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ABSTRACT
We consider multi-agent systems with stochastic non-linear
dynamics in continuous space-time. We focus on systems of
agents that aim to visit a number of given target locations
at given points in time at minimal control cost. The on-
line optimization of which agent has to visit which target
requires the solution of the Hamilton-Jacobi-Bellman (HJB)
equation, which is a non-linear partial differential equation
(PDE). Under some conditions, the log-transform can be
applied to turn the HJB equation into a linear PDE. We then
show that the optimal solution in the multi-agent scheduling
problem can be expressed in closed form as a sum of single
schedule solutions.

Categories and Subject Descriptors
G.1.6 [Numerical analysis]: Optimization—stochastic pro-

gramming ; I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods, and Search—control theory ,dynamic

programming, scheduling ; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Multiagent systems; G.3
[Probability and statistics]: Stochastic processes

General Terms
Algorithms, Theory

Keywords
continuous-time, exact optimal controls, mulitagent systems,
nonlinear stochastic systems, optimal stochastic control, sto-
chastic processes

1. INTRODUCTION
A collaborative multi-agent system (MAS) is a collec-

tion of agents that autonomously control their behavior to
achieve a common goal or to maximize the performance of
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the group. Examples are teams of soccer-robots and teams
of unmanned rescue vehicles in a hazardous disaster area.
In practical applications, agents often have to deal with
stochastic dynamics, e.g., due to noise from the environ-
ment, and with limitations of resources.

In this paper, we are interested in optimal control in multi-
agent systems that have to operate in a space-like environ-
ment in continuous time. The typical example is a group
of micro air vehicles (MAVs) whose mission is to visit a
number of predefined targets, e.g. for surveillance purposes.
The agents dynamics is subject to noise. In the example of
MAVs, this may be due to local winds and turbulences in the
air. A typical mission is that the agents start at some initial
positions and distribute themselves such that each target is
reached at the required times by at least one vehicle. Then
the agents have to return to base at given end-time. The
agents should continuously control themselves such that the
mission is realized at minimal expected effort. The addi-
tional complexity is that due to the noise in the dynamics, a
schedule that seems optimal from the initial positions may
become suboptimal in a later stage. Thus an on-line sched-
ule could be beneficial.

In this paper we consider optimal control in multi-agent
Markov Decision Processes (MDPs). The system is fully ob-
servable, i.e. each agent knows the joint utility function as
well as the current and past state of itself and of the other
agents. In addition, the common knowledge that each agent
follows the same optimization approach is assumed. State
transitions, however are stochastic. This makes optimiza-
tion of control non-trivial.

A common approach is to model such a system as an MDP
in discrete space and time: the optimal actions in an MDP
optimization problem are in principle solved by backward
dynamic programming. In general, the joint action space
and the joint state space of the agents will be large due dis-
cretization. Since the number of states will also increase ex-
ponentially in the number of agents, this approach will gen-
erally be infeasible [1]. Often, one can describe the system
more compactly as a factored MDP. In such systems both
the transition probabilities and reward functions have some
structure. Unfortunately, this structure is not conserved in
the value functions and exact computation remains exponen-
tial in the system size. Recently, a number of advanced and
powerful approximate methods have been proposed. The
common denominator of these approaches is that they basi-
cally assume some predefined approximate structure of the



value functions [4, 5].
In this paper, we remain in the continuous domain. We

consider agents that evolve under a non-linear dynamics
with additive Wiener noise. The optimal control follows
from the solution of the Hamilton-Jacobi-Bellman equation,
which is a non-linear partial differential equation (PDE) [9].
By assuming that control is additive to the dynamics and
contributes quadratically to the cost, in such a way that
control in directions with strong noise is cheap and in di-
rections with weak noise expensive, we can apply the log-
transform. This transform turns this nonlinear PDE into a
linear PDE [2, 3, 6, 7].

We then follow the approach in [11] where a similar prob-
lem is considered: the optimal control of a system of agents
that have to distribute themselves over a number of targets
at a single given end-time. If the log-transform can be ap-
plied, the optimal control solution in the multi-agent multi-
target system can be shown to be the sum of single-agent
single-target optimal controls weighted by a factor that de-
creases with the expected costs to reach each target.

In this paper we further extend the work in [11] by con-
sidering the optimal control of agents that have to visit a
number of targets at different points of time. The system
has to not only to decide on which agent goes to which tar-
get, but also on the ordering of the visits. In the decision
of which targets are to be visited first, the agents have to
take into account possible consequences at later times. We
call each ordering of visits a schedule. So, in addition to
the stochastic optimization of the control to a given target,
the system should decide on-line how it optimally realizes
at least one of the schedules.

