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1. Introduction

Guarantee of optimal performance under system nonlinearities,
actuator limitations and stochastic uncertainties is an important
subject in practical control systems, and is a challenging problem in
control theory. Input saturation due to actuator limitations possibly
causes performance degradation or instability in control systems
[1]. Recently, there have been several compensation methods pro-
posed for a class of nonlinear systems. In Ref. [2] a nonsingular
terminal sliding mode controller for a nonlinear second-order sys-
tem is proposed. The stability analysis is performed for a nonlinear
fractional-order systems in Ref. [3]. A class of nonlinear time-
delay systems is considered in Ref. [4], where a local state feed-
back controller and stability analysis with a Lyapunov-Krasovskii
functional are provided. Further, not only stabilization of an equi-
librium point but also disturbance attenuation is considered in Refs
[5,6]. The authors in Ref. [5] investigate a constrained adaptive
control for a class of uncertain multi-input multi-output nonlinear
systems using the backstepping technique. Also, the gain schedul-
ing scheme is utilized for an exponentially stabilizing controller
for switched systems with parametric uncertainties in Ref. [6].
Meanwhile, the optimal control has been commonly adopted to
achieve optimal performance of control systems. The authors in
Ref. [7] investigate a nonlinear optimal control problem with input
saturation. They newly derive a Hamilton-Jacobi-Bellman (HJB)
equation, which takes the input saturation into account, and pro-
vide its solution method based on the stable manifold theory. This
result enables one to obtain the optimal control for a nonlinear
system, which rigorously satisfies the input constraint. Besides,
model predictive control (MPC) [8,9] has been widely accepted in
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various fields as an effective control method handling optimization
with multiple constraints. Robust MPC is further studied against
disturbances [10].

Whereas, aforementioned methods are all deterministically
formulated. Stochastic uncertainties always exist to a greater or
lesser degree in practical systems, and they cause unexpected
quality fluctuations and performance degradation. Regarding this,
we consider a nonlinear stochastic system, whose dynamics is
described by the stochastic differential equation [11–14], and
adopt stochastic control theory [15–17] so as to take stochastic
influences into account in analysis and controller design. So far,
we have proposed several stochastic control methods: stochastic
passivity-based control [18], stochastic bounded stability analysis
and synthesis [19], performance analysis of visual motion observer
[20] and nonlinear stochastic optimal control [21,22]. Particularly
in Refs. [21,22], an iterative solution method for a finite-time
nonlinear stochastic optimal control problem is provided based
on path integral analysis [23,24]. We call this method ISOC-PI
shortly, which stands for iterative stochastic optimal control based
on path integrals. The purpose of this paper is to formulate a
nonlinear stochastic optimal control problem with input saturation
as a hard constraint on the control input based on the argument in
[7], and moreover to provide a concrete solution to this problem
by extending ISOC-PI [22].

In this paper, first, we newly derive a stochastic Hamilton-
Jacobi-Bellman (SHJB) equation associated with the nonlinear
stochastic optimal control problem with input saturation as a
hard constraint. While the deterministic HJB equation provided
in Ref. [7] is a nonlinear partial differential equation (PDE) of
first order, the present SHJB equation is a second-order nonlinear
PDE. Since the solution method in Ref. [7] strongly depends
on the geometric structure of the deterministic HJB equation, it
is not applicable to the SHJB equation involving second-order
partial derivatives. Therefore, second, we present a method, which
provides not only the solution to the SHJB equation but also
the corresponding optimal control. In order to derive the optimal
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control from the SHJB equation, the partial derivatives of the
solution are necessary in general [25,26]. In our framework, an
iterative procedure is given as a class of Cauchy problems for
linear PDEs, to which the Feynman-Kac formula [14,26] can be
applied. Thus, we provide explicitly the stochastic representation
of the solution to each iteration procedure by using the Feynman-
Kac formula. Moreover, by applying the path integral analysis
[22–24] to the resultant solution, the stochastic representations
of the partial derivatives of the solution are also obtained. This
enables us to explicitly provide the stochastic representation of the
corresponding suboptimal control at each iteration without using
any numerical differentiation of the solution, which is undesirable
particularly in dealing with stochastic systems. From a theoretical
point of view, since the resultant stochastic representations are
rigorous in the derivation, it is an advantage that any approximation
is not required. On the other hand, since those representations
form the expectations, they are in general approximately computed
by statistical sampling methods. We can select an appropriate
sampling method to consider the trade-off between the required
accuracy and the computational cost.

