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Abstract—This paper proposes a new iterative solution method
for nonlinear stochastic optimal control problems based on path
integral analysis. First, we provide an iteration law for solving a
stochastic Hamilton-Jacobi-Bellman (SHJB) equation associated
to this problem, which is a nonlinear partial differential equation
(PDE) of second order. Each iteration procedure of the proposed
method is represented by a Cauchy problem for a linear parabolic
PDE, and its explicit solution is given by the Feynman-Kac
formula. Second, we derive a suboptimal feedback controller at
each iteration by using the path integral analysis. Third, the
convergence property of the proposed method is investigated.
Here, some conditions are provided so that the sequence of
solutions for the proposed iteration converges, and the SHJB
equation is satisfied. Finally, numerical simulations demonstrate
the effectiveness of the proposed method.

Index Terms—Stochastic optimal control, Stochastic systems,
Nonlinear control, Path integral.

I. INTRODUCTION

Optimal control theory has been widely developed, since

it brought significant achievements in aerospace engineering

in 1950’s. Nowadays, it plays fundamental roles not only in

Engineering but also in many fields. Particularly, stochastic

optimal control dealing with uncertainties is utilized for mo-

tion planning of robots interacting with dynamic environments,

vibration suppression in engineering structures, reaction con-

trol in chemical plants, option pricing and portfolio allocation

in economics, decision making in biophysics and so on. The

purpose of stochastic optimal control is to control the plant

system with uncertainties so that the expectation of some

performance index, called cost (reward) function is minimized

(maximized).

When a linear stochastic system with additive white Gaus-

sian noise and a quadratic cost function, i.e., the so-called

LQG problem is considered, it is well known that the optimal

feedback controller can be obtained by solving the Riccati

equation [1], [2], [3], and this problem is currently easily

solved. While the LQG theory has brought many practical

S. Satoh is with the Division of Mechanical Systems and Ap-
plied Mechanics, Faculty of Engineering, Hiroshima University, 1-4-1,
Kagamiyama, Higashi-Hiroshima 739-8527, Japan e-mail: s.satoh@ieee.org
(see http://home.hiroshima-u.ac.jp/satoh/index.html).

H. J. Kappen is with the Department of Biophysics, Radboud University
Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands e-mail:
b.kappen@science.ru.nl

M. Saeki is with the Division of Mechanical Systems and Applied Mechan-
ics, Faculty of Engineering, Hiroshima University e-mail: saeki@hiroshima-
u.ac.jp

Manuscript received XXX; revised XXX.

benefits, nonlinear optimal control theory has not yet led to

sufficient practical use. According to Bellman’s principle of

optimality, the optimal feedback controller for a nonlinear

stochastic optimal control problem is given by solving a

nonlinear partial differential equation (PDE) of second or-

der, called the stochastic Hamilton-Jacobi-Bellman (SHJB)

equation [4], [5], [6]. 1 Due to the existence of nonlinearity

and second order partial derivatives, the SHJB equation is

quite difficult to be solved. Although some useful solution

methods for the deterministic Hamilton-Jacobi-Bellman (HJB)

equation, which is a first order nonlinear PDE, have been

recently proposed, they are not directly applied to the SHJB

equation. For example, although the literature [8] reduces solv-

ing the HJB equation to finding a submanifold in the cotangent

bundle associated with the target HJB equation, the theory

of jet bundles is necessary for the SHJB equation. Besides,

iterative method with successive approximation is an effective

approach to solve nonlinear PDEs. The literature [9] uses a

stochastic extension of the approach for the HJB equation in

[10], where the SHJB equation is reduced to a sequence of

linear PDEs called the generalized HJB. The generalized HJB

is approximately solved by using the Galerkin method. The

authors in [9] have proposed a meshless finite element method,

and it enables efficient numerical computation. However, this

method requires an assumption that for any initial condition,

some PDE corresponding to the SHJB equation converges to

a stationary solution. In addition, although the authors claim

that their iteration algorithm converges, there is no conver-

gence analysis. In the literature [11], convergence analysis of

successive approximation for the SHJB equation is provided.

It gives a condition for a solution to each iteration so that

the successive approximation converges to the true solution to

the SHJB equation. However, this paper does not provide any

concrete algorithm to solve each iteration. Moreover, although

each iteration is typically calculated approximately, e.g., with

finite basis functions or finite samples, the approximation

error of each solution is not considered in [11]. In another

approach, an iterative local optimization method around a

nominal trajectory based on quadratic approximation of the

value function has been proposed in [12]. This method is a

stochastic extension of the differential dynamic programming

1It is also well known in deterministic optimal control that Pontryagin’s
minimum principle (PMP) yields the optimal feedforward controller by
solving a two-point boundary value problem. There are also some results in
the stochastic case, e.g., [7], [4], [6]. However, since we consider the optimal
feedback controller, this paper does not deal with the PMP framework.
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approach [13]. When the nominal trajectory is close to the

optimal one, this method is practically useful. However, since

it is only valid around the optimal trajectory (note that it is gen-

erally unknown in advance), it cannot obtain the solution to the

SHJB equation for all states and times. Moreover, although the

convergence analysis for the deterministic differential dynamic

programming has been investigated, e.g, in [14], there is no

rigorous convergence analysis in [12] for the stochastic case.

In this way, there are still many challenges to satisfactorily

solve the SHJB equation, and it has been a serious obstacle

to practical success of nonlinear stochastic optimal control.

We aim to solve this problem by taking a different approach

from the conventional methods. The proposed method is

motivated by path integral optimal control method proposed

by the one of the authors in [15], [16]. The key points of this

method are summarized as follows. First, this method imposes

a particular assumption on the plant system and a cost function

to be minimized. Second, an exponential transformation is

applied to the SHJB equation. Under the assumption, nonlinear

terms in the transformed PDE successfully cancel out, and thus

a linear PDE is newly obtained. Since, moreover, the resultant

linear PDE has the same structure as the Kolmogorov back-

ward equation, the explicit solution is given by the Feynman-

Kac formula [17], [6] as the expectation of a functional along

a sample path. By applying the path integral analysis to this

solution, the authors in [15], [16] reveal an interesting insight

that the optimal controller coincides with the expectation of the

noise under some weighted probability of the path cost. This

result leads to a practical benefit that the optimal controller

is effectively calculated by using several sampling methods

in statistical physics. As the issue of the method, however,

the particular assumption necessary for the conventional path

integral methods [15], [16], [18] restricts the applicable class

of the plant systems and cost functions.

The main contribution of this paper is to propose a new

iterative solution method applicable to a wider class of nonlin-

ear stochastic optimal control problems without the particular

assumption. The proposed method is named iterative stochastic

optimal control based on path integrals, shortly, ISOC-PI.

First, we provide an iteration law for ISOC-PI, which solves

the SHJB equation. Each iteration procedure of ISOC-PI

is represented by a Cauchy problem for a linear parabolic

PDE. Although this PDE is not of the Kolmogorov backward

equation, the explicit solution is also given by the Feynman-

Kac formula [6]. Second, we derive a suboptimal feedback

controller at each iteration by using the path integral analysis

in [15], [16]. We show that the resultant controller forms the

expectation of the noise under some probability of the path

cost. Note that it is not a trivial result, since the solution has

a different path integral representation from the conventional

methods. The outline of each iteration is that we generate sam-

ple paths and calculate corresponding path costs in parallel,

and then calculate a weighted average of the noise with the

path cost among those sample paths, which gives a suboptimal

feedback controller. Third, the convergence property of ISOC-

PI is also investigated. We provide convergence conditions

such that the sequence of solutions for the proposed iteration

converges, and the SHJB equation is satisfied. In this analysis,

the influence of error caused by approximately solving each

iteration is adequately considered. Consequently, ISOC-PI can

iteratively solve the SHJB equation, and can provide the

optimal feedback controller for a nonlinear stochastic opti-

mal control problem. ISOC-PI has the following advantages

compared to the conventional path integral methods [15], [16],

[18], and other existing results, e.g. [9], [11], [12]:

• ISOC-PI does not require the particular assumption nec-

essary for the conventional path integral methods. Thus,

it is applicable to a wider class of nonlinear stochastic

optimal control problems;

• ISOC-PI provides not only the solution to the SHJB equa-

tion, i.e., the value function, but also the corresponding

optimal feedback controller by using the path integral

analysis. The numerical differentiation of the value func-

tion, which is undesirable particularly in dealing with

stochastic systems, is not required;

• the convergence property of ISOC-PI is rigorously ana-

lyzed; and

• ISOC-PI is easy to be numerically implemented, and is

well adapted to parallel computing.

II. PRELIMINARIES

A. Nonlinear stochastic optimal control

We consider a stochastic optimal control problem on the

time interval t ∈ [0, T ] with any constant T > 0. Consider

a class of nonlinear stochastic systems described by the

following Itô stochastic differential equation:

dx = f(x, t) dt+ g(x, t)u dt+ h(x, t) dw, x(0) = x0, (1)

where the state is denoted by x(t) ∈ R
n, and the control

input is denoted by u(t) ∈ U ⊂ R
m, where U is specified

as a compact set of admissible controls. w(t) ∈ R
r denotes a

Wiener process defined on a probability space (Ω,F ,P), such

that

EP{dw(t) dw(t)⊤} = Q dt , ∀t ∈ [0, T ]. (2)

Here, EP{·} denotes the expectation with respect to the

probability measure P , and the matrix Q ∈ R
r×r represents

the covariance matrix. F is a sigma algebra of the observable

random events and a filtration {Ft} represents an increasing

family of σ-algebras with Ft ⊂ F , ∀t ∈ [0, T ]. We suppose

that {Ft} is right-continuous and complete.

In this paper, the control input u(·) is supposed to be a

progressively measurable, and square-integrable process such

that

EP

{

∫ T

0

u(t)⊤u(t) dt

}

<∞

holds. The functions f : Rn× [0, T ]→R
n, g : Rn× [0, T ]→

R
n×m and h : R

n × [0, T ] → R
n×r are supposed to be

sufficiently differentiable. This paper assumes the existence

and uniqueness of a strong solution to the system (1) on

[0, T ]. One sufficient condition for this assumption is that f, g
and h satisfy the local Lipschitz condition and linear growth

condition [19]. Besides, the literature [20] provides the pair
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of the local Lipschitz condition and monotone condition as a

weaker sufficient condition.

We define the infinitesimal operator [21], [17], which will be

utilized for the convergence analysis of the proposed method

in Section III-B. For the system (1) with a control input u
and a class C2,1 function F (x, t), the infinitesimal operator

Lu(F ) is defined as

Lu(F ) :=
∂F

∂t
+
∂F

∂x
(f+gu)+

1

2
tr

{

∂2F

∂x2
hQh⊤

}

. (3)

In addition, Lu(F )(x, t) denotes the value of the right hand

side of Eq. (3) at (x, t). In this paper, for a vector a, aj
denotes its j th element, and for a matrix A, [A]j,k, [A]j,: and

[A]:,k denote its (j, k) th element, j th row and k th column,

respectively. We define ∂F (x, t)/∂x as an n-dimensional row

vector such that its i th column is given by ∂F (x, t)/∂xi. We

also define ∂2F (x, t)/∂x2 as an n × n matrix such that its

(i, j) th element is given by ∂2F (x, t)/∂xj∂xi. Then, Itô’s

formula [22] gives the expectation of the time variation of the

function F (x, t) along a sample path x(t) as

EP{F (x(t), t)}=F (x0, 0)+E
P

{
∫ t

0

Lu(F )(x(s), s) ds

}

.

(4)

Next, consider the following functional to define the cost

function to be minimized:

Γ(xt, ut:T , t)=E
P

{

φ(x(T ))+

∫ T

t

V (x, τ)

+
1

2
u(τ)⊤R(x, τ)u(τ) dτ

∣

∣

∣
x(t)=xt

}

, (5)

where sufficiently differentiable non-negative functions φ and

V denote the terminal cost and the instantaneous cost, re-

spectively. V is also supposed to be integrable. A symmetric

positive definite matrix R(x, t) represents the weight with

respect to the control cost. The notation ut:T denotes an input

signal on the time interval [t, T ]. The objective of the paper

is to find the optimal feedback controller u = u∗(x, t) for

the system (1) such that the cost function Γ(x0, u0:T , 0) is

minimized. Here, the value function is defined as

J(x, t) := min
ut:T

Γ(x, ut:T , t).

According to Bellman’s principle of optimality, the stochastic

Hamilton-Jacobi-Bellman (SHJB) equation [4], [5], [6], which

J(x, t) should satisfy, is given by

−
∂J

∂t
= min

u

(

V +
1

2
u⊤Ru+

∂J

∂x
(f + gu)

+
1

2
tr

{

∂2J

∂x2
hQh⊤

})

, J(x, T ) = φ(x). (6)

Suppose that there exists a differentiable solution to the SHJB

equation (6). Then, the optimal feedback controller u∗(x, t) is

given as the one that minimizes the right hand side of Eq. (6).

Since the cost function is quadratic with respect to the control

input, and R(x, t) is positive definite, the optimal control is

uniquely determined. By taking the gradient with respect to

u of the inside of the parenthesis on the right hand side, and

setting it to zero, the optimal controller is given by

u∗(x, t) = −R(x, t)−1g(x, t)⊤
∂J(x, t)

∂x

⊤

. (7)

By substituting Eq. (7) into Eq. (6), the SHJB equation is

reduced to the following partial differential equation (PDE):

∂J

∂t
+ V −

1

2

∂J

∂x
gR−1g⊤

∂J

∂x

⊤

+
∂J

∂x
f

+
1

2
tr

{

∂2J

∂x2
hQh⊤

}

= 0 , J(x, T ) = φ(x). (8)

Consequently, the optimal control problem is reduced to

solving the SHJB equation (8). Once the solution J is ob-

tained, the optimal feedback controller is given by Eq. (7).

However, it is generally quite difficult to solve the SHJB

equation (8), because it is a second order nonlinear PDE with

respect to J . One of the authors has proposed a new stochastic

optimal control method based on statistical physics approach,

called path integral optimal control, in [15]. This method

provides an efficient solution for a class of nonlinear stochastic

optimal control problems, and is referred to in subsection II-B.

B. Path integral optimal control

In what follows, we partition the system (1) into the

subsystem which is directly driven by the noise, and the other

one as:
(

dxu

dxc

)

=

(

fu(x, t)
f c(x, t)

)

dt+

(

0(n−nc)×m

gc(x, t)

)

u dt

+

(

0(n−nc)×r

hc(x, t)

)

dw, (9)

where x := (xu⊤, xc⊤)⊤ ∈ R
n and xc ∈ R

nc denotes the

noise-driven state and xu ∈ R
n−nc denotes the other one,

respectively, and 0i×j represents the i × j zero matrix. We

suppose that the following assumption holds.

Assumption 1: For all x ∈ R
n and t ∈ [0, T ], the matrix

hc(x, t)Qhc(x, t)
⊤

is positive definite.

In addition, the conventional path integral optimal control [15],

[16], [18] require the following particular assumption.

Assumption 2: For all x ∈ R
n and t ∈ [0, T ], there exists

a positive constant λ > 0 such that the following equation

holds:

λgc(x, t)R−1(x, t)gc(x, t)⊤ = hc(x, t)Qhc(x, t)⊤ (10)

with the weighting matrix R in Eq. (5), and the covariance

matrix Q in Eq. (2).

Remark 1: A possible interpretation of the condition (10) is

that the larger the noise effect becomes, the smaller the control

cost has to be. In addition, the condition also requires that the

control and noise must act in the same dimensions.

By applying the following transformation

J(x, t) = −λ logψ(x, t) (11)
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to the SHJB equation (8), we have

∂ψ

∂t
−
V

λ
ψ+

∂ψ

∂x
f+

λ

2ψ

∂ψ

∂x
gR−1g⊤

∂ψ

∂x

⊤

−
λ

2ψ

∂ψ

∂x
h
Q

λ
h⊤

∂ψ

∂x

⊤

+
1

2
tr

{

∂2ψ

∂x2
hQh⊤

}

= 0 , ψ(x, T ) = exp

(

−
φ(x)

λ

)

.

(12)

Under Assumption 2, the nonlinear terms, i.e., the fourth and

fifth terms on the left hand side of Eq. (12) cancel out. It leads

to the second order linear PDE as

∂ψ

∂t
−
V

λ
ψ +

∂ψ

∂x
f +

1

2
tr

{

∂2ψ

∂x2
hQh⊤

}

= 0,

ψ(x, T ) = exp

(

−
φ(x)

λ

)

. (13)

Since the resultant linear PDE (13) has the same structure as

the Kolmogorov backward equation, the path integral optimal

control provides the explicit solution to the PDE (13) based

on the Feynman-Kac formula ([6], Theorem 1.3.17), see also

[17], [18], as

ψ(x, t)=Ep(ξt:T |x,t)

{

exp

(

−
1

λ

(

φ(ξ(T ))+

∫ T

t

V (ξ, τ) dτ

))}

,

(14)

where p(ξt:T |x, t) represents the probability that a sample path

ξt:T is realized under the uncontrolled dynamics of the system

(9) with ξ(t) = x on [t, T ], that is,

(

dξu

dξc

)

=

(

fu(ξ, t)
f c(ξ, t)

)

dt+

(

0(n−nc)×r

hc(ξ, t)

)

dw , ξ(t) = x.

(15)

Ep(ξt:T |x,t){·} represents the expectation with respect to the

probability p(ξt:T |x, t).

The probability p(ξt:T |x, t) can be represented by the state

transition probability as

p(ξt:T |x, t)= lim
dt→0

T−dt
∏

s=t

p(ξ(s+dt), s+dt|ξ(s), s), ξ(t) = x.