To deal with this problem, we generalize the traditional
stochastic optimal control problem by replacing the end-
cost that is usually included in the stochastic cost function
by a term that also depends on the states of the system
at earlier times, i.e., a cost potential that depends on the
path of the system rather than only the end-state. In sec-
tion 2, we review the traditional framework of optimal con-
trol in continuous stochastic systems [9] and the solution
with the log transform, as described in [6, 7] and closely
following [11]. In section 3 we generalize the framework by
including a path dependent cost potential and we provide,
using the log transform, an optimal control solution in the
extended framework. In section 4, we first apply the theory
to an agent that has to control itself to a single target, dis-
cussed earlier in [11]. Then we consider a schedule, i.e. a
sequence of targest that have to be visited after each other
at predescribed times. Since this is just a concatenation of
single target-single time problems, it is not suprisingly that
the control is just control to the next target in line. How-
ever, the optimal expected cost-to-go will be affected by the
targets later in the schedule. In section 5, we consider on-
line scheduling, i.e. where the control should be such that
at end-time one of the schedules is realized at minimal ex-
pected cost. We show that in the log-transform framework,
the optimal control can be expressed as a weighted com-
bination of single schedule controls, weighted by a factor
that decreases with the expected cost-to-go for each sched-
ule. This result is a direct generalization of the result in [11]
mentioned earlier. We illustrate the result by a numerical
example where an agent has to hit a moving target before a
given end-time (rather than exactly at the given end-time).
Optimal control can be calculated by modeling this problem

with schedules. In section 6, we show that the result gener-
alizes straightforwardly to on-line scheduling in multi-agent
systems. This is analogous to the multi-agent control to tar-
gets at end-time discussed in [11]. Numerical examples are
provided of a two agent system, that have to visit a number
of targets at a number of times. Finally, we end with some
conclusions in section 7.

2. A REVIEW OF STOCHASTIC OPTIMAL
CONTROL THEORY

In this section, we follow the review in [11] of the stochas-
tic control framework with the log-transform as developed
and described in [2, 6, 7].

We consider an agent moving in IRk. Its position x obeys
the stochastic dynamics

dx = (b(x, t) + u)dt + dξ, (1)

with dξ a Wiener process with 〈dξidξj〉 = νijdt, b(x, t) an
arbitrary function of x and t, modeling the dynamics due
to the environment. The dynamics can be influenced the
additive control u.

Given x at initial time t0, the problem is to find a control
policy u(.) from t0 to the end-time tn such that the expected
cost-to-go

C(u(t0 → tn), x, t0, ) =

fi

φ(x(tn))

+

Z tn

t0

“1

2
u(t)>Ru(t) + V (x(t), t)

”

dt

fl

(2)

is minimal. The expectation is taken over all noise realiza-
tions, resulting in different trajectories x(t) in state space
that start in x(t0) = x. φ(x(tn)) is the end cost, depend-
ing only on the end state x(tn). V (x(t), t)dt is the cost of
being at position x(t) during the time interval [t, t + dt],
u(t)>Ru(t)dt is the cost of the control during the same time
interval. R is a constant k × k matrix.

The expected cost-to-go at time t needs to be minimized
over all strategies u(t → tn), this yields the optimal (ex-
pected) cost-to-go

J(x, t) = min
u(t→tn)

C(u(t → tn), x, t). (3)

In the appendix, it is briefly explained that due to the linear-
quadratic form of the optimization problem—the dynamics
(1) is linear in the action u, the cost (2) is quadratic in
the action—the minimization with respect to u(.) can be
performed explicitly, yielding a non-linear partial differen-
tial equation in J , the well-known Hamilton-Jacobi-Bellman
equation [9]. If, in addition, the matrices ν and R can be
linked via a scalar λ such that ν = λR−1, the log-transform
can be applied, and the optimal cost-to-go is re-expressed
as the log of an ordinary integral,

J(x, t) = −λ log Z(x, t) (4)

with “partition function”

Z(x, t) =

Z

ρ(y, tn|x, t) exp
“

−
φ(y)

λ

”

dy (5)

in which ρ(y, tn|x, t) is the probability of arriving in state
y at time tn, when starting in x at time t, under the dy-
namics (55) in the appendix. This dynamics (55) is a diffu-



sion process, it equals the stochastic system dynamics with-
out control, i.e., u = 0, with in addition the probability
(V (x, t)/λ)dt of being removed from the system between t
and t + dt and thus not arriving in state y.

