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Abstract. Using a biologically motivated model of synaptic depression and within a mean-field
approach, we examined the role of synaptic depression in the capacity of a binary neural network
with N units to store and retrieveP patterns. In the limit ofα ≡P/N → 0, our results demonstrate the
appearance of a novel phase characterized by quick transitions from one memory state to another.
This phenomenon might reflect the flexibility of real neural systems to receive and respond to novel
and changing external stimuli. In addition, we have computed the maximum storage capacity of
such a network in the limit ofα �= 0 andT = 0. Supported by mean-field results and Monte Carlo
simulations, we concluded that the critical storage capacity for effective retrieval of stable memory
patterns decreases with the degree of the depression. Nevertheless, the storage of memories as
oscillatory states will require a different definition of storage capacity. How such a new storage
capacity depends on the synaptic depression is still an open question.

INTRODUCTION

One of the interesting questions that arise in neural network modelling is how biological
processes in real neurons at the cellular and subcellular level influence the network
behavior and its ability to process information.

In most neural network studies sofar, the synaptic connection between neurons has
been modelled as a constant strength [1, 2], possibly subject to learning on a slow time
scale. However, recently it has been reported that synaptic strength is a dynamic quantity
that strongly depends on the presynaptic neural activity [3, 4]. Synaptic strength can
decrease (depression) or increase (facilitation), depending on the type of synapse [3].
After learning, most synapses are depressing with a typical time constant of 10−20ms.
The synaptic strength recovers on the order of seconds. The molecular mechanism
underlying this dynamics is the depletion of neurotransmitter vesicles due to presynaptic
neural firing and their restoration on a larger time scale [4]. These synapses are found
throughout the cortex as well as in the hippocampus [5].

There have been various studies of the effect of dynamic synapses on the informa-
tion transfer in feed-forward neural network behavior, such as filtering of redundant
noise [6], extraction of temporal patterns for speech recognition [7] and robust coinci-
dence detection [8].

Only few studies, for instance [9, 10], have focused on the role of dynamical synapses
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in recurrent neural networks, and in particular on associative memory [1]. In such net-
works, long-term storage of the memory patterns is produced by adjusting the strength
of the synapses according to the Hebb rule. With such static synapses the network dy-
namics has fixed points (attractors) corresponding to the stored memory patterns [11].
The question one may ask is how the retrieval properties and the fixed points of the
Hopfield network are affected by dynamical synapses.

In this paper, we show that the effect of depressing synapses is two-fold: 1) the
memory capacity, in the sense of the stability of fixed points of the attractor dynamics,
is strongly reduced and 2) the dynamics displays a new phase characterized by rapid
switching among stored patterns. These results are observed not only in networks of
binary neurons, but also of more biologically plausible integrate-and-fire neurons [10].

THE MODEL

The model consists of a network ofN binary neuronssi = 1,0. Each neuron follows a
probabilistic dynamics which is given by:

Prob{si(t +1) = 1} =
1
2
[1+ tanh{2βhi(t)}]. (1)

Here,hi = ∑ j ωi jx js j −θi is the local field associated to neuroni, θi is the threshold for
neuroni to fire andβ = 1

T represent the level of noise due to the stochastic synaptic
activity. The first term ofhi is the total synaptic current arriving at neuroni with
ωi j representing the static synaptic connection strength orweights between neurons
j and i and x j the depression variable associated with the pre-synaptic neuron [10].
The static weights are defined according to the standard covariance rule, that is:ωi j =

1
N f (1− f ) ∑P

ν=1(ξ ν
i − f )(ξ ν

j − f ), whereξ ν
i = 0,1 are independent random bits with mean

activity 〈ξ ν
i 〉 ≡ f = 1/2. Relatively good storage storage capacity is obtained when

θi = 0, when usingsi =±1 coding [11]. In{1,0} code this corresponds toθi = 1
2 ∑ j ωi j.

