary units.
An overview of the test error results is presented in
Table 2.

6. Conclusion

Generative models provide a way to model the distri-
bution of complex structures within data. In addition,
the description of the data in terms of a small set of
elementary components may lead to a lucent represen-
tation which is important in many data exploration
tasks.

In the standard approach generative models are op-
timized for maximum likelihood estimation and are
therefore not directly optimized for the task of classifi-
cation. In this paper we proposed a method to adjust
the models to improve their performance as a com-
bined classifier. The basic idea of our method is to use
a deterministic approximation to the distribution of
the latent states within each model. While fixing this
distribution we use the maximum entropy method to

slightly adjust the models to improve the separation
of the training data. Iterating further in this manner
leads to a new set of models which is better suited for
the purpose of classification.

The effectivity of this procedure is demonstrated by
the test error results we obtained for the digit recog-
nition problem: Initially the classification score of the
GVQ models was much worse than that of standard
classification methods such as nearest neighbor clas-
sification and back-propagation neural networks. Af-
ter adjusting the features with the iterative maximum
entropy procedure the GVQ models outperform these
standard methods and the performance is compara-
ble to the performance of advanced techniques such as
wake-sleep and mean-field sigmoid belief networks.

In this paper the iterative maximum entropy scheme
was applied to GVQ. In GVQ the visible states x
depend linearly on the features values F. This en-
abled us to analytically compute the partition func-
tion log Z(\), needed to construct the iterative maxi-
mum entropy scheme. In other linear models, such as
principal component analysis and factor analysis, the
linearity can be exploited in a similar way and itera-
tive maximum entropy procedures can be constructed
analogously.

In non-linear models the visible states depend non-
linearly on the feature values. Examples of non-linear
models are models with sigmoid transfer functions (for
binary inputs) and soft-max functions (for nominal in-
puts). For non-linear models the partition function
cannot be computed analytically. However, if the prior
feature distribution is sharply peaked, the computa-
tion of the partition function effectively involves an
integration over a small region in feature space. In
that case a linear expansion could be sensible. With
such an approximation the procedure can be extended
to include non-linear models. Iterative maximum en-
tropy schemes for non-linear models are currently un-
der study.

References

Baum, L., Petrie, T., Soules, G., & Weiss, N. (1970).
A maximization technique occuring in the statistical
analysis of probabilistic functions of markov chains.
The Annals of Mathematical Statistics, 41, 164-171.

Gray, R. (1984). Vector quantisation. IEEE ASSP
Magazine, 4-29.

Hinton, G., Dayan, P., Frey, B., & Neal, R. (1995).
The wake-sleep algorithm for unsupervised neural
networks. Science, 1158-1161.

Jaakkola, T., Meila, M., & Jebara, T. (1999). Maz-
imum entropy discrimination (Technical Report
MIT-AITR-1668). MIT AI Lab.

Jordan, M. L., & Jacobs, R. (1994). Hierarchical mix-
tures of experts and the EM algorithm. Neural Com-
putation, 6 ,181-214.

Neal, R. M. (1991). Connectionist learning of belief
networks. Artificial Intelligence, 56, 71-113.

Platt, J. (1999). chapter Fast training of support vec-
tor machines using sequential minimal optimization.

Advances in kernel methods - support vector learn-
ing, Cambridge, MA: MIT press.

Sallans, B., Hinton, G., & Ghahramani, Z. (1998).
A hierchical community of experts. In C. M.
Bishop (Ed.), Neural networks and machine learn-
ing, NATO ASI Series F, 269-284. Springer-Verlag.

Saul, L. K., Jaakkola, T., & Jordan, M. 1. (1996).
Mean field theory for sigmoid belief networks. Jour-
nal of Artificial Intelligence Research, 4, 61-76.

Vapnik, V. (1995). The nature of statistical learning
theory. New York: Springer-Verlag.

Westerdijk, M., Barber, D., & Wiegerinck, W.
(1999a). Deterministic generative models for fast
feature discovery. Unpublished manuscript. Dept.
of Medical Physics and Biophysics, University of Ni-
jmegen, The Netherlands.

Westerdijk, M., Barber, D., & Wiegerinck, W.
(1999b). Generative vector quantisation. Proceed-
ings of the International Conference on Artificial
Neural Networks 1999 (pp. 934-939).

Weston, J., & Watkins, C. (1998). Multi-class support
vector machines (Technical Report CSD-TR-98-04).
University of London, Dept. of Computer Science.