The main advantage of the log-transform is that the HJB
equations which is a nonlinear PDE in J is turned into a
linear PDE in ρ, which is often much easier to solve -at
least approximately (although still difficult, see [6, 7]). In
fact, for any b(x) linear in x, and V = 0, the PDE, which
is well-known as the Fokker-Planck equation, can be solved
analytically, and its solution is known to be a Gaussian, see
e.g. [10]. In particular, with b = 0, V = 0 and ν > 0 a
scalar, the solution is

ρ(y, tn|x, t) = (2πν(tn − t))−k/2 exp

»

−
|y − x|2

2ν(tn − t)

–

. (6)

Exact solutions of Fokker-Planck equations with non-linear
drift terms b have been studied in e.g. [8].

The optimal control of the agent is directly obtained from
the optimal cost-to-go, by taking its gradient (equation (52)
in the appendix), which implies the following relation be-
tween control and partition function,

u(x, t) = ν∂x log Z(x, t) . (7)

Finally we remark the optimal control problem at time t
with end-cost φ(x) is equivalent to the case with optimal
cost-to-go J(x, t′) at intermediate time t < t′ < tn, i.e.,

Z

ρ(y, tn|x, t) exp
“

−
φ(y)

λ

”

dy

=

Z

ρ(y′, t′|x, t) exp
“

−
J(y, t′)

λ

”

dy′ . (8)

This implies the following relation for the partition function

Z(x, t) =

Z

ρ(y′, t′|x, t)Z(y′, t′)dy′ . (9)

3. PATH DEPENDENT COST POTENTIAL
In this section we extend the framework outlined in the

previous section by replacing the end-cost φ in the cost-to-
go (2) by a potential that not only depends on the state at
end-time tn but also on the states at a number of predefined
earlier times t1, . . . , tn. Under the same dynamics as previ-
ously, the objective is now to find a control that minimizes

C(u(t0 → tn), x(t0), t0) =

fi

φ(x(t1), . . . , x(tn))

+

Z tn

t0

“1

2
u(t)>Ru(t) + V (x(t), t)

”

dt

fl

. (10)

For an intermediate time t, with tk < t < tk+1, the expected
cost-to-go is

C(u(t → tn), x(t1), . . . , x(tk), x(t), t)

=

fi

φ(x(t1), . . . , x(tn))

+

Z tn

t

“1

2
u(t′)>Ru(t′) + V (x(t′), t′)

”

dt′
fl

(11)

which depends on the current state x(t) but also on the past

states x(t1), . . . , x(tk). The optimal expected cost-to-go is

J(x(t1), . . . , x(tk), x(t), t))

= min
u(t→tn)

C(u(t → tn), x(t1), . . . , x(tk), x(t), t) . (12)

The J in (12) can be understood as an conditional optimal
cost-to-go Jk, conditioned on the states visited at the past
times t1, . . . , tk,

Jk(x(t), t|x(t1), . . . , x(tk)) = J(x(t1), . . . , x(tk), x(t), t) .
(13)

The conditional optimal cost-to-go functions Jk are con-
nected via the boundary conditions

Jk(x(tk+1), tk+1|x(t1), . . . , x(tk))

= Jk+1(x(tk+1), tk+1|x(t1), . . . , x(tk+1)) . (14)

To proceed, let us assume that the time t is in the in-
terval tk ≤ t < tk+1, that the previous states x(t1) =
x1, . . . , x(tk) = xk are given and that we know the optimal
cost to go Jk(xk+1, tk+1|x1, . . . , xk) for all possible states
xk+1 at the end-time of the interval tk+1. Then we can
apply for this time interval the theory of the previous sec-
tion. The conditional optimal cost-to-go is re-expressed by
applying the log-transformation

Jk(x, t|x1, . . . , xk) = −λ log Zk(x, t|x1, . . . , xk) (15)

in which the conditional partition function satisfies (cf 9)

Zk(x, t|x1, . . . , xk) =

Z
»

ρ(xk+1, tk+1|x, t)

× Zk(xk+1, tk+1|x1, . . . , xk)

–

dxk+1 (16)

in which the integral is over all possible states xk+1 at the
time tk+1. The control is given by

uk(x, t|x1, . . . , xk) = ν∂xZk(x, t|x1, . . . , xk) . (17)

We can solve Zk recursively with the use of boundary
conditions (14), definition (13), and the end-condition

J(x(t1), . . . , x(tn), tn) = φ(x(t1), . . . , x(tn)) . (18)

This yields for tk ≤ t ≤ tk+1 the following expression for Zk,

Zk(x, t|x1, . . . , xk) =

Z
»

exp

„

−
φ(x1, . . . , xn)

λ

«

×ρ(xn, tn|xn−1, tn−1) . . . ρ(xk+1, tk+1|x, t)

–

dxk+1 . . . dxn.