In comparison with other optimal control approaches dealing
with stochastic uncertainties, a local quadratic approximation-
based trajectory optimization [27] has been extended to the
stochastic case [28–31]. However, none of them deal with
optimal control with input constraints. Although only in Ref.
[28], input constraints are partially taken into consideration, the
method reduces the gain parameter in an ad hoc manner, when
the input exceeds the limit. Therefore, the optimality in control
does not hold any more. Besides, stochastic MPC has also been
extensively studied recently, e.g., [32–35]. Since stochastic MPC
methods repeatedly solve an open-loop optimal control problem,
they are capable of dealing with various constraints such as
state and chance constraints as well as input constraints. On
the contrary, they strongly rely on numerical computation, and
thus they do not obtain an explicit representation of the optimal
control. Moreover, none of them provide the optimal feedback
control strictly considering the input saturation as a solution to the
corresponding SHJB equation. Finally, let us summarize the main
contributions and features of this paper.

• This paper considers a finite-time nonlinear stochastic opti-
mal control problem with input saturation as a hard con-
straint on the control input. We derive the SHJB equation
associated with this problem, and moreover, provide a con-
crete iterative solution method. This is the first result that
provides an optimal feedback control rigorously satisfying
the saturation constraint as a solution to the SHJB equation.

• Based on the path integral analysis, stochastic representa-
tions for both the solution and the corresponding suboptimal
control at each iteration are obtained without using numeri-
cal differentiation; and

• Since each iteration is executed using sampling-based com-
putation, it is easy to parallelize, and to consider the trade-
off between the required accuracy and the computational
cost.

2. Nonlinear Stochastic Optimal Control with Input
Saturation Constraints

In this section, first, we formulate a nonlinear stochastic optimal
control problem with input saturation. Second, we derive the

SHJB equation considering input saturation by extending the
deterministic optimal control result in Ref. [7] Finally, we provide
a concrete iterative solution to the resultant SHJB equation by
modifying our ISOC-PI method in Ref. [22].

This paper considers a stochastic optimal control problem on the
time interval t ∈ [0, T ] with any constant T > 0 with the following
Itô stochastic system with input saturation:(

dxu

dxc

)
=

(
f u(x , t)
f c(x , t)

)
dt +

(
0n−nc×m

gc(x , t)

)
sat(u(t))dt

+
(

0n−nc×r

hc(x , t)

)
dw

=:f (x , t)dt + g(x , t)sat(u(t))dt + h(x , t)dw (1)

with some functions f : R
n × [0, T ] → R

n , g : R
n × [0,

T ] → R
n × m and h : R

n × [0, T ] → R
n × r . In (1),

x := (xu�, xc�)� ∈ R
n represents the state, which is supposed to be

divided by the directly noise-driven state xc ∈ R
nc and the other

one xu ∈ R
n−nc . w (t) ∈ R

r denotes a standard Wiener process
defined on a probability space (�,F,P), such that

EP{dw(t)dw(t)�} = dtI r , ∀t ∈ [0, T ], (2)

where I r represents the r × r identity matrix, and EP{·} denotes
the expectation with respect to the probability measure P. F
is a sigma algebra of the observable random events and a
filtration {Ft } represents an increasing family of σ -algebras with
Ft ⊂F, ∀ t ∈ [0, T ]. We suppose that {Ft } is right-continuous and
complete. For the function h(x , t), the following assumption is
imposed:

Assumption 1. For all x ∈ R
n and t ∈ [0, T ], the matrix hc(x ,

t)hc(x , t)� is positive definite.

Remark 1. The division of the state x into xu and xc in (1)
enables one to relax the assumption of the positive definiteness of
h(x , t)h(x , t)T to that of hc(x , t)hc(x , t)�.