The depression variablex j models the dynamic properties of the synapse [10] and
follows the dynamics

xi(t +1) = xi(t)+
1− xi(t)

τrec
−Uxi(t)si(t) ∀ i = 1, . . . ,N. (2)

whereτrec is the recovery time constant andU is the amount of resources in the active
state released in each presynaptic event. Forτrec = 0 we recover the standard static
synapse (xi = 1). The synaptic model (2) is a simplified version of the phenomenological
model by [4] (in the limit ofτin = 0) in which each synapse is represented by a three-
variable state whose dynamics is given by:

dxi/dt = zi/τrec −Uxiδ (t − tsp),
dyi/dt = −yi/τin +Uxiδ (t − tsp), (3)
dzi/dt = yi/τin − zi/τrec
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FIGURE 1. Left: Periodic regimes appearing in a neural network ofN = 120 units with dynamic
synapses, one stored patternν (α ≈ 0) and for two different values ofτrec (Top panels). Evolution ofmν

andxν
+ during the periodic regimes showed in the top panels (Bottom panels). Right: Phase plot (β ,τrec)

of attractor neural network with depressing synapses (forα ≈ 0) displaying the retrieval (ferromagnetic),
no retrieval (paramagnetic) and oscillatory phases.

with xi + yi + zi = 1. Here, δ (x) is the delta function andtsp is the time at which a
presynaptic spike occurs. The variablesxi, yi andzi represent the fraction of synaptic
resources in the recovered, active and inactive state, respectively. Then, the total synaptic
current arriving to neuroni is proportional to the fraction of active resources, that is:
Ii(t) = A∑ j y j.

RESULTS

Switching among stored patterns

Computer simulation of the model described by Eqs. (1-2) revealed that its behavior
strongly depends on the parameters, such as the level of noiseβ , the number of patterns
P, the amount of depressionU and the recovery time constantτrec. In the static case,
γ ≡ τrecU = 0, memories are attractors of the dynamics and are successfully retrieved
when the noise is not too high (β sufficiently large) and the fraction of patternsα = P/N
is not too big (retrieval phase). Memories become unstable due to noise (paramagnetic
phase) or due destructive interference between patterns, whenα becomes too large
(spin-glass phase).

In the dynamic case, there exists an additional phase where patterns are stable for
a relatively long times, but then rapidly switch to another pattern. This behavior is
illustrated in Fig. 1.

Within a mean-field approach and for each stored patternν , we define the average
of x j for the active and inactive units in the pattern, that isxν

+ ≡ 2
N ∑ j∈Act(ν) x j, and

xν− ≡ 2
N ∑ j �∈Act(ν) x j, respectively. Similarly, we define the mean activity for active and

inactive units in patternν , mν
+ ≡ 2

N ∑ j∈Act(ν) s j andmν− ≡ 2
N ∑ j �∈Act(ν) s j, respectively.
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Then, in the thermodynamic limit (N → ∞), the corresponding local fields are given by:

hi =
1
2

P

∑
ν=1

εν
i

[
xν
+mν

+− xν
−mν

−
]
, (4)

whereεν
i ≡ 2ξ ν

i − 1, and mν ≡ 2
N ∑i εν

i si = mν
+ − mν− is the overlap of the network

activity with a stored patternν .
When the number of patternsP is small and the network is large (α ≈ 0), we can

assume that the network has a large overlap with patternν = 1 and neglect the sum over
P > 1 in (4) . Equations (1) and (2) then reduce to the map:

m1
±(t +1) =

1
2

{
1± tanh[β (x1

+(t)m1
+(t)− x1

−(t)−m1
−(t))]

}
, (5)

x1
±(t +1) = x1

±(t)+
[

1− x1±(t)
τrec

−Ux1
±m1

±

]
. (6)

Linear stability analysis of (5-6) reveals that there exits two stable fixed-point regimes
corresponding toferromagnetic andparamagnetic type of behavior. For smallβ there
exits one stable paramagnetic fixed point:m1± = 1

2. For largeβ there exits two stable
ferromagnetic fixed point solutionsm1± ≈ 1,m1∓ ≈ 0. In both cases,x1± = 1

1+γm1±
. For

intermediate values ofβ and for large enoughτrec, neither of these solutions is stable
and the network displays oscillatory behavior (see Fig. 1 for a typical behavior and the
phase portrait).

Preliminary simulations confirm that the oscillatory phase remains forα �= 0 (see F-
ig. 2 left). In this case, the oscillatory behavior is more complex due to the interference
between several patterns and the presence of spin-glass states.