(19)

In the remainder of the paper, we drop the conditioning
on earlier states x1, . . . , xk in the notation. In addition, we
drop the subindex k. Furthermore, we redefine without loss
of generality tk+1 as t1, and (19) reduces to

Z(x, t) =

Z
»

exp

„

−
φ(x1, . . . , xn)

λ

«

× ρ(xn, tn|xn−1, tn−1) . . . ρ(x1, t1|x, t)

–

dx1 . . . dxn (20)

which contains (5) as a special case. The expressions for the
cost-to-go (15) reduces to (4), and the expression for the
control (17) reduces to (7), where it should be understood
that the partition function is as in (20).



4. CONTROL WITH A SCHEDULE
In this section, we apply the framework to the case where

a single agent has to visit a number of targets. We start
with the simplest case, where the agent has only to visit
one target at given time. Then we consider schedules. In
a schedule, given targets should be visited at given times.
We assume that dynamics b, noise ν and environment costs
V are given such that the diffusion process (55) results in a
(given) distribution ρ(x′, t′|x, t). The matrix R is assumed
to be such that ν = λR−1 holds.

4.1 Control to a single target
First we consider the case where the agent in state x at

time t has to visit a given target µ1 at a given time t1 > t.
To enforce that x(t1) is close to target µ1, we choose the
following cost potential, where we assume ε to be small,

φ(x(t1)) =



−c if D(µ1, x(t1)) < ε
∞ otherwise

(21)

in which D(µ, x) is a distance measure between µ and x, e.g.,
D(µ, x) = |µ − x|. With −c being a cost, c is the reward

for visiting the target. We compute the partition function
acording to (20) with end cost (21), resulting in

Z(x, t) = exp(c/λ)Vε

Z

D(µ1,x1)<ε

ρ(x1, t1|x, t)dx1 . (22)

Since ε is small (and ρ is assumed to be smooth) we can
approximate this by

Z(x, t) = ρ(µ1, t1|x, t) exp(c/λ)Vε , (23)

where we defined the volume of points within distance ε
around µ1 as Vε =

R

D<ε
dx.

The control follows from (7),

u(x, t;µ1, t1) = ν∂x log Z(x, t) = ν∂x log ρ(µ1, t1|x, t), (24)

which is in this case independent of the values of exp(c/λ)
and Vε. The fact that it is independent of c was to be ex-
pected: the agent has to visit the target regardles the re-
ward, since the cost of missing the target is infinite. The
independence of Vε is due to the approximation ε → 0.

In the example where b = 0, V = 0 and ν > 0 a scalar, so
that ρ given by (6), the control reduces to

u(x, t; µ1, t1) =
µ1 − x

t1 − t
, (25)

which is well known from standard linear-quadratic control
theory [9].

4.2 A single schedule
We define a schedule σ as a sequence of given targets,

µ1, . . . , µn which are to be visited at a sequence of given
(later) times t1, . . . , tn. We can model the schedule with the
following cost-potential

φ(x(t1), . . . , x(tn); σ) =



−c(σ) if D(µi, x(ti)) < ε ∀i
∞ otherwise .

(26)
The agent obtains a reward c(σ) if the schedule is realized,
i.e. if the all the states x(ti) are within ε distance of the
targets. We compute the partition function acording to (5)
with end cost (26). In the approximation of small ε, we

obtain

Z(x, t; σ) = ρ(µ1, t1|x, t)

×
n−1
Y

i=1

ρ(µi+1, ti+1|µi, ti) exp
“ c

λ

”

V n
ε . (27)

The control follows from (17),

u(x, t; σ) = ν∂x log Z(x, t; σ) = ν∂x log ρ(µ1, t1|x, t)

= u(x, t; µ1, t1) , (28)

which is in this case independent of the values of exp(c/λ)
and Vε and the targets at later times ti > t1. The latter is
due to the fact that in the schedule σ the agent has visited
the first target at time t1 regardles the positions and times
of the targets later in the schedule. These latter targets do,
however, of course contribute in the optimal cost-to-go.

5. ON-LINE SCHEDULING
Now we consider the case where the agent can choose a

schedule from a given set of schedules σ ∈ χ. Each schedule
consists of a sequence of targets µi(σ), i = 1, . . . , n(σ) that
are to be visited at times ti(σ) and a reward c(σ) when the
targets are visited. The schedule can be chosen on-line. In
other words, optimal control is such that at end-time at least
one schedulde is realized, with minimal expected total cost.

We model the optimal control problem by a cost potential

φ(x(t1), . . . , x(tn)) = min
σ

φ(x(t1), . . . , x(tn); σ) , (29)

where t1, . . . , tn is the union of times ti(σ) in all schedules.
We assume that the schedules are different, i.e. each two
schedules differ at least in one pair (µi, ti), since only one
(the one with lowestest cost) will contribute to the cost-
potential (29). For the same reason we assume that if a
schedule σ′ is a superset of another schedule σ, i.e. that
σ′ contains all (µi, ti) of σ plus some other targets at other
times, then c(σ′) > c(σ). We compute the partition function
acording to (20), which contains a term exp(−φ/λ). For the
cost (29), this term equals

exp
“

−
φ(x(t1), . . . , x(tn))

λ

”

= max
σ

exp
“

−
φ(x(t1), . . . , x(tn); σ)

λ

”

. (30)

Next we do do the small ε approximation. First we consider
the case that the target times ti of each of the schedules are
identical. Then, if ε is small enough, a sequence of states
x(ti) can at most realize one of the schedules, i.e. the sched-
ules do not ‘overlap’. Since exp(φ(x(t1), . . . , x(tn); σ)) = 0
if the schedule σ is not realized, we may conclude that

max
σ

exp
“

−
φ(x(t1), . . . , x(tn); σ)

λ

”

=
X

σ

exp
“

−
φ(x(t1), . . . , x(tn); σ)

λ

”

, (31)

and

Z(x, t) =
X

σ

Z(x, t; σ) . (32)

In the following we will argue that for schedules with ar-
bitrary times ti(σ), expression (32) is also valid, except in



some degenerate cases. If the times ti are not equal, there
can be overlap between the schedules, i.e. a single sequence
of states can realize more than one schedule. For exam-
ple consider the case of two schedules σ = 1 and σ = 2,
each with times ti(σ) ∈ Tσ. If the set of times that are
in both schedules T1∩2 = T1 ∩ T2 is non-empty, and if the
targets at these times are the same in both schedules, then
there is overlap. The overlap is realized by the sequences
of states that visit the targets of σ = 1 at times in T1 and
the targets of σ = 2 at times in T2\T1. In such a case,
(31) is only approximately true. If we assume that the re-
wards satisfy c(1) ≥ c(2), the righthand side of (31) is over-
counted by exp((φ(x(t1), . . . , x(tn); σ = 2)) for sequences of
states x(t1), . . . , x(tn) that realize both schedules. To cor-
rect the partition function (32) we should replace Z(x, t; 2)
by (1−f(x, t))Z(x, t; 2) where f(x, t) is the ratio of the num-
ber of particles that realize both schedules to the number
of particles that realize schedule σ = 2 under the (uncon-
trolled) diffusion process implied by ρ. In the ‘degenerate
case’ where schedules are automatically realized by this dy-
namics, f is a significantly larger than zero. In the typical

case, however, f ∝ V
n−n(2)

ε , where n(2) is the length of
schedule σ = 2 and n the total number of different tar-
gets in both schedules. From c(1) ≥ c(2) we can conclude
n(2) < n: if n(2) = n, the schedule σ = 2 would be equal to
or a superset of schedule σ = 1. With c(2) ≤ c(1) this case
has been excluded earlier. From Vε ≈ 0 follows f ≈ 0. So,
in the generic case, even with overlapping schedules, (32) is
a valid approximation.