Remark 2. Assumption 1 implies that the dimension of the noise
r is more than that of the directly noise-driven state nc . When
Assumption 1 fails, a possible solution is to intentionally add an
artificial noise channel so that hc(x , t)hc(x , t)� becomes positive
definite.

The control input is denoted by u(t) ∈ U ⊂ R
m , where U is

specified as a compact set of admissible controls. The saturation
function sat : R

m → R
m is defined as

sat(u(t)) = (sat1(u1(t)), . . . , satm(um(t)))�,

satj (uj (t)):=

⎧⎪⎨⎪⎩
uj (uj ≤ uj (t))

uj (t) (uj < uj (t) < uj )

uj (uj (t) ≤ uj )

, (3)

where constants uj ≥ 0 and uj ≤ 0. (j = 1, . . . , m) represent the
upper and lower limits. Note that the saturation function defined in
(3) is not differentiable at uj = uj and uj = uj . This paper assumes
the existence and uniqueness of a strong solution to the system (1)
on [0, T ]. For a concrete sufficient condition for the existence
and uniqueness of the strong solution to a stochastic differential
equation with nonsmooth coefficients, see, e.g., [36]. Next, we
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consider the following functional to define the cost function to be
minimized:

�(xt , ut :T , t) = EP
{
φ(x(T )) +

∫ T

t
V (x , τ)

+1

2
u(τ )�R(x , τ)u(τ )dτ | x(t) = xt

}
, (4)

where sufficiently differentiable non-negative functions φ and V
denote the terminal cost and the instantaneous cost, respectively.
V is also supposed to be integrable. R(x , t) represents the weight
with respect to the control cost. According to Ref. [7], we impose
the following assumption to R(x , t), which is necessary to derive
the SHJB equation with input saturation:

Assumption 2. The input weighting matrix R(x , t) in (4) is not
only positive definite but also diagonal, which is represented by

R(x , t) = diag{R1(x , t), . . . , Rm(x , t)},
where Ri (x , t)’s (i = 1, . . . , m) are positive for all x ∈ R

n and t
∈ [0, T ].

Then, the nonlinear stochastic optimal control with input satu-
ration constraints aims at finding the optimal controller u = u*(x ,
t) for the system (1) such that the cost function �(x0, u0:T , 0) is
minimized under the input saturation.

Now, we provide the following proposition, which characterizes
the SHJB equation associated with this problem:

Proposition 1. Consider the system (1) and the cost function (4).
Suppose that Assumptions 1 and 2 hold. Moreover, suppose that
the value function defined by

J (x , t):=inf
ut :T

�(x , ut :T , t) (5)

exists and is C 2, 1 function. Then, the associated SHJB equation
to this problem is derived as

∂J

∂t
+ V − 1

2

∂J

∂x
gR−1g� ∂J

∂x

�
+ ∂J

∂x
f

+1

2
tr

{
∂2J

∂x2
hh�

}
+ �sat(J ) = 0, J (x , T ) = φ(x), (6)

where the specific term �sat(J ) resulting from the input saturation
is given by

�sat(J ):=
1

2

(
sat

(
−R−1g� ∂J

∂x

�)
+ R−1g� ∂J

∂x

�)�

×R

(
sat

(
−R−1g� ∂J

∂x

�)
+ R−1g� ∂J

∂x

�)
. (7)

Further, the optimal control for this problem is given by

u∗(x , t) = sat

(
−R(x , t)−1g(x , t)�

∂J (x , t)

∂x

�)
. (8)

Proof . According to Bellman’s principle of optimality
[25,26,37], the value function J (x , t) should satisfy

−∂J

∂t
= inf

u

{
V + 1

2
u�Ru + ∂J

∂x
(f + gsat(u))

+1

2
tr

{
∂2J

∂x2
hh�

}}
, J (x , T ) = φ(x). (9)

Let us explicitly write the optimal controller u*, which minimizes
the right hand side of (9). From the definition of the saturation
function (3) and Assumption 2, for any j ∈{1, . . . , m} we have