(16)

Since the system is partitioned into the directly noise-driven

subsystem and the other one, according to the same argument

as in [18], the state transition probability can also be separated

as

p(ξ(s+dt), s+dt|ξ(s), s)

= p(ξc(s+dt), s+dt|ξ(s), s)× p(ξu(s+dt), s+dt|ξ(s), s)

∝ p(ξc(s+dt), s+dt|ξ(s), s), (17)

where the last relation comes from the fact that ξu(s + dt)
is deterministically realized under the subsystem dξu =
fu(ξ, t) dt with ξ(s), and thus p(ξu(s + dt), s + dt|ξ(s), s)

is the Dirac delta function. Eqs. (15), (16) and (17) yield

p(ξt:T |x, t) ∝ p(ξct:T |x, t)

= lim
dt→0

T−dt
∏

s=t

p(ξc(s+dt), s+dt|ξ(s), s) , ξ(t) = x, (18)

p(ξc(s+dt), s+dt)|ξ(s), s)=

(

1

2π

)

nc
2 1
√

det(Ξc(ξ(s), s)) dt
(19)

× exp

(

−
1

2 dt
(ξc(s+dt)−ξc(s)−f c(ξ, s) dt)⊤Ξc−1

× (ξc(s+dt)−ξc(s)−f c(ξ, s) dt)

)

,

where

Ξc(ξ, t) := hc(ξ, t)Qhc(ξ, t)⊤. (20)

Assumption 2 implies that Ξc = λgcR−1gc⊤ holds.

From Eq. (14), we define a new weighted probability

q(ξt:T |x, t) with respect to the path cost on [t, T ] as

q(ξt:T |x, t) (21)

:=
p(ξt:T |x, t)

ψ(x, t)
exp

(

−
1

λ

(

φ(ξ(T ))+

∫ T

t

V (ξ, τ) dτ

))

.

Then, although the details of calculations are omitted, one

of the main contribution of the path integral optimal control

method is to derive the fact by path integral analysis with Eqs.

(14), (18), (19) and (21) that

∂ logψ(x, t)

∂xc

⊤

dt = Ξc(x, t)−1hc(x, t)Eq(ξt:T |x,t){dw(t)}.

(22)

Consequently, the optimal feedback controller is obtained by

Eqs. (7), (11) and (22) and Assumption 2 as

gc(x, t)u∗(x, t) dt

= λgc(x, t)R(x, t)−1gc(x, t)⊤
∂ logψ(x, t)

∂xc

⊤

dt

= hc(x, t)Eq(ξt:T |x,t){dw(t)}. (23)

In the literature [15], [16], some efficient computation methods

for the optimal controller (23) are proposed based on Monte

Carlo sampling, Langevin sampling, Importance sampling,

Laplace approximation and so on.

III. MAIN RESULTS

In this section, we propose a new iterative solution method

for nonlinear stochastic optimal control problems based on

the conventional path integral methods. As the motivation of

the proposed method, the conventional path integral methods

[15], [16], [18] have the issue that the particular assumption,

namely Assumption 2, restricts the applicable class of the

plant systems and cost functions. By equipping the successive

approximation scheme to solve nonlinear PDEs, the proposed

method does not require Assumption 2, nor the exponential

transformation (11). The proposed iteration law enables us to

solve the SHJB equation (8) iteratively by using a stochastic
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representation of the solution to a Cauchy problem for a

linear parabolic PDE. Moreover, by applying the path integral

analysis to the resultant solution, the corresponding optimal

feedback controller is explicitly derived without the numerical

differentiation. We also investigate a convergence property of

the proposed iteration procedure.

A. Iterative stochastic optimal control based on path integrals

(ISOC-PI)

In what follows, we consider a wider class of stochastic

optimal control problems with the cost function Γ(x0, u0:T , 0)
in (5) and the plant system (9) without Assumption 2. Now,

we describe the iteration law for the proposed method named

iterative stochastic optimal control based on path integrals,

shortly, ISOC-PI. Suppose that a class C2,1 function J(0) is

appropriately given as an initial function, and that at the i
th iteration, the functions J(i−1) and ∂J(i−1)/∂x

c are already

obtained. Then, the i th iteration procedure of ISOC-PI is given

by solving the following Cauchy problem for a linear parabolic

PDE with respect to the i th solution J(i):

∂J(i)

∂t
+
∂J(i)

∂x
f̂(i) +

1

2
tr

{

∂2J(i)

∂x2
hQh⊤

}

+ V̂(i) = 0,

J(i)(x, T ) = φ(x), (24)

where the functions f̂(i) : Rn× [0, T ]→R
n and V̂(i) : Rn×

[0, T ]→R are defined as

f̂(i) :=f−gR
−1g⊤

∂J(i−1)

∂x

⊤

=

(

fu

f c−gcR−1gc⊤
∂J(i−1)

∂xc

⊤

)

=:

(

f̂u
(i)

f̂ c
(i)

)

, (25)

V̂(i) := V +
1

2

∂J(i−1)

∂x
gR−1g⊤

∂J(i−1)

∂x

⊤

= V +
1

2

∂J(i−1)

∂xc
gcR−1gc⊤

∂J(i−1)

∂xc

⊤

. (26)

We will show some features of the iteration law of ISOC-PI

(24). First, each iteration is not of a Kolmogorov backward

equation as Eq. (13), but is a Cauchy problem that the

Feynman-Kac formula [6] can also be applied to. Therefore,

we can obtain a stochastic representation of its solution J(i).
Second, the partial derivative ∂J(i)/∂x

c, which is necessary

for the next iteration and also for deriving a suboptimal

controller corresponding to J(i), can be obtained from the path

integral analysis. The next theorem proves the claim:

Theorem 1: Consider the iteration of ISOC-PI in Eq. (24)

with the plant system (9) and the cost function Γ(x0, u0:T , 0)
in (5). Suppose that the conditions for the existence and

uniqueness of the solutions mentioned in Subsection II-A, and

Assumption 1 hold. Moreover, an initial function J(0) is given

such that it is a class C2,1 and ‖∂J(0)(x, t)/∂x
c‖2 < ∞ for

all x∈R
n and t∈ [0, T ].

Then, the solution to the i th iteration of ISOC-PI in Eq.

(24) is given by

J(i)(x, t) = Ep̂(i)(ξt:T |x,t)
{

Ŝ(i)(ξt:T )
}

, (27)

Ŝ(i)(ξt:T ) :=

∫ T

t

V̂(i)(ξ(τ), τ) dτ + φ(ξ(T )). (28)

Here, p̂(i)(ξt:T |x, t) represents the probability that a sample

path ξt:T is realized under the i th sample generating dynamics

with ξ(t) = x on [t, T ], which is given as the uncontrolled

dynamics (15) by substituting f with f̂ in Eq. (25), that is

(

dξu

dξc

)

=

(

f̂u
(i)(ξ, t)

f̂ c
(i)(ξ, t)

)

dt+

(

0(n−nc)×r

hc(ξ, t)

)

dw , ξ(t) = x.

(29)

Ŝ(i)(ξt:T ) in Eq. (28) represents the weighted total cost

associated with the sample path ξt:T , where the instantaneous

cost is V̂(i)(x, t) in Eq. (26) instead of V (x, t) in Eq. (5).

Moreover, the partial derivative of J(i) with respect to xc

is given by

∂J(i)(x, t)

∂xc

⊤

dt

= Ξc(x, t)−1hc(x, t)Ep̂(i)(ξt:T |x,t){Ŝ(i)(ξt:T ) dw(t)}, (30)

where Ξc(x, t) is defined in Eq. (20). Consequently, the sub-

optimal controller u∗(i)(x, t) corresponding to the i th solution

J(i)(x, t) is given by

u∗(i)(x, t) dt =−R(x, t)−1gc(x, t)
⊤
Ξc(x, t)−1hc(x, t)

× Ep̂(i)(ξt:T |x,t){Ŝ(i)(ξt:T ) dw(t)}. (31)

Proof: See Appendix A.

The resultant suboptimal controller in Eq. (31) forms the

expectation of the noise vector weighted by the total cost.

Note that there is no change of measure as is the case in the

conventional methods in Eqs. (21) and (23). Also, note that

Theorem 1 provides not only the i th solution J(i)(x, t), but

also its partial derivative ∂J(i)(x, t)/∂x
c, and it can avoid the

numerical differentiation of J(i) in calculating the suboptimal

controller u∗(i)(x, t). Since the numerical differentiation is

undesirable particularly in dealing with stochastic systems, this

is a big advantage of ISOC-PI.

B. Convergence analysis of the ISOC-PI

This subsection investigates a convergence property of the

ISOC-PI. It will be proved partly based on the argument

in [11]. However, the differences between our analysis and

the literature are as follows. First, the literature does not

provide the concrete procedure to solve each iteration. Second,

although each iteration is typically calculated approximately,

e.g., with finite basis functions or finite samples, the literature

does not take the approximation error of each iteration into

account in the argument.
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For notational convenience, we define the following nota-

tion:

H(η, ζ) :=
∂η

∂t
+
∂η

∂x

(

f − gR−1g⊤
∂ζ

∂x

⊤
)

+
1

2
tr

{

∂2η

∂x2
hQh⊤

}

+ V +
1

2

∂ζ

∂x
gR−1g⊤

∂ζ

∂x

⊤

=
∂η

∂t
+
∂η

∂xu
fu+

∂η

∂xc

(

f c − gcR−1gc⊤
∂ζ

∂xc

⊤
)

(32)

+
1

2
tr

{

∂2η

∂xc2
hcQhc⊤

}

+ V +
1

2

∂ζ

∂xc
gcR−1gc⊤

∂ζ

∂xc

⊤

.

In addition, H(η, ζ)(x, t) denotes the value of the right hand

side of Eq. (32) at (x, t). Then, by using the notation (32), the

iteration law for ISOC-PI (24) is rewritten as

The iteration law (24)

⇐⇒ H(J(i), J(i−1)) = 0 , J(i)(x, T ) = φ(x), (33)

Then, in order to explicitly consider the calculation error in

each iteration possibly caused by approximations, we define

the following error functions:

ǫ(i)(x, t) := H(J(i), J(i−1))(x, t) (34)

d(i)(x, t) := H(J(i), J(i))(x, t). (35)

Here, ǫ(i) represents the error of J(i) caused by the calculation

of the i th iteration, while d(i) represents the difference

between J(i) and the true solution to the SHJB equation.

From the definition, d(i) ≡ 0 implies that J(i) satisfies the

SHJB equation. We also equip the notation of the L1 norm

on Ω × [t, T ] for an integrable stochastic process defined on

[t, T ] as ‖ · ‖L1(Ω×[t,T ]) := EP{
∫ T

t
| · | dτ}.

The following theorem shows that the solution to the

original SHJB equation (8) can be iteratively obtained by the

proposed ISOC-PI method.

Theorem 2: Consider the iteration of ISOC-PI in Eq. (24)

with the plant system (9) and the cost function Γ(x0, u0:T , 0)
in (5). Suppose that all assumptions in Theorem 1 hold.

Also, suppose that after any i th iteration, J(i)(x, t) and

∂J(i)(x, t)/∂x
c are available at any x ∈ R

n and t ∈ [0, T ],
and that at any i th iteration, the L1 norm on Ω× [t, T ] of the

error function ǫ(i) defined in Eq. (34), that is, ‖ǫ(i)‖L1(Ω×[t,T ])

can be arbitrary small at any t ∈ [0, T ].

Then, for each x ∈ R
n and t ∈ [0, T ], if ‖ǫ(i)‖L1(Ω×[t,T ]) →

0 as i → ∞, J(i)(x, t) converges pointwise, and the error

d(i)(x, t) defined in Eq. (35) converges pointwise to zero

almost surely. The SHJB equation (8) is satisfied almost

everywhere.

Proof: Fix an arbitrary integer i. For notational simplicity,

we define ∆J(i+1) := J(i+1) − J(i). First, let us investigate

the relation between the errors d(i+1) and d(i) as follows:

d(i+1) = H(J(i+1), J(i+1))

=
∂J(i+1)

∂t
+
∂J(i+1)

∂x
f −

1

2

∂J(i+1)

∂xc
gcR−1gc⊤

∂J(i+1)

∂xc

⊤

+
1

2
tr

{

∂2J(i+1)

∂xc2
hcQhc⊤

}

+ V

=
∂J(i)

∂t
+
∂(∆J(i+1))

∂t
+
∂J(i)

∂x
f+

∂(∆J(i+1))

∂x
f−

1

2

∂J(i)

∂xc
gc

×R−1gc⊤
∂J(i)

∂xc

⊤

−
1

2

∂(∆J(i+1))

∂xc
gcR−1gc⊤

∂(∆J(i+1))

∂xc

⊤

−
∂(∆J(i+1))

∂xc
gcR−1gc⊤

∂J(i)

∂xc

⊤

+
1

2
tr

{

∂2J(i)

∂xc2
hcQhc⊤

}

+
1

2
tr

{

∂2(∆J(i+1))

∂xc2
hcQhc⊤

}

+V

= d(i) −
1

2

∂(∆J(i+1))

∂xc
gcR−1gc⊤

∂(∆J(i+1))

∂xc

⊤

+ Lu∗
(i)
(∆J(i+1)), (36)

where in the last equality, d(i) = H(J(i), J(i)) is used, and the

infinitesimal operator Lu∗
(i)
(·) is defined in Eq. (3).

Second, from the definition of ǫ(i) in Eq. (34), we have

ǫ(i+1) = H(J(i+1), J(i)) =
∂J(i+1)

∂t
+
∂J(i+1)

∂x
f

−
∂J(i+1)

∂xc
gcR−1gc⊤

∂J(i)

∂xc

⊤

+
1

2
tr

{

∂2J(i+1)

∂xc2
hcQhc⊤

}

+
1

2

∂J(i)

∂xc
gcR−1gc⊤

∂J(i)

∂xc

⊤

+ V

⇐⇒
∂J(i+1)

∂t
+
∂J(i+1)

∂x
f+

1

2
tr

{

∂2J(i+1)

∂xc2
hcQhc⊤

}

+V =

ǫ(i+1)+
∂J(i+1)

∂xc
gcR−1gc⊤

∂J(i)
∂xc

⊤

−
1

2

∂J(i)
∂xc

gcR−1gc⊤
∂J(i)
∂xc

⊤

.

(37)

By substituting Eq. (37) into the first equality in Eq. (36), we

have the relation between the errors d(i+1) and ǫ(i+1) as

d(i+1) = ǫ(i+1) −
1

2

∂J(i+1)

∂xc
gcR−1gc⊤

∂J(i+1)

∂xc

⊤

+
∂J(i+1)

∂xc
gcR−1gc⊤

∂J(i)

∂xc

⊤

−
1

2

∂J(i)

∂xc
gcR−1gc⊤

∂J(i)

∂xc

⊤

= ǫ(i+1) −
1

2

∂(∆J(i+1))

∂xc
gcR−1gc⊤

∂(∆J(i+1))

∂xc

⊤

. (38)

It follows from Eq. (36) that

Lu∗
(i)
(∆J(i+1)) = d(i+1) − d(i)

+
1

2

∂(∆J(i+1))

∂xc
gcR−1gc⊤

∂(∆J(i+1))

∂xc

⊤

. (39)

By substituting the representation (38) twice for i+1 and for

i into the first and second terms in Eq. (39), we have

Lu∗
(i)
(∆J(i+1))

=
1

2

∂(∆J(i))

∂xc
gcR−1gc⊤

∂(∆J(i))

∂xc

⊤

+ ǫ(i+1) − ǫ(i). (40)
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Since the solution J(i) of the iteration law (24) is derived

by the Feynman-Kac formula (see, Eq. (27)), J(i) with any

integer i satisfies the boundary condition of the PDE (8), that

is, J(i)(x, T ) = φ(x), ∀i holds. It implies that

∆J(i+1)(x, T ) = φ(x) − φ(x) = 0 , ∀x ∈ R
n. (41)

For each x ∈ R
n and t ∈ [0, T ], it follows from Eq. (4) that

EP{∆J(i+1)(ξ(T ), T )|ξ(t) = x} = ∆J(i+1)(x, t)

+ EP

{

∫ T

0

Lu∗
(i)
(∆J(i+1))(ξ(τ), τ) dτ

∣

∣

∣

∣

∣

ξ(t) = x

}

. (42)

By substituting Eqs. (40) and (41) into Eq. (42), we have

∆J(i+1)(x, t)

= −EP

{

∫ T

t

Lu∗
(i)
(∆(J(i+1))(ξ(τ), τ) dτ

∣

∣

∣

∣

∣

ξ(t) = x

}

= −EP

{

∫ T

t

1

2

∂(∆J(i)(ξ(τ), τ))

∂xc
gc(ξ(τ), τ)R−1(ξ(τ), τ)

× gc(ξ(τ), τ)⊤
∂(∆J(i)(ξ(τ), τ))

∂xc

⊤

+ ǫ(i+1)(ξ(τ), τ)

− ǫ(i)(ξ(τ), τ) dτ

∣

∣

∣

∣

∣

ξ(t) = x

}

≤ −
1

2
EP

{

∫ T

t

∂(∆J(i)(ξ(τ), τ))

∂xc
gc(ξ(τ), τ)R−1(ξ(τ), τ)

× gc(ξ(τ), τ)⊤
∂(∆J(i)(ξ(τ), τ))

∂xc

⊤

dτ

∣

∣

∣

∣

∣

ξ(t) = x

}

+ ‖ǫ(i+1)‖L1(Ω×[t,T ]) + ‖ǫ(i)‖L1(Ω×[t,T ]). (43)

Now, suppose that the first expectation in the last inequality

(43) is not zero for all i. Then, the positive definiteness of R
implies that the integrand is non-negative, and thus the first

term in the inequality (43) is negative for all i. Hence, there

exists ǭ(i)(x, t) > 0 for each i such that if ‖ǫ(i)‖L1(Ω×[t,T ]) ≤
ǭ(i)(x, t), ∀i are satisfied, the following condition holds:

∆J(i)(x, t) < 0, ∀i. (44)

Note that the upper bounds ǭ(i)’s might respectively depend

on (x, t). Since V is non-negative, and the second term in

Eq. (26) is so due to the positive definiteness of R, V̂(i) is a

non-negative function for each i. From this fact and the non-

negativity of φ, Eqs. (27) and (28) yield

J(i)(x, t) ≥ 0 , ∀x ∈ R
n, t ∈ [0, T ], i. (45)

