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Abstract. We study the problem of joint estimation and control for
a small example for which we can numerically compute the exact so-
lution. We demonstrate, that optