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Using as an example a large lattice of locally interacting Hindmarsh-Rose chaotic neurons, we disclose the
origin of ordered structures in a discrete nonequilibrium medium with fast and slow chaotic oscillations. The
origin of the ordering mechanism is related to the appearance of a periodic average dynamics in the group of
chaotic neurons whose individual slow activity is significantly synchronized by the group mean field. Intro-
ducing the concept of a ““coarse grain’’ as a cluster of neuron elements with periodic averaged behavior allows
consideration of the dynamics of a medium composed of these clusters. A study of this medium reveals
spatially ordered patterns in the periodic and slow dynamics of the coarse grains that are controlled by the
average intensity of the fast chaotic pulsation. [S1063-651X(99)50708-3]

PACS number(s): 05.45.—a, 47.54.+r, 95.10.Fh, 84.35.+i

The emergence of spatiotemporal ordered or coherent
structures in nonequilibrium media, or in large assemblies of
elements with nonregular behavior, is one of the oldest and
most intriguing problems in physics, chemistry, and biology.
Perhaps the most lucid formulation of the problem is that
outlined by fluid dynamicists to explain the observation of
large-scale structures in turbulent flows [1]. Over the last
decade, neurobiologists have become involved in the prob-
lem, particularly after the discovery of spiral patterns in the
cortex of animals and humans [2,3].

In this paper we are concerned with regular structures
generated by nonregular elements in a diffusive medium
characterized by two distinct time (not space) scales. The
origin of the ordering phenomena in different nonequilibrium
media (or systems) may have some universal features, de-
spite the inherent diversity of specific mechanisms respon-
sible for the formation of the patterns. As many examples
indicate, the key feature of this universality is the existence
of two or more time or/and space scales in the activity of the
media [4-7]. It is therefore reasonable to investigate this
ordering phenomenon using a simple, tested model of a two-
time-scale nonequilibrium medium. We report here the the-
oretical and numerical study of a specific model that dis-
closes a possible mechanism responsible for generating such
coherent structures.

Let us consider a lattice of N different chaotic generators
electrically coupled to their nearest neighbors. Since we wish
to investigate the cooperative behavior of an assembly of
chaotic generators with fast and slow oscillations, a conve-
nient element of the ‘“medium’’ is the Hindmarsh-Rose (HR)
[8—10] model neuron. A two-dimensional (2D) lattice com-
posed of such HR elements may be described by the equa-
tions
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where the index j runs over the four nearest neighbors of unit
i, the constants a, b, c, d, s, €, and x are model param-
eters (u<<1 being responsible for the existence of the slow
dynamics), and g is the homogeneous coupling strength
among neighbor units. Computer simulations of two-
dimensional square lattices built up with heterogeneous ele-
ments (each unit has a random value for the parameter ;)
such as those described by Egs. (1)—(3) indicate that coop-
erative behavior among the elements is able to produce
large-scale coherent structures with slow periodic oscilla-
tions, despite the presence of different and chaotic elements
[7]. We define Sas the number of neurons that build up the
characteristic spatial shape of the structure, and the structure
is considered to be of large scale when S>1.

In order to understand the origin of these large-scale co-
herent structures, we investigated the cooperative behavior
of a group (cluster) of such chaotic elements. We found a
striking phenomenon: the regularization of the average activ-
ity when the size of this cluster is sufficiently large. In con-
trast, small groups of neurons clearly exhibit three different
kinds of chaotic dynamics depending on the value of the
diffusive coupling g: (i) developed chaos whose dimension
increases with the number of chaotic elements for a small
value of the coupling, (ii) chaotic synchronization of the
slow oscillation (bursts) for moderate coupling, and (iii)
complete chaotic synchronization (both spikes and bursts)
for strong coupling [11,12].

The cluster with average periodic (in time) behavior will
be called a coarse grain. We suppose that the regular spa-
tiotemporal patterns observed in our computer simulations
are strongly related to the emergence of many interacting
coarse grains inside the lattice for a moderate value of the
coupling. The cooperative behavior of the diffusively
coupled coarse grains (periodic generators in our case) pro-
duce many different regular spatiotemporal patterns similar
to those obtained with the discrete analog of the complex
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FIG. 1. Left: evolution of R(t;g,M) as defined in the text for three different coupling strengths (g) in a square network of 10X 10 HR
elements computed for parameter valuesa=3, b=1, c=5, d=1.6, ¢ =3.281+0.05, u=0.0021, and s=4 (units are dimensionless in this
model). Right: average activity X in this network for the same values of g.