From Eqs. (44) and (45), {J(i)(x, t)}
∞
i=1 is a non-negative

and monotonically decreasing sequence. Therefore, for each

x ∈ R
n and t ∈ [0, T ], J(i)(x, t) converges pointwise if

‖ǫ(i)‖L1(Ω×[t,T ]) → 0 as i→ ∞ .
Moreover, under this condition, from Eq. (43) we have

lim
i→∞

EP

{

∫ T

t

∂(∆J(i)(ξ(τ), τ))

∂xc
gc(ξ(τ), τ)R−1(ξ(τ), τ)

×gc(ξ(τ), τ)⊤
∂(∆J(i)(ξ(τ), τ))

∂xc

⊤

dτ

∣

∣

∣

∣

∣

ξ(t) = x

}

= 0. (46)

Eq. (46) implies

lim
i→∞

∂(∆J(i)(x, t))

∂xc
gc(x, t)R−1(x, t)gc(x, t)

⊤

×
∂(∆J(i)(x, t))

∂xc

⊤

= 0 (47)

holds at (x, t) almost surely. From Eqs. (38) and (47), we can

conclude that for each x ∈ R
n and t ∈ [0, T ], d(i)(x, t) con-

verges pointwise to zero almost surely if ‖ǫ(i)‖L1(Ω×[t,T ]) → 0
as i → ∞. Then, from the definition of the error function

d(i) in Eq. (35), the SHJB equation (8) is satisfied almost

everywhere.

On the contrary, if there exists some integer i > 1 such that

the first expectation in Eq. (43) becomes zero, that is,

EP

{

∫ T

t

∂(∆J(i)(ξ(τ), τ))

∂xc
gc(ξ(τ), τ)R−1(ξ(τ), τ) (48)

×gc(ξ(τ), τ)
⊤ ∂(∆J(i)(ξ(τ), τ))

∂xc

⊤

dτ

∣

∣

∣

∣

∣

ξ(t)=x

}

= 0, ∃i.

Then, from Eq. (43), we have

lim
‖ǫ(i)‖L1(Ω×[t,T ]), ‖ǫ(i+1)‖L1(Ω×[t,T ])→0

∆J(i+1)(x, t) = 0. (49)

Besides, Eq. (48) implies

∂(∆J(i)(x, t))

∂xc
gc(x, t)R−1(x, t)gc(x, t)

⊤ ∂(∆J(i)(x, t))

∂xc

⊤

=0

(50)

holds at (x, t) almost surely. From Eqs. (38) and (50), we can

conclude that for each x ∈ R
n and t ∈ [0, T ], d(i)(x, t) con-

verges pointwise to zero almost surely as ‖ǫ(i)‖L1(Ω×[t,T ]) →
0. Then, the definition of the error function d(i) in Eq. (35),

the SHJB equation (8) is satisfied almost everywhere. This

fact with Eq. (49) implies that J(i)(x, t) converges pointwise

to the solution to the SHJB equation (8) almost surely.

IV. DISCUSSIONS ON COMPUTATION

There are points to be noted on the actual computation of

the proposed ISOC-PI method. First, the solution in Eq. (27)

and controller in Eq. (31) of ISOC-PI are respectively given as

expectations in Theorem 1. In Subsection IV-A, we provide a

computation method for them based on a statistical sampling.

Second, each iteration of ISOC-PI generates one suboptimal

path. Therefore, after the i th iteration, we do not know every

value of ∂J(i)(x, t)/∂x on ∀x ∈ R
n, t ∈ [0, T ], but only

know ∂J(i)(x, t)/∂x |x=ξ̄(i)(t)
along the i th suboptimal path

ξ̄(i). However, the next iteration may require ∂J(i)(x, t)/∂x at

a different state, for calculations of f̂(i+1)(x, t) in Eq. (25) and

V̂(i)(x, t) in Eq. (26). Regarding this, in Subsections IV-B and

IV-C, we provide two approximation methods to cope with

this computational issue.

Finally, we provide a concrete algorithm for computation of

ISOC-PI in Subsection IV-D.



0018-9286 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2016.2547979, IEEE
Transactions on Automatic Control

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 20XX 8

A. Computation method for the solution and controller based

on Monte Carlo sampling

As the conventional path integral methods [15], [16], several

statistical sampling methods such as Monte Carlo sampling,

Langevin sampling, Importance sampling, Laplace approxi-

mation and so on can be used for efficient computation in

ISOC-PI. Here, we provide a basic computation method of

the solution in Eq. (27) and controller in Eq. (31) by using

Monte Carlo sampling with the sample number N(i) > 0 as

Ŝk
(i)(x, t) :=

∫ T

t

V̂(i)(ξ
k, τ) dτ + φ(ξk(T )) (51)

J
N(i)

(i) (x, t) =

∑N(i)

k=1 Ŝ
k
(i)(x, t)

N(i)
(52)

∂J
N(i)

(i) (x, t)

∂xc
dt=Ξc(x, t)−1hc(x, t)

∑N(i)

k=1 Ŝ
k
(i)(x, t)dw

k(t)

N(i)
,

(53)

u
∗N(i)

(i) (x, t) dt = −R(x, t)−1gc(x, t)⊤
∂J

N(i)

(i) (x, t)

∂xc
dt, (54)

where ξk represents the k th sample path of the total N(i)

samples under the i th sample generating dynamics (29).

According to the property of Monte Carlo sampling, both

approximations Eqs. (52) and (54) respectively converge to

J(i)(x, t) in Eq. (27) and u∗(i)(x, t) in Eq. (31) almost surely

as the total sampling number N(i) → ∞.

B. Approximate method based on curve fitting

Here, we consider an approximate method of the ISOC-

PI based on curve fitting. Let L(i) denote the total number

of suboptimal paths at the i th iteration. In this method, we

generate L(i) suboptimal paths by repeating the i th iteration

of the ISOC-PI method L(i) times. Let ξ̄l(i) be the l th path

of the L(i) suboptimal paths. Then, we have L(i) time series

data

∂J(i)(x, t)

∂xj

∣

∣

∣

x=ξ̄l
(i)

(t)
, t ∈ [0, T ], (l = 1, . . . , L(i)).

for each j, (j = 1, . . . , n). From those data, we construct

an approximation of ∂J(i)(x, t)/∂xj , which will be used for

the next iteration, by a polynomial curve fitting. By setting

the highest orders Ox and Ot of x and t, a polynomial curve

fitting method gives polynomial coefficients Ki,j
ox1...oxnot

, and

we obtain the following polynomial approximation:

∂J(i)(x, t)

∂xj
≈

∑

ox1 +. . .+oxn ≤Ox

ot ≤Ot

Ki,j
ox1...oxnot

x
ox1
1 . . . x

oxn
n tot .

(55)

C. Approximate method based on local quadratic approxima-

tion of the value function

Next, we consider an approximate method of the ISOC-

PI based on local quadratic approximation of the value func-

tion. A local quadratic approximation technique of the value

function is proposed in [12]. The literature [23] uses our

previous version of the ISOC-PI, which is reported in [24],

and it provides an approximate method based on [12] for

our method [24]. However, the approximate method in [23] is

insufficient in that it does not consider the noise effect at all.

This subsection is motivated by the two literature [12], [23],

and we provide some modification of them for an approximate

method of the ISOC-PI. The resultant recurrence formulae

are slightly different from those in [12]. Our formulation is

written in a continuous-time manner instead of a discrete-time

manner. Besides, the authors in [12] consider the deviations

around a deterministic nominal trajectory, while we consider

the deviations around a stochastic sample path. This causes

different treatments of some noise terms and the terminal

condition in deriving the recurrence formulae.

Here, suppose that an i th suboptimal path on t ∈ [0, T ]
has been already obtained. In this subsection, we consider an

arbitrary iteration i, and drop the subscript (i) for notational

simplicity. Let ū and ξ̄ denote a pair of sequences of the

optimal control input and optimal path on t ∈ [0, T ]. The

objective here is that for given (x, t), we approximately

calculate the partial derivative ∂J(x, t)/∂x by using the data

ū and ξ̄. The local quadratic approximation describes J(x, t)
as J(x, t) ≈ J(ξ̄(t), t) + δJ(δx, t; ξ̄, ū) with δx := x −
ξ̄(t), where δJ(δx, t; ξ̄, ū) is represented as δJ(δx, t; ξ̄, ū) =
1/2δx⊤S(t; ξ̄, ū)δx + s(t; ξ̄, ū)⊤δx + s(t; ξ̄, ū) with some

S(t; ξ̄, ū) ∈ R
n×n, s(t; ξ̄, ū) ∈ R

n and s(t; ξ̄, ū) ∈ R. Based

on the arguments in [12], we can derive recurrence formulae

of S(t; ξ̄, ū), s(t; ξ̄, ū) and s(t; ξ̄, ū). For notational simplicity,

we define the followings:

v(x, u, t) := V (x, t) +
1

2
u⊤R(x, t)u

F(x, u, t) := f(x, t) + g(x, t)u

G(t; ξ̄, ū) :=
∂2v(ξ̄(t), ū(t), t)

∂u∂x
dt+

(

∂F(ξ̄(t), ū(t), t)

∂u
dt

)⊤

× S(t; ξ̄, ū)

(

∂F(ξ̄(t), ū(t), t)

∂x
dt+ In

)

H(t; ξ̄, ū) :=
∂2v(ξ̄(t), ū(t), t)

∂2u
dt+

(

∂F(ξ̄(t), ū(t), t)

∂u
dt

)⊤

× S(t; ξ̄, ū)

(

∂F(ξ̄(t), ū(t), t)

∂u
dt

)

g(t; ξ̄, ū) :=
∂v(ξ̄(t), ū(t), t)

∂u

⊤

dt+

(

∂F(ξ̄(t), ū(t), t)

∂u
dt

)⊤

× s(t; ξ̄, ū),

where we denote ū(ξ̄(t), t) as just ū(t). Then, the recurrence
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formulae are given by

− dS =
∂2v

∂x2
dt+

(

∂F

∂x
dt

)⊤

S

(

∂F

∂x
dt

)

+

(

∂F

∂x
dt

)⊤

S

+S

(

∂F

∂x
dt

)

−G⊤H−1G+

r
∑

j,k=1

∂[h]:,j
∂x

⊤

S
∂[h]:,k
∂x

[Q]k,j dt,

S(T ; ξ̄, ū) =
∂2φ(ξ̄(T ))

∂x2
(56)

− ds =
∂v

∂x

⊤

dt+

(

∂F

∂x
dt

)⊤

s−G⊤H−1g,

s(T ; ξ̄, ū) =
∂φ(ξ̄(T ))

∂x

⊤

(57)

− ds = −
1

2
g⊤H−1g , s(T ; ξ̄, ū) = 0. (58)

Here, for a matrix A, [A]j,k denotes the (j, k) th element of

A and [A]j,: and [A]:,k denote the j th row and k th column,

respectively.

After the i th iteration of ISOC-PI, for a resultant pair of

sequences ξ̄(i) and u∗(i) on t ∈ [0, T ], we can calculate the

corresponding S(t; ξ̄(i), u
∗
(i)), s(t; ξ̄(i), u

∗
(i)) and s(t; ξ̄(i), u

∗
(i))

from Eqs. (56), (57) and (58). Then, for a given (x, t),
∂J(i)(x, t)/∂x is approximately calculated as

∂J(i)(x, t)

∂x

⊤

≈
∂J(i)(ξ̄(i)(t), t)

∂x

⊤

+ S(t; ξ̄(i), u
∗
(i))(x − ξ̄(i)(t)) + s(t; ξ̄(i), u

∗
(i)). (59)

D. Algorithm of ISOC-PI with Monte Carlo sampling

We provide a concrete algorithm named ISOC-PI with

Monte Carlo. Here, consider the plant system (9) and the cost

function Γ(x0, u0:T , 0) in (5). Suppose that the conditions for

the existence and uniqueness of the solutions mentioned in

Subsection II-A, and Assumption 1 hold.

[Algorithm 1:] (ISOC-PI with Monte Carlo)

Given: A positive integer NI as the the number of iterations

of ISOC-PI. A sufficiently short sampling period dt > 0
for the plant dynamics (1). The terminal time T := NT dt
with some positive integer NT . An initial function J(0) such

that it is a class C2,1 and ‖∂J(0)(x, τ)/∂x
c‖2 < ∞, ∀x∈

R
n, τ ∈{0, dt, . . . , T }.

If the curve fitting in Subsection IV-B is used, positive

integers Ox and Ot as the highest orders of x and t, and

a positive integer L(i) as the total number of suboptimal

paths.

Obtain: Optimal path ξ̄, solution J(ξ̄(τ), τ), its partial deriva-

tive ∂J(ξ̄(τ), τ)/∂xc and controller u∗(ξ̄(τ), τ)
for i = 1 to NI do

Choose the total number of samples N(i) > 0, and set

ξ̄(i)(0) = x0.

Execute the following procedure, and obtain an i th

suboptimal path ξ̄(i), solution J
N(i)

(i) , its partial derivative

∂J
N(i)

(i) /∂xc and controller u
∗N(i)

(i) of the i th iteration of

ISOC-PI (24):

for j = 1 to NT do

for k = 1 to N(i) do

Generate a sample ξk(τ), τ = j dt, . . . , NT dt un-

der the i th sample generating dynamics (29) with

ξk(j dt) = ξ̄(i)(j dt).
if i > 1 and the curve fitting in Subsection IV-B is

used then

Use Eq. (55) to calculate ∂J(i−1)(ξ
k(τ), τ)/∂xc.

else if i > 1 and the local quadratic approximation

in Subsection IV-C is used then

Use Eq. (59) to calculate ∂J(i−1)(ξ
k(τ), τ)/∂xc.

end if

end for

Calculate Ŝk
(i)(ξ̄(i)(j dt), j dt), J

N(i)

(i) (ξ̄(i)(j dt), j dt),

∂J
N(i)

(i) (ξ̄(i)(j dt), j dt)/∂x
c and

u
∗N(i)

(i) (ξ̄(i)(j dt), j dt) by using Eqs. (51), (52),

(53) and (54), respectively.

Observe ξ̄(i)((j + 1) dt) from the plant dynamics (1)

with ξ̄(i)(j dt) and u = u
∗N(i)

(i) (ξ̄(i)(j dt), j dt).

ξ̄(i)(j dt) ⇐ ξ̄(i)((j + 1) dt)
end for

if the curve fitting in Subsection IV-B is used then

Repeat the above procedure L(i) times, and calculate

the polynomial coefficients Ki,:
ox1...oxnot

.

end if

end for

return ξ̄ ⇐ ξ̄(NI), J ⇐ J
N(NI )

(NI)
, ∂J/∂xc ⇐ ∂J

N(NI )

(NI)
/∂xc

and u∗ ⇐ u
∗N(NI)

(NI)

V. NUMERICAL EXAMPLES

This section exhibits applications of ISOC-PI. First, in Sub-

section V-A, we start with an illustrative toy problem. Here,

we consider a one-dimensional stochastic bilinear system in

terms of the state and the noise. Second, in Subsection V-B, we

consider a one-link robot manipulator in the presence of noise.

All simulations in this section have been executed by using

the Euler-Maruyama method with the time step of 1×10−3 s.

The control is implemented via a sample and zero-order hold

with the sampling interval of 1× 10−2 s.

A. Illustrative toy problem of a one-dimensional stochastic

bilinear system

Since it is generally difficult to analytically calculate the

value function and optimal controller of a stochastic optimal

control problem, we start with an illustrative toy problem. Let

us consider the following one-dimensional stochastic bilinear

system in terms of the state and the noise:

dx = gu dt+ hxdw,

where x, u, w ∈ R, and g and h are constants. The cost

function to be minimized is defined as

EP

{

Λex(T )
2

2
+

∫ T

0

Ru(τ)2

2
dτ

∣

∣

∣

∣

∣

x(0)=x0

}

,

where Λe and R are positive constants, respectively. Note that

the conventional path integral method mentioned in Subsection

II-B is not applicable to this problem, since Assumption 2 does

not hold.
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The corresponding SHJB equation (8) is obtained as

∂J

∂t
−
1

2

g2

R

(

∂J

∂x

)2

+
1

2

∂2J

∂x2
h2x2Q = 0, J(x, T )=

Λex
2

2
,

(60)

where Q > 0 denotes the covariance in Eq. (2). We can

analytically solve the SHJB equation (60), and the solution

J(x, t) is given by

J(x, t) =


















1

2

ΛeRh
2Q

Λeg2−eh
2Q(t−T )(Λeg2−Rh2Q)

x2, if Rh2Q≤Λeg
2

1

2

ΛeRh
2Q

Λeg2+eh
2Q(t−T )(Rh2Q−Λeg2)

x2, Otherwise.

(61)

Thus, the optimal controller is followed from Eqs. (7), (61) as

u∗(x, t) =


















−
Λegh

2Q

Λeg2−eh
2Q(t−T )(Λeg2−Rh2Q)

x, if Rh2Q ≤ Λeg
2

−
Λegh

2Q

Λeg2+eh
2Q(t−T )(Rh2Q−Λeg2)

x, Otherwise.

(62)

We compare the sample paths with controllers given by the

proposed ISOC-PI with Algorithm 1 with the curve fitting, and

with the optimal controller (62), respectively. The concrete

parameters used in the simulation are g = 1, h = 1,

Q = 1, Λe = 1 and R = 0.2. Those parameters imply that

Rh2Q ≤ Λ2g
2 holds in Eqs. (61) and (62). We execute 5

iterations of the proposed method (NI = 5), and this set of

iterations is referred to as 1 optimization trial. We repeat 10

optimization trials. The total sample number at each iteration

is N(i) = 5000 (i = 1, . . . , 5). The terminal time is T = 0.5
s, the initial condition is x(0) = 2, and the initial function is

chosen to be J(0)(x, t) ≡ 0. Figure 1 shows the first iteration

results in one of the 10 optimization trials, and the optimal

ones under the same noise sequence, respectively. The top

figures exhibit the time responses of the resultant path under

the first suboptimal controller, and the optimal path under the

optimal controller (62), respectively. The time sequences of

the first suboptimal input and the optimal one are shown in

the middle figures, respectively. The bottom figures exhibit

the time sequences of the value function at the first iteration

J(1)(x, t) and the true value function J(x, t) in Eq. (61),

respectively. Figure 2 shows those results in the fifth iteration

in the same optimization trial as well as Fig. 1. Figure 3

displays changes in the value function at the initial condition

J(i)(0, x0) versus iterations i = 1, . . . , 5 in the solid line

with circle. It also shows the average of each J(i)(0, x0) of

10 samples with 95% CI (confidence interval) in the dotted

line with circle. Besides, the solid line with diamond exhibits

the optimal value of the true value function J(0, x0) in Eq.