1

2
u2

j Rj + ∂J

∂x
[g]:,j satj (uj )

=

⎧⎪⎨⎪⎩
1
2 u2

j Rj + ∂J
∂x [g]:,j uj (uj ≤ uj )

1
2 u2

j Rj + ∂J
∂x [g]:,j uj (uj < uj < uj )

1
2 u2

j Rj + ∂J
∂x [g]:,j uj (uj ≤ uj )

,

where the notation [·]:, j is utilized to denote the j th column of a
matrix [·]. Thus, we can calculate the gradient with respect to u
of the inside of the parenthesis on the right hand side of (9), and
by setting it to zero, the j th component of the optimal control is
given by

u∗
j =

⎧⎪⎪⎨⎪⎪⎩
uj (uj ≤ uj )

− 1
Rj

[g]�:,j
∂J
∂x

�
(uj < uj < uj )

uj (uj ≤ uj )

. (10)

[Correction added on 13 July 2020, after first online publication:
Equation 10 has been amended.].

Equation (10) can be rewritten as

u∗
j = satj

(
− 1

Rj
[g]�:,j

∂J

∂x

�)
. (11)

Thus, from (3) and (11), we explicitly provide the optimal
control u* as (8). By substituting u* given in (8) into (9), the
SHJB equation with input saturation constraints is obtained as the
Cauchy problem for a PDE given by (6) and (7). The assertion of
the proposition follows.

Remark 3. In the SHJB equation given by Proposition 1, the exis-
tence of the term �sat(J ) in (7) is an essential difference from the
conventional SHJB equation without input saturation constraints.

Since the deterministic solution method [7] essentially depends
on the geometrical structure of HJB equation, which is a first-order
PDE, it is not applicable to the resultant equation (6) involving the
second-order partial derivatives. Therefore, this paper provides a
concrete solution method to the SHJB equation with input satura-
tion (6) by extending ISOC-PI proposed in Ref. [22]. We modify
the iteration procedure of ISOC-PI (Eq. (24) in [22]) as follows:

∂J(i )

∂t
+ ∂J(i )

∂x
f̂(i ) + 1

2
tr

{
∂2J(i )

∂x2
hh�

}
+ V̂sat(i ) = 0,

J(i )(x , T ) = φ(x). (12)

Here, the i th sample generating dynamics f̂(i ) is the same as ISOC-
PI in Ref. [22], which is given by

f̂(i ):=f − gR−1g� ∂J(i−1)

∂x

�
.

In contrast, the i th instantaneous cost of ISOC-PI is replaced
with a new one V̂sat(i ), which is defined using the notation �sat in
(7) as

V̂sat(i ):=V̂(i ) + �sat(J(i−1))

= V (x , t) + 1

2

∂J(i−1)

∂x
gR−1g� ∂J(i−1)

∂x

�

+�sat(J(i−1)). (13)
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Since the proposed modified iteration procedure (12) is of the
form of a Cauchy problem, to which the Feynman-Kac formula is
applicable, the stochastic representation of the solution J (i ) is given
as (14). Then, by applying the path integral analysis to (14), the
stochastic representation of its partial derivative is also obtained as
(15). The resultant equations below correspond to a modification
of Theorem 1 in Ref. [22]:

J(i )(x , t) = E p(i )(ξt :T |x ,t){Ŝsat(i )(ξt :T )}, (14)

Ŝsat(i )(ξt :T ):=
∫ T

t
V̂sat(i )(ξ(τ ), τ)dτ + φ(ξ(T )),

∂J(i )(x , t)

∂xc

�
dt = (hc(x , t)hc(x , t)�)−1hc(x , t)

×E p(i )(ξt :T |x ,t){Ŝsat(i )(ξt :T )dw(t)}. (15)