The expected cost-to-go J follows from (4). Note that
the expected cost-to-go J(x, t) is smaller than the cost-to-
go J(x, t; σ) for any σ ∈ χ, since

−λ log
X

σ′∈χ

Z(x, t; σ′) < −λ log Z(x, t; σ) . (33)

The control u follows from (7). It can be expressed as a
weighted combination of single schedule controls,

u(x, t) = p(σ|x, t)u(x, t;σ) , (34)

with u(x, t; σ) as in (28), and the probability over σ,

p(σ|x, t) =
Z(x, t;σ)

P

σ′∈χ Z(x, t; σ′)
. (35)

We remarked earlier that each single-schedule control is
actually a single-target control (cf. (24) and (28) ). There-
fore the weighted combination (34) is actually a linear com-
bination of single target controls u(x, t; µ1, t1). The weight
factor is given by the sum of the weight factors of sched-
ules for which µ1 is the first target and t1 the first time.
Denoting this set of schedules as

χ(µ1, t1) =
n

σ : µ1(σ) = µ1, t1(σ) = t1
o

, (36)

then the weight factor is given by the marginal probability
(35),

p(µ1, t1|x, t) =
X

σ∈χ(µ1,t1)

p(σ|x, t) , (37)

and the control can be written as

u(x, t) =
X

µ1,t1

p(µ1, t1|x, t)u(x, t; µ1, t1) . (38)

Assuming that ρ and its derivatives are O(1), and for
simplicity that χ(µ1, t1) contains at most one schedule, we
see from (32) and (27) that contributions of a schedule to

the partition function is of the order of exp(c(σ)/λ)V
n(σ)

ε

where n(σ) is the number of targets to be visited. In other
words, the expected total reward of a schedule is of order

E(σ) ≡ c(σ) − λn(σ) log Vε . (39)

So if several schedules are to be considered by the agent, the
rewards c(σ) should be such that E(σ) is about the same for
all σ. Schedules with significantly larger c(σ) will dominate
in the control of the agent, while schedules with significantly
smaller c(σ) will practically just be ignored. So, in a way
from an economists viewpoint, λ log(V −1

ε ) can be considered
as a reasonable price for visiting one additional target in a
schedule.

In the case where χ(µ1, t1) contain more schedules for
some µ1, t1, we see from (37) that schedules that share their
initial targets become more dominant. This makes sense
since control to such targets is more save: it keeps options
open for the agent to choose between schedules -depening
on the unknown future noise.

5.1 Example: A moving target
As an example, we consider the case where there is a

moving target with given position µ(s) at increasing times
t(s) = s∆t with s = 1, . . . , S. The agent has to hit the
target at one of the times, gets the reward c(s), then the
game is over. This is modelled by considering s as a sched-
ule. Applying the results of previous subsections, we find
the partition function

Z(x, t) =

S
X

s:t(s)>t

Z(x, t; s) , (40)

with

Z(x, t; s) = ρ(µ(s), t(s)|x, t) exp
“ c(s)

λ

”

Vε . (41)

The control is

u(x, t) =
S

X

s:t(s)>t

p(s|x, t)u(x, t; µ(s), t(s)) (42)

with

p(s|x, t) =
exp

“

c(s)
λ

”

ρ(µ(s), t(s)|x, t)

PS
s′:t(s′)>t exp

“

c(s′)
λ

”

ρ(µ(s′), t(s′)|x, t)
. (43)

In figure 1, we show a the result of an 1-d simulation of an
agent trying to visit a target moving according µ(t) = t2.
The constraint is that it should visit the target between t = 0
and t = 1. The dynamics and environment is given by b = 0,
V = 0 ν = 1, and R = 1. So ρ is a Gaussian (6), and u is
given by (25). This simulation result can be compared with
the case where the agent has to visit the target at exactly
t = 0.8, using the control (25), see plots in figure 2. As can
be seen from the figure, this control is much costlier, because
the agent has to try hard to make the visit at the precise
required time. On the other hand, it does not exploit the
opportunities to visit if it is accidentally close to the target.
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Figure 1: Simulation of moving target problem. The
agent starts at t = 0 in x = −1 and should visit the
target between t = 0 and t = 1. The target moves
according to µ(t) = t2. The agent can control its
position, but is subject to noise (ν = 1). The control
is costly, and the agent should try to complete its
task at minimal control cost. Upper plot: agent and
target trajectory. Lower plot, agent control u.

6. MULTI-AGENT SYSTEMS
We now turn to the issue of optimal on-line scheduling

in a system of A agents. In principle, a multi-agent sys-
tem can be considered as a system with a joint state x =
(x1, . . . , xA), where xa is the state of agent a, a joint dy-
namics (1), and a joint cost (2) which is to be minimized by
a joint action u = (u1, . . . , uA), where ua is the control of
agent a. The optimal control by agent a follows from the
appropriate components of the gradient

ua(x1, . . . , xA, t) = ν∂xa log Z(x1, . . . , xA, t) . (44)

We assume that during the entire process, the states of all
the agents are fully observable for each other. Each agent
can independently determine its own component of optimal
control by observing the joint state at that time from which
its control follows from (44). So no additional coordination
is required since each agent has full information about the
system (and its history).