(61). Finally, in Fig. 4, the left figure exhibits the surface of

∂J(x, t)/∂x on −5 ≤ x ≤ 5 and 0 ≤ t ≤ T . The right figure

shows an approximated surface generated by a polynomial

curve fitting of the first order of x and the third order of

t to 10 time sequences of ∂J(5)(x, t)/∂x along the sample

paths at the fifth iteration of 10 optimization trials, which

means Ox = 1, Ot = 3 and L(i) = 10(i = 1, . . . , 5). From
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Fig. 1. The first iteration results (left), and the optimal ones under the same
noise sequence (right)
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Fig. 2. The fifth iteration results (left), and the optimal ones under the same
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Fig. 3. The changes in J(i)(0, x0) versus iterations i = 1, . . . , 5 (solid
line with circle), the average of each J(i)(0, x0) of 10 samples with 95% CI
(dotted line with circle), and the optimal value of J(0, x0) (solid line with
diamond)

Figs. 1 and 2, the controller performance is improved as the

iteration proceeds. At the fifth iteration, the time history of

the resultant path exhibits good consistency with the optimal

path, and the time history of the value function is also close

to that of the true value function. Although the high frequency

components between the resultant controller and the optimal

one are different, their low frequency components behave

similarly. Figure 3 shows that the value function monotonically

decreases and converges along the iteration. It is the reason



0018-9286 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2016.2547979, IEEE
Transactions on Automatic Control

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 20XX 11

0

0.2

0.4
0.5

−5

0

5
−2

−1

0

1

2

tx

a
n

a
ly

ti
c 

D
JD

x

0

0.2

0.4
0.5

−5

0

5

−2

−1

0

1

2

tx

a
p

p
ro

xi
m

a
te

d
 D

JD
x

Fig. 4. The surface of ∂J(x, t)/∂x (left), and that generated by a polynomial
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TABLE I
PHYSICAL PARAMETERS

m Mass of the link [kg]
l Length of the link [m]
lc Length to the center of gravity [m]
I Inertia of the link [kgm2]
g Gravity acceleration [m/s2]

why the error remains compared to the true value function

that we use finite sample numbers in optimization trials in

this simulation. Figure 4 exhibits that the resultant surface

represents the true ∂J(x, t)/∂x well. From Fig. 4, it is fairly

expected that we can generate an approximated surface of

∂J(x, t)/∂x and therefore the optimal feedback controller.

Once such a surface is generated, we can immediately obtain

the optimal control input at any x and t as mentioned in

Subsection IV-B.

B. Swing-up control of a one-link robot manipulator

Let us consider a one-link robot manipulator moving on a

vertical plane depicted in Fig. 5. As in the figure, the joint

angle of the link is denoted by θ, and the control torque is

denoted by u, respectively. The physical parameters of this

apparatus are summarized in Table I.

z

x

g
θ

u
l

cl

m, I

Fig. 5. One-link robot manipulator

As the control objective, we consider the swing-up control

of the manipulator. We aim to obtain the optimal controller

such that the manipulator swings up from the pendant position

to the upright position, and remains at this position even in

the presence of noise.

The dynamics of this apparatus with the state x := (θ, θ̇)⊤

is described by a system of the form (9) as

dx =

(

x2
mlcg sin x1

ml2c+I

)

dt+

(

0
1

ml2c+I

)

u dt+

(

01×r

hc(x, t)

)

dw.

(63)

In this simulation, we choose the noise port hc(x, t) ∈ R
1×r

as

hc(x, t) =
1

ml2c + I

(

kh1 kh2x2
)

(64)

with r = 2 and some constants kh1 and kh2. Eq. (64) describes

persistent system noise and uncertainty in viscous friction.

Regarding to the aforementioned control objective, the cost

function to be minimized is defined as

EP

{

1

2
x(T )⊤Λex(T )+

∫ T

0

1

2
x(τ)⊤Λxx(τ)

+
1

2
Ru(τ)2 dτ

∣

∣

∣

∣

∣

x(0)=x0

}

, (65)

where symmetric positive definite matrices Λe and Λx, and

a positive constant R denote weighting matrices and constant

with respect to the terminal, instantaneous and input costs,

respectively. As in the case of the previous example, the

conventional path integral method is not applicable to this

problem.

Although the corresponding SHJB equation is obtained from

Eq. (8), it cannot be analytically solved unlike the previous

example. In this example, we generate an optimal controller by

using the ISOC-PI with Algorithm 1 with the local quadratic

approximation, and we investigate behaviors of the resultant

optimal paths. We also design the LQG controller for the

linearized system of Eq. (63) around the origin, and compare

the performance of ISOC-PI and that of LQG. The concrete

parameters used in the simulation are m=1 kg, l=1, lc=0.5
m and I=8.3× 10−2 kgm2. We choose the parameters of the

noise port (64) as kh1 = 1 and kh2 = −0.1. The covariance

matrix of the noise is set to Q = I2. The design parameters

are chosen as Λx = diag{1, 0.1}, Λe = diag{4, 4} and

R = 2, respectively. First, we solve the LQG problem for the

linearized system and the same cost function (65), and obtain

a value function JLQG and a corresponding LQG controller

uLQG. Then, we execute 5 iterations of the proposed method,

and this set of iterations is referred to as 1 optimization trial.

We repeat 10 optimization trials. The total sample number at

each iteration is N(i) = 8000 (i = 1, . . . , 5). The terminal

time is T = 1.5 s, the initial condition is x(0) = (−π, 0)⊤,

which represents the pendant position, and the initial function

is chosen to be J(0)(x, t) = JLQG(x, t).
The simulation results are shown in Figs. 6 to 8. Figure 6

displays changes in the value function at the initial condition

J(i)(0, x0) versus iterations i = 1, . . . , 5 in the solid line with

circle. It also shows the average of each J(i)(0, x0) of 10

samples with 95% CI in the dotted line with circle. From Fig.

6, since the value function monotonically decreases until the

fourth iteration and then slightly increases at the fifth iteration

because of using finite sample numbers, we adopt the fourth
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Fig. 8. The fourth iteration results of u∗(x, t) and J(x, t) (left), and those
with the LQG controller under the same noise sequence (right)

controller u∗(4) as the resultant controller. We confirm that the

resultant controllers from the 10 optimization trials achieve

a similar performance as is implied from the average result

in Fig. 6. Figures 7 and 8 show the fourth iteration results

in one of the 10 optimization trials and the results with the

LQG controller. The top figures in Fig. 7 exhibit the time

response of θ under the resultant controller, and that under the

LQG controller, respectively. The time sequences of θ̇ and that

with the LQG controller are respectively shown in the bottom

figures. The top figures in Fig. 8 exhibit the time sequences

of the resultant controller and that of the LQG controller,

respectively. The bottom figures show the time sequences of

the resultant value function, i.e., J(4)(x, t), and the value

function obtained from the LQG, JLQG(x, t), respectively.

Figures 7 and 8 show that the resultant controller obtained

by ISOC-PI has a better performance with less control input

than the LQG controller.

VI. FURTHER PROGRESSES

Although this paper only considers a nonlinear stochastic

optimal control with a fixed time interval, recently we have

had further progresses of this framework. Some of them has

been already reported in conference proceedings [25], [26].

First, we have succeeded to deal with other types of optimal

control problems: infinite time interval optimal control with

average cost and with discounted cost, and first exit time opti-

mal control, where the terminal time is described by a Markov

random time. Second, we have strictly taken input saturations

with prescribed saturation functions into account in nonlinear

stochastic optimal control. Here, we have newly derived an

SHJB equation considering input saturations based on the

argument in [27], and provided an iterative solution method for

the resultant equation. Third, we have also provided a solution

method for a nonlinear stochastic H∞ control problem [28],

[29] based on our framework. Thus, the proposed iterative

solution method for SHJB equation based on path integral

analysis has a potential for solving various types of nonlinear

stochastic control problems. The results provided in this paper

are fundamental to those extensions.

Besides, one of the authors has demonstrated a real time

performance for high dimensional systems in [30], where

a real time application of the path integral control to a

20 dimensional control task with 10 quadrotors using about

10.000 samples per control step. The report [30] shows that

this method is well adapted to parallel computing and the

computation can be easily accelerated using GPUs.