Here, p(i )(ξ t :T |x , t) represents the probability that a sample path
ξ t :T is realized under the i th sample generating dynamics:

dξ = f̂(i )(ξ , t)dt + h(ξ , t)dw

with ξ (t) = x on [t , T ], and E p(i )(ξt :T |x ,t){·} denotes the expectation
over all the possible sample paths. In order to utilize the result in
(15), we rewrite the input term with saturation in the system (1)
as

sat(u(t))dt ≡ s̃at(u(t)dt),

where another saturation function s̃at is defined as

s̃at(u(t)dt) = (s̃at1(u1(t)dt), . . . , s̃atm(um(t)dt))�,

s̃atj (uj (t)dt)

:=

⎧⎪⎨⎪⎩
uj dt (uj dt ≤ uj (t)dt)

uj (t)dt (uj dt < uj (t)dt < uj dt)

uj dt (uj (t)dt ≤ uj dt)

. (16)

From (8), (15) and (16), the corresponding suboptimal controller
at the i th iteration, namely u∗

(i )(x , t), is obtained as

u∗
(i )(x , t)dt

= s̃at
(−R(x , t)−1gc(x , t)�(hc(x , t)hc(x , t)�)−1

×hc(x , t)E p(i )(ξt :T |x ,t){Ŝsat(i )(ξt :T )dw(t)}
)

. (17)

In the theoretical view point, the present stochastic representa-
tions in (14) and (15) are useful and important, since they are
derived without any approximation. In the computational view
point, since the expectations cannot be computed analytically in
general, several statistical sampling methods can be used for effi-
cient computation. Since as the number of samples increases, the
calculation error can be arbitrarily reduced, the trade-off between
the computational accuracy and cost can be considered. For a
concrete computation algorithm of the solution (14), its partial
derivative (15) and the suboptimal controller (17) using a basic
Monte Carlo sampling, see Algorithm 1 in Ref. [22] In Ref. [22],
convergence analysis of Algorithm 1 is also conducted such that
the iteration procedure converges and the SHJB equation is sat-
isfied, where computational error at each iteration due to finite
samples is adequately considered. The proposed iteration proce-
dure (12) is easily adapted to the algorithm. For more efficient
computation with importance sampling, see Ref. [38].

Table 1. Physical parameters

m Mass of the link 1.0 kg

l Length of the link 1.0 m
l c Length to the center of gravity 0.50 m
I Inertia of the link 8.3× 10−2 kgm2

g Gravity acceleration 9.8 m/s2

3. Numerical Example

This section exhibits a numerical example to demonstrate the
validity of the proposed method. Here, we consider a one-link
robot manipulator moving on a vertical plane. The joint angle
of the link is denoted by θ , and the control torque applied to the
joint is denoted by u , respectively. The physical parameters of this
apparatus are summarized in Table 1. We aim at the optimal swing-
up control of the manipulator with input saturation rigorously
satisfied. We consider the dynamics of the robot with the joint
torque saturation of the form (1) as

dx =
(

x2
mlc g sin x1

ml2
c+I

)
dt +

(
0
1

ml2
c+I

)
sat(u)dt

+
(

01×2
1

ml2
c+I

(1 − 0.1x2)

)
dw , (18)

where the state is defined by x :=(θ , θ̇ )�. In the dynamics model
(18), persistent system noise and uncertainty in viscous friction are
supposed. The upper and lower limits of the saturation function
(3) are chosen as u = 0.5 N and u = −0.5 N, respectively.
Regarding to the control objective, the cost function (4) is set as
φ(x (T )) = 1/2x (T ) diag{10, 0.5}x (T ), V (x , τ ) = 1/2x (τ )�diag{5,
0.3}x (τ )� and R = 0.8. The terminal time is T = 2.0 s, the
initial condition is x (0) = (−π , 0)�, which represents the pendant
position.

To solve the formulated nonlinear stochastic optimal control
problem, we execute the proposed iteration procedure (12) based
on Algorithm 1 in Ref. [22]. To generate the initial function
for the iteration, we solve the LQG problem for the linearized
system of (18) around the origin with the same cost function, and
obtain a value function J LQG and a corresponding LQG controller
uLQG . Then, we set the initial function as J (0)(x , t) = J LQG (x , t).
From this choice, we will easily show that the resultant controller
has a better performance than the LQG one. We execute nine
iterations of the proposed method, and this set of iterations is
referred to as one optimization trial. We repeat 50 optimization
trials. The total sample number using Monte Carlo at each iteration
is N (i ) = 30 000 (i = 1, . . . , 9). Not only with LQG method,
we also compare the behaviors and performance of the proposed
method with those of the conventional ISOC-PI method [22].