As in [11], we consider agents with independent dynam-
ics ba(x, t) = ba(xa, t) and independent noise νab = νaδab

with νa a noise matrix restricted to the domain of agent a.
We also assume individual contributions to the costs dur-
ing the process: Rab = Raδab with Ra a matrix restricted
to a, and V (x, t) =

P

a V a(xa, t). We finally assume that
ν = λR−1 holds globally, so that we can apply the log-
transform. Under these assumptions, the agents behave
like ‘non-interacting particles’, e.g., they can freely move
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Figure 2: Similar as in figure 1, but now the agent
has to visit the target exactly at time t = 0.8. Note
the difference in scale of u.

through each other without costs for collisions. The joint
solution of the diffusion process factorizes into a product of
solutions of independent (single agent) diffusion processes.

ρ(y, t′|x, t) =
Y

a

ρa(ya, t′|xa, t) . (45)

The agents optimal control and the resulting dynamics
will be coupled by their joint ’mission’. Each schedule σ has
components σa for each agent a, i.e., accoding to schedule
σ, agent a has to visit targets located at µi(σ

a) at given
points in time ti(σ

a).
The trivial case where the schedule is fixed beforehand,

i.e. χ = {σ}. Then each agent a has just to visit the targets
according to his own part of the schedule σa. Control by the
agents is independent of each other. The partition function
factorizes into single agent partition functions

Z(x, t; σ) = exp(
c(σ)

λ
)Z0(x, t;σ)

= exp(
c(σ)

λ
)

Y

a

Z0(x
a, t; σa) , (46)

in which Z0(x, t; σ) is defined as the partition function for
schedule σ with substitution of cost c(σ) = 0, i.e. Z ≡
exp(c(σ)/λ)Z0. In the case where the MAS can choose the
schedule on-line, we have a similar expression as in the single
agent case,

Z(x, t) =
X

σ∈χ

Z(x, t;σ) , (47)

with the difference that the single-schedule partition func-
tions are now products of single-agent single-schedule parti-
tion functions, as expressed in (46).



The expected cost-to-go J follows again from (4). The
control of agent a is obtained using (44). In analogy to (34),
the control can be expressed as a weighted combination of
the single schedule controls of each agent,

ua(x, t) =
X

σa

p(σa|x, t)ua(xa, t; σa) , (48)

with ua(xa, t; σa) the control of agent a with schedule σa as
in (28). The weight factors are the marginal probabilties,

p(σa|x, t) =
X

{σb6=a}

p(σ|x, t)

=
X

{σb6=a}

exp( c(σ)
λ

)
Q

b Z0(x
b, t; σb)

P

σ
′ exp( c(σ′)

λ
)

Q

c Z0(xc, t; σ′c)
. (49)

As in the single-agent case, the control of agent a can be
expressed as a combination of single agent single-target con-
trols

ua(x, t) =
X

µa
1

,τa
1

p(µa
1 , τa

1 |x, t)ua(xa, t; µa
1 , τa

1 ) , (50)

with the marginal

p(µa
1 , τa

1 |x, t) =
X

σa∈χ(µa
1

,ta
1
)

p(σa|x, t) , (51)

defined as in (37). The expression of the control of an agent
in the multi-agent case is the same as in the single agent case,
with the difference that (1) the weight-factors p(σa|x, t) are
actually marginal distributions of a joint MAS distribution
p(σ|x, t), and (2) that they not only depend on the state of
a single agent, but rather on the joint MAS state.

6.1 Numerical Examples
In this paragraph we illustrate the theory of optimal con-

trol in stochastic MASs by a some simulations. The en-
vironment is with b = 0, V = 0, and ν = 0.1, so ρ is
Gaussian (6). Furthermore we took R = 1. Simulations
are in 1-d, for plotting purposes. We simulated a group of
agents starting at t = 0, x = 0 that have to visit a number
of targets at times ts and located at µs where (ts, µs) =
{(1, 0.1), (2,−0.1), (3, 0.1), (4,−0.1)}. After their mission,
the agents have to return to x = 0 at time t = 5.

In figure 3, we show a simulation were each target has to
be visited by exactly one agent. So with 4 targets and 2
agents, there are 24 = 16 schedules to be considered.

In figure 4, we show the case were agents are allowed
to ignore targets, if the control to reach the target is to
expensive. Each target is to be visited by agent 1, or agent
2, or none of the agents. So there are 34 = 81 schedules to
be considered.