Storage capacity

We analyzed the storage capacity of the network when we store an infinity number of
patterns (α �= 0 and finite) and for all possible depression strengths and recovery time
constants. Following the standard approach of [2] (AGS) and assuming the network has
a macroscopic overlap with one pattern (condensed pattern, ν = 1) in the steady state,
and the remainingP−1 overlaps areO( 1√

N
), the generalization of (5-6) forα finite is:

u =
∫

dz√
2π

e−z2/2 tanh

[
β

(
4u

γ2(1−u2)+4γ +4
+
√

αrz

)]
,

q =
∫

dz√
2π

e−z2/2 tanh2
[

β
(

4u
γ2(1−u2)+4γ +4

+
√

αrz

)]
,

r =
q

[1−β (1−q)]2
,

(7)
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whereu ≡ 2m1
+ − 1, q is thespin-glass order parameter [2] andr ≡ 1

α ∑µ �=1(x
µ
+mµ

+ −
xµ
−mµ

−)2.1 The system (7) reduces to the AGS equations in the limit ofγ → 0, that is, in
the case of non-depressed orstatic synapses.

In general, the system (7) must be solved numerically. In the limitT → 0 it easy to
compute the critical value ofP/N, namelyαc, at which nontrivial ferromagnetic solu-
tions (Mattis states) appear.αc gives the maximum number of patterns that the system
is able to retrieve. Forβ → ∞, we use the standard approximation

∫ dz√
2π

e−z2/2(1−
tanh2β [az + b]) ≈

√
2
π

1
aβ e−b2/2a2

and
∫ dz√

2π
e−z2/2 tanhβ [az + b]) ≈ erf

(
b√
2a

)
. Then,

introducing a new variabley = f (u,γ)/
√

2αr with f (u,γ) ≡ 4u
γ2(1−u2)+4γ+4, the system

(7) reduces to

y

(√
2α +

2√
π

e−y2
)

= f [erf(y),γ]. (8)

One can check thatu = 0 (y = 0) is a solution of (8). The largestα at which a non-
zero solution (stable ferromagnetic state) appears defines the critical storage capacityαc
at T = 0 as a function of the degree of synaptic depressionγ. In Fig. 2 right we plot
the lineαc(γ) (solid line) which predicts a decrease ofαc as the degree of depression
is increased. Forγ → 0 (non-depressed synapses), we recover the well know critical
storage capacity for static synapses, that isαc ≈ 0.138. Forγ → ∞ our mean-field theory
predictsαc → 0.

Numerical simulation of the network confirms our main mean-field results [12]. In
general, the value ofαc(γ) obtained in numerical simulations is slightly higher than
the mean-field prediction (see data points in Fig. 2 right). This discrepancy must be
attributed the relatively small network sizes used in our numerical studies, possible non-
linear finite size scaling effects at largerN, and the criterium we use to defineαc(γ)
for the destabilization of memory pattern. In addition, our mean field approach uses the
replica symmetric ansatz, which is well-known to underestimate the exact value ofαc
for static synapses [2].

DISCUSSION

We conclude, that attractor neural networks with dynamical (depressing) synapses dis-
play in addition to a ferromagnetic phase an oscillatory phase where the network ac-
tivity switches between stored memories. None of these memories are fixed points, but
rather meta-stable states. This behavior is also observed at high memory loading (α �= 0).
Therefore, the disappearance of memories as fixed points does not imply the disappear-
ance of memory from these networks.

In addition, we shown that the traditional definition of storage capacity of stable
memories (ferromagnetic states) decreases with the degree of depression. However, the
storage of memories as meta-stable states will require a different definition of storage

1 For a detailed derivation of (7) see [12].
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FIGURE 2. Left: Raster plot of a network with 100 neurons andP = 10 and non-orthogonal patterns
( f = 0.1). In theith pattern neuron 10(i−1)+1, . . . ,10i are active. Right: Critical storage capacityαc vs
γ = τrecu in a neural network with depressing synapses atT = 0. Solid line is the mean-field result from
Eqs. 7. Numerical data points correspond to the finite-size scaling analysis(N = 400,800,1600) of the
Monte Carlo simulations [12].

capacity. How such a new storage capacity depends on the dynamics of the synapses is
an open question.

Simulations of a network consisting of integrate-and-fire neurons with dynamic
synapses show the same switching capability among the memory states [10]. In or-
der to determine the relevance of this behavior for neurobiology, further analyzes of
the switching phenomenon will require more realistic network models as well as more
realistic learning rules.
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