The simulation results of the proposed method are shown in
Figs 1 to 3. The thin line with error bars in Fig. 1 shows the mean
and standard deviation of the cost function of 50 optimization
trials for 9 iterations. This figure also exhibits the history of the
realized costs in one of the 50 trials in the thick line. From Fig. 1,
the cost function decreases and roughly converges. Figures 2 and
3 show the results before the iteration and those at the last
iteration, respectively. The top, middle and bottom figures of each
figure show the time responses of θ , θ̇ and u , respectively. Two
horizontal lines in the each bottom figure represent the input
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Fig 1. Mean and standard deviation of the cost function of 50
optimization trials along the iteration (thin line with error bars),
and the history of the realized cost in one of the 50 trials (thick

line)

saturation. Since we utilized the LQG controller as the initial
controller of the iteration, the results shown in Fig. 2 imply the
performance of the truncated LQG control due to saturation. On
the contrary, the results in Fig. 3 show the performance of the
proposed nonlinear stochastic optimal controller with rigorously
considering input saturation. From the comparison between Figs 2
and 3, the proposed controller has a better performance than the
LQG controller in that the joint angle θ reaches the desired position
faster and remains nearby for a longer period, and moreover the
amount of the control input u is smaller.

In order to demonstrate the effectiveness of considering the input
saturation, we also executed the conventional ISOC-PI method[22]
under the same conditions except for taking the input constraint
into account, whose results are shown in Figs 4 to 6. From those
figures, the cost function decreases and roughly converges, and a
better performance than the LQG controller is achieved as well
in the case of the proposed method. However, compared to the
present method, Figs 1 and 4 imply that ISOC-PI has tendency
that the mean and standard deviation of the costs are bigger than
the present method. This is because the control inputs generated
by ISOC-PI tend to be larger, since there is no input saturation.
Although ISOC-PI eventually achieves a similar performance to
the present method, it cannot guarantee that the input saturation
is satisfied. Particularly, there are still a few moments when the
input exceeds the limit in Fig. 6. Those results exhibit the validity
of the proposed method.

4. Conclusion

This paper considers a finite-time nonlinear stochastic optimal
control problem with input saturation as a hard constraint on the
control input. The associated SHJB equation has been first derived.
Moreover, we have provided a concrete solution method to this
problem by extending our previous result of ISOC-PI in [22]. The
proposed method can iteratively obtain stochastic representations
for both the solution to the SHJB equation and the corresponding

0 0.5 1 1.5 2

-4

-3

-2

-1

0

Results before the iteration (LQG with saturation)

θ [
ra
d
]

0 0.5 1 1.5 2
-4
-2
0
2
4
6
8

D
θ [

ra
d
/s
]

0 0.5 1 1.5 2

-0.5

-0.25

0

0.25

0.5

Time [s]

u
 
[N

m
]

Fig 2. Time responses of θ , θ̇ and the initial controller u as the
truncated LQG controller due to saturation
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Fig 3. Time responses of θ , θ̇ and u of the proposed controller at
the last iteration

optimal control by utilizing path integral analysis. This avoids
using numerical differentiation in deriving the optimal control from
partial derivatives of the solution to the SHJB equation. From
numerical simulations of comparisons of the proposed method
with LQG and ISOC-PI [22], both of which cannot deal with
input saturation, it has been demonstrated that the proposed
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50 trials (thick line)
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Fig 5. The results before the iteration of ISOC-PI[22] with LQG
controller

method achieves better performance with the input saturation
constraint rigorously satisfied. This paper is the first one that
provides an optimal feedback control rigorously satisfying the
saturation constraint as a solution to the corresponding SHJB
equation.
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Fig 6. The last iteration results of ISOC-PI [22]
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