Ginzburg-Landau model or the Fitzhugh-Nagumo model. To
analyze this behavior, we need an equation that describes the
average dynamics of a single coarse grain.

We can describe the coarse-grain dynamics using the vari-
ables

1 M
X(t)= i Zl Xi()=(Xi)ce, YM)=(Yi)cc:

Z(t)=(z)ce»

where M is the number of elements in the cluster. An ap-
proximate equation for the dynamics of X)Y,Z can be ob-
tained by substituting

Xi=X(1)+&(t;g,M), yi()=Y(t)+ 7i(t;g,M),
zi(t)=Z(t) + §i(t;9,M),

in Egs. (1)—(3), which yields (ignoring higher order terms

than &2):
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where e=(e;)cg . We have taken into account from the defi-
nition of X, Y, and Z that (&(t))ce={(7i(t))ce=(¢i(1))ce
=0 and, consequently, the only function left to be deter-
mined is r(t;g,M)=(&)cq -

In order to describe the slow dynamics, we need to make
a reasonable assumption about the nonautonomous term on
the right-hand side of Eq. (4). Since r(t;g,M) varies much
more rapidly with time than the slow coarse-grain oscilla-
tion, we suppose that the dynamics of a coarse grain depend

on the time-averaged value of r(t;g,M) defined as
R(t;g,M)=(Lt)fir(t")dt’" with t,<t<T, where t, is the
characteristic time scale of the fast pulsation r (t;g,M) (spik-
ing behavior) and T is the characteristic time scale of X. In
the system (4)—(6) we now replace r(t;g,M) with the slow
function of time R(t;g,M) which aso depends on the
strength of the diffusive coupling between elements and the
size of the coarse grain. If our hypothesis is correct, R
~const# 0 for small values of g and R~0 for large values
of the coupling; for moderate values of the coupling, predic-
tion of the behavior of R is not intuitively clear. The com-
puter simulations shown in Fig. 1, however, indicate that for
particular moderate values of g, the behavior of R becomes
periodic. This g-dependent behavior of R infers that the av-
eraged dynamics X also will change as the coupling param-
eter is varied.

We can investigate the appearance of the periodic average
behavior using Egs. (4)—(6) with r(t;g,M) replaced by
R(t;g,M), the latter being a constant or a periodic function
depending on the magnitude of the coupling being consid-
ered. Typical phase portraits and the corresponding time se-
ries of the full dynamical system for R are presented in Fig.
2. For sufficiently small g, R is nearly constant, taking on
values in the range 0.4-0.5 and only a single stable fixed
point appears, one corresponding to steady-state behavior of
the cluster. For R<R;; (§>0ci), this fixed point be-
comes unstable and the limit cycle in the 3D phase space of
the average coarse-grain system undergoes a supercritical
and sharp Andronof-Hopf bifurcation to a stable fixed point.
Strictly speaking, at the moment of this bifurcation, R be-
comes a periodic function of time (see Fig. 1). Nevertheless,
close to the bifurcation point the influence of this periodicity
on the existence of the limit cycle is not important. The
direct calculations given in Fig. 2 confirm this supposition.

The dynamical mechanism of the ordering averaged be-
havior of the coarse grain relies on the synchronization and
regularization of the activity of the M units inside the grain.
The degree of synchronization of a single neuron with the
average activity of the whole grain depends on the strength
of the coupling, as one can see on the left in Fig. 3. In the
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FIG. 2. Phase space portraits (top row) and corresponding X time series (bottom row) of a single coarse-grain element for the parameters
given in Fig. 1. R=0.47, a stable fixed point; R=f(t) ={0.25+ 3 ,_,[ (— 1)"~ ¥2n7]sin(2nwt) {0.5+ = ,_ [ 2/(2n— 1) 7r]sin[(2n— 1) wt]}
[w~0.013, this periodic function fits the shape of R(t;g,M) shown in Fig. 1 for g=0.1], alimit cycle; and R=0.0007, a strange attractor.

case of regular behavior (g~0.1), the single neuron activity
is highly synchronized with the periodic mean field. For g
~0.05, the synchronization between mean field and indi-
vidual behavior is absent and one observes spatiotemporal
disorder. Thus, for a moderate value of g (g=~0.1 using the
model parameters described in the figures) the coarse grain
behaves as a single element with periodic slow dynamics.