VII. CONCLUSION

This paper has proposed a new iterative solution method

for nonlinear stochastic optimal control problems based on

path integral analysis. First, we have provided an iteration law

for solving a corresponding SHJB equation to a stochastic

optimal control problem. Each iteration procedure of the

proposed method is represented by a Cauchy problem for

a linear parabolic PDE, and its explicit solution is given

by the Feynman-Kac formula. Second, we have derived a

suboptimal feedback controller at each iteration by using

the path integral analysis. The resultant controller forms the

expectation of the noise under some probability of the path

cost, and is effectively calculated by using several sampling

methods. Third, the convergence property of the proposed

method has been investigated, and convergence conditions

have been clarified. Under these conditions, it is shown that

the sequence of solutions for the proposed iteration converges,

and the SHJB equation is satisfied. Since this result is a

qualitative convergence property, investigation of quantitative

properties such as the estimates of necessary samples and steps

is an important future work. Finally, numerical simulations

demonstrate the effectiveness of the proposed method.



0018-9286 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2016.2547979, IEEE
Transactions on Automatic Control

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 20XX 13

APPENDIX A

PROOF OF THEOREM 1

We prove the first assertion of the theorem. Here, fix an

arbitrary integer i. Since the PDE in the i th iteration of

ISOC-PI (24) relates to the infinitesimal operator L0 in Eq.

(3) associated with the i th sample generating dynamics (29),

the stochastic representation of its solution J(i)(x, t) is given

by Eqs. (27) and (28) from the Feynman-Kac formula ([6],

Theorem 1.3.17).

Then, we prove the other assertion of the theorem. We derive

the suboptimal controller u∗(i)(x, t) by using the path integral

analysis. Consider the probability p̂(i)(ξt:T |x, t), and then it

can be represented by the state transition probability as

p̂(i)(ξt:T |x, t)= lim
dt→0

T−dt
∏

s=t

p̂(i)(ξ(s+dt), s+dt|ξ(s), s), ξ(t)=x.

Since the dynamics (29) is partitioned into the directly noise-

driven subsystem and the other one, according to the same

argument as in Eq. (17), the state transition probability can

also be separated, and therefore there exists a proportionality

constant kp(i) satisfying

p̂(i)(ξt:T |x, t) = kp(i)p̂(i)(ξ
c
t:T |x, t). (66)

Then, from Eqs. (27) and (66), the solution to the i th iteration

of ISOC-PI in Eq. (24) is rewritten as

J(i)(x, t) = kp(i) lim
dt→0

∑

ξt+dt:T

[(

T−dt
∏

s=t

p̂(i)(ξ
c(s+dt), s+dt|

ξ(s), s)

)(

T−dt
∑

s=t

V̂(i)(ξ(s), s) dt+ φ(ξ(T ))

)]

. (67)

By using Eqs. (66) and (67), we can calculate ∂J(i)(x, t)/∂x
c

as

∂J(i)(x, t)

∂xc
=kp(i) lim

dt→0

∑

ξt+dt:T

[

∂

∂xc

(

T−dt
∏

s=t

p̂(i)(ξ
c(s+dt),

s+dt|ξ(s), s)

)(

T−dt
∑

s=t

V̂(i)(ξ(s), s) dt+ φ(ξ(T ))

)

+

(

T−dt
∏

s=t

p̂(i)(ξ
c(s+dt), s+dt|ξ(s), s)

)

∂

∂xc

(

T−dt
∑

s=t

V̂(i)(ξ(s), s) dt

)]

= kp(i) lim
dt→0

∑

ξt+dt:T

[

∏T−dt
s=t p̂(i)(ξ

c(s+dt), s+dt|ξ(s), s)

p̂(i)(ξc(t+dt), t+dt|x, t)

×

(

T−dt
∑

s=t

V̂(i) dt+ φ(ξ(T ))

)

∂p̂(i)(ξ
c(t+dt), t+dt|x, t)

∂xc

+

(

T−dt
∏

s=t

p̂(i)(ξ
c(s+dt), s+dt|ξ(s), s)

)

∂V̂(i)(x, t) dt

∂xc

]

= lim
dt→0

∑

ξt+dt:T

[

kp(i)

T−dt
∏

s=t

p̂(i)(ξ
c(s+dt), s+dt|ξ(s), s)

×

{(

T−dt
∑

s=t

V̂(i) dt+ φ(ξ(T ))

)

∂ log p̂(i)(ξ
c(t+dt), t+dt|x, t)

∂xc

+
∂V̂(i)(x, t) dt

∂xc

}]

= lim
dt→0

Ep̂(i)(ξt:T |x,t)

{(

T−dt
∑

s=t

V̂(i) dt+ φ(ξ(T ))

)

×
∂ log p̂(i)(ξ

c(t+dt), t+dt|x, t)

∂xc
+
∂V̂(i)(x, t) dt

∂xc

}

. (68)

We continue to calculate the argument of the expectation on

the right hand side of the last equality in Eq. (68). Eqs. (19)

and (29) yield

∂ log p̂(i)(ξ
c(t+dt), t+dt|x, t)

∂xc
= −

1

2 detΞc

∂ detΞc

∂xc

+
1

dt

(

ξc(t+ dt)− xc − f̂ c
(i) dt

)⊤

Ξc−1

(

Inc
+
∂f̂ c

(i)

∂xc
dt

)

−
1

2 dt

(

ξc(t+dt)−xc−f̂ c
(i)dt

)⊤

×
∂Ξc(y, t)−1(ξc(t+dt)−xc−f̂ c

(i)dt)

∂yc

∣

∣

∣

∣

∣

y=x

= −
1

2

(

tr

{

Ξc−1 ∂Ξ
c

∂xc1

}

, . . . , tr

{

Ξc−1 ∂Ξ
c

∂xcnc

})

+
1

dt

(

ξc(t+ dt)− xc − f̂ c
(i) dt

)⊤

Ξc−1

(

Inc
+
∂f̂ c

(i)

∂xc
dt

)

−
1

2 dt

(

ξc(t+dt)−xc−f̂ c
(i)dt

)⊤

×
∂Ξc(y, t)−1(ξc(t+dt)−xc−f̂ c

(i)dt)

∂yc

∣

∣

∣

∣

∣

y=x

, (69)

where Ij represents j×j identity matrix. Here, the last equality

comes from the fact that for any nonsingular matrix A(α) with
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a scalar parameter α, the following equality holds:

d (detA(α))

dα
= detA(α) tr

{

A(α)−1 dA(α)

dα

}

.

From Eqs. (29), (68) and (69), we have

∂J(i)(x, t)

∂xc
dt = Ep̂(i)(ξt:T |x,t)

{(

∫ T

t

V̂(i) dτ + φ(ξ(T ))

)

×

(

−
1

2

(

tr

{

Ξc−1 ∂Ξ
c

∂xc1

}

, . . . , tr

{

Ξc−1 ∂Ξ
c

∂xcnc

})

dt+

dw(t)⊤hc⊤Ξc−1−
1

2
dw(t)⊤hc⊤

∂Ξc(y, t)−1hc dw(t)

∂yc

∣

∣

∣

∣

∣

y=x

)}

+ o(dt), (70)

where o(·) denotes the landau notation.

Now, we consider the j th element of the last term in the

expectation in Eq. (70). We have

Ep̂(i)(ξt:T |x,t)

{

−
1

2

[

dw(t)⊤hc⊤

×
∂Ξc(y, t)−1hc(x, t) dw(t)

∂yc

∣

∣

∣

∣

∣

y=x

]

j

}

=
1

2
EP

{

dw(t)⊤hc⊤Ξc−1 ∂Ξ
c(x, t)

∂xcj
Ξc−1hc dw(t)

∣

∣

∣

∣

∣

x, t

}

=
1

2
tr

{

hc⊤Ξc−1 ∂Ξ
c(x, t)

∂xcj
Ξc−1hcEP

{

dw(t) dw(t)⊤
∣

∣

∣
x, t
}

}

=
1

2
tr

{

Ξc−1 ∂Ξ
c(x, t)

∂xcj
Ξc−1hcQhc⊤ dt

}

=
1

2
tr

{

Ξc−1 ∂Ξ
c(x, t)

∂xcj

}

dt, (71)

where the first equality comes from the relation

dA(α)−1/ dα = −A(α)−1(dA(α)/ dα)A(α)−1, and the

third equality comes from Eq. (2) with the fact that dw(t)
is independent of (x, t). Since Eq. (71) implies that the first

term and the last one in the last equality in Eq. (69) cancel

out, Eq. (70) is reduced to

∂J(i)(x, t)

∂xc

⊤

dt = Ξc(x, t)−1hc(x, t)

× Ep̂(i)(ξt:T |x,t)

{(

∫ T

t

V̂(i)(ξ, τ) dτ + φ(ξ(T ))

)

dw(t)

}

,

which implies Eq. (30). Therefore, the i th suboptimal con-

troller is obtained as

u∗(i)(x, t) dt = −R(x, t)−1gc(x, t)⊤Ξc(x, t)−1hc(x, t) (72)

× Ep̂(i)(ξt:T |x,t)

{(

∫ T

t

V̂(i)(ξ, τ) dτ + φ(ξ(T ))

)

dw(t)

}

.

Since Eq. (72) coincides with Eq. (31), the other assertion of

the theorem is proved.
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