7. DISCUSSION
We studied optimal control in collaborative multi-agent

systems in continuous space-time. A straightforward ap-
proach to discretize the system in space and time would
make the n agent MAS intractable due to the exponential
blow-up of the state-space. In this paper, we took the ap-
proach developed in [6, 7]. We generalized the result in [11],
and showed that under given model assumptions, optimal
distributed on-line scheduling and control can be solved an-
alytically. The result in [11] is a special case were only at the
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Figure 3: Two agents and 4 targets at times t =
1, 2, 3, 4. The agents start at x = 0 at t = 0. Then
they have to coordinate their moves such that each
target is visited by one of the agents. Then they
have to return to x = 0 at t = 5. The agents can
control their dynamics, but are subject to noise.

end-time a joint decision is taken. The additional compu-
tational cost in on-line scheduling, compared to a schedule
chosen before hand is the computation of the distribution
p(σ). If at each of the n time points, each of the A agents
can choose one of m targets, the state space of schedules

in a multi-agent system grows in principle as nmA

. In gen-
eral this approach is therefore infeasible. In the examples in
this paper we reduced state space by allowing only a limited
number M of possible schedules of the MAS, reducing the
growth to nM . Since the contributions of each schedule to
the expected cost can be computed beforehand, one could
reduce the space even more by pruning the schedules with
the smallest contributions in Z. This will lead to a trade-
off in expected cost/reward and computational complexity
of for the on-line control in the system. In [11], sparse re-
ward functions c(σ) represented as a graphical models were
considered. This allows the exploitation of efficient proba-
bilistic graphical model inference methods. The results in
this paper suggest the use of similar methods, extended to
the temporal domain. This is currently under study.

There are many possible model extensions that need to
be explored in future research. Obvious extensions are to
consider systems with more realistic environments, such as
allowing for obstacles are already of interest to study in
the single agent situation. Others apply typically to the
multi-agent situation, such as penalties for collisions be-
tween agents. Typically, these types of model extensions will
prohibit an analytical solution of the control, and approxi-
mate numerical methods will be required. Some proposals
can be found in [6, 7].

Finally we would like to stress, that although the model
class is quite specific and maybe not generally applicable,
we think that the study of this class is interesting because it
is one of the few “exactly solvable” multi-agent systems, al-
lowing the study of non-trivial collective optimal behaviour
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Figure 4: Similar as in figure (3). However, now the
agents are allowed to ignore a target if it is too far
away.

in distributed systems, both analytically as well as in sim-
ulations, and possibly providing insights that might help to
develop efficient approximating methods for more general
systems.
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APPENDIX

A. STOCHASTIC OPTIMAL CONTROL
In this appendix we give a brief derivation of (4), (5) and

(7), starting from (3). This appendix follows [11]. Details
can be found in [6, 7].

The optimal cost-to-go J in a state x at time t is found
by minimizing C(x, t, u(.)) over all control policies u(.),

J(x, t) = min
u(t→tn)

C(x, t, u(t → tn)).

It satisfies the stochastic Hamilton-Jacobi-Bellman (HJB)
equation

−∂tJ = min
u

„

1

2
u>Ru + V +

`

b + u
´>

∂xJ +
1

2
Tr

`

ν∂2
xJ

´

«

,

with boundary condition J(x, tn) = φ(x). The minimization
with respect to u yields

u = −R−1∂xJ, (52)

which defines the optimal control. Substituting this control
turns the HJB into a a non-linear partial differential equa-
tion for J . We can remove the non-linearity by using the
log transformation: define Z(x, t) through

J(x, t) = −λ log Z(x, t) (53)

with λ a scalar such that ν = λR−1 (this implies the as-
sumption that the matrices ν and R−1 are proportional to
each other), and define

Z(x, t) =

Z

dyρ(y, tn|x, t) exp(−φ(y)/λ), (54)

then the the density ρ(y, ϑ|x, t) (t < ϑ ≤ tn) satisfies a
forward Fokker-Planck equation

∂ϑρ(y, ϑ|x, t) = −
V

λ
ρ − ∂>

y bρ +
1

2
Tr

`

ν∂2
yρ

´

, (55)

which is a linear in ρ. If ρ is solved, then Z follows from
(54), with end condition Z(x, tn) = exp(−φ(x)/λ), (since
ρ(y, tn|x, tn) = δ(y − x)). From Z the solution of J follows
by applying the log-transform.