Now we can explain the existence of large (S>1) regular
spatiotemporal patterns in discrete diffusive media. First, the
existence of such structures isimpossible in weakly diffusive
media because the local oscillations of neighboring elements
are not correlated for small couplings g and the mean field of
the coarse grains becomes homogeneous and stable. The di-
rect computation of the Kolmogorov-Sinai entropy presented
at the right in Fig. 3 confirms that the level of spatialy
homogeneous chaos increases as g—gy<<1. Note that this
entropy is large for g=0.1 since the Lyapunov exponents
were calculated from the vector field [13], i.e., without fil-
tering the fast spikes, which are highly chaotic in this re-
gime.

For moderate values of the coupling, the coarse-grain as-
sembly should exhibit regular spatiotemporal patterns. As
confirmation of this conjecture, we have checked the behav-
ior of a medium consisting of coarse-grain units with slow
periodic behavior. The description of this medium is analo-
gous to that given by the network of HR units wherein
(% ,Vi,z) are replaced by (X;,Y;,Z;). We are looking for

g=0.1

patterns in the coarse grain network that have the same space
scale (relative to the size of the lattice) as the pattern in the
origina HR lattice. Thus, the pattern in the coarse-grain lat-
tice should have identical structure but with a smaller abso-
Iute size. Since both patterns (on the original HR lattice and
the coarse-grain lattice) have the same time scale, we can say
that the speed of front propagation in the HR lattice must be
larger than for the coarse-grain lattice. The propagation
speed of the front increases together with the value of the
diffusion. One concludes, based on this scaling argument,
that a coarse-grain pattern with the same relative size as the
origina may be found only in the case where the coarse-
grain lattice coupling G is smaller than the diffusive coupling
g inthe origina HR network (The exact relationship between
g and G is beyond the scope of this Rapid Communication
and will be reported elsewhere). Verification of this conclu-
sion is given by the sequence of patterns obtained for the
square network of coarse-grain units shown in Fig. 4. These
patterns (obtained for G=0.5) given in the bottom row of
Fig. 4 have the same topology and are clearly reminiscent of
those produced by the original heterogeneous lattice of cha
otic HR elements (for g=1.5) displayed in the top row of
Fig. 4. Periodic boundary conditions were applied to both
HR and coarse-grain networks in al the smulations de-
scribed in this paper. The topology of the patterns was not
affected when we used fixed boundary conditions. We have
also observed the same behavior in hexagonal lattices (both
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FIG. 3. Left: activity of a single HR unit x; vs the average activity X (defined in the text) for two values of the coupling g. Right:
Kolmogorov-Sinai entropy (sum of the positive Lyapunov exponents obtained from the vector field) as a function of the coupling strength

g in anetwork of 7X7 HR elements.
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FIG. 4. Top row: evolution of a periodic spatiotemporal pattern observed in a network of 100X 100 HR elements; parameter values are
those specified in Fig. 1, with g=1.5. Bottom row: Periodic spatiotemporal patterns observed in a network of 30 30 coarse-grain el ements
computed for R=0.23 and G=0.5 (the rest of the parameters have the same values used in the HR lattice). The value of R is close to the

bifurcation point and the individual coarse-grain dynamics is periodic.

coarse grains and HR networks). In this case, the strength of
the coupling has to be reduced to take into account the larger
number (six) of nearest neighbors.

We conclude that the formation of large-scale coherent
structures in nonequilibrium media consisting of discrete HR
chaotic elements with fast and slow oscillations exhibits two
key features. The first is the regularization phenomenainside
clusters of chaotic elements, i.e., the coarse grains. This
regularization of the behavior is the result of the action of the
averaged activity of fast pulsations in the slow coarse-grain
dynamics. The second feature is the instability of the homo-

geneous oscillation modes in a media considered to be a
coarse-grain lattice. Also, it isimportant to remind the reader
that the coarse grains are a temporal assembly of neurons
whose relaxation time is smaller than the relaxation time of
the coherent structures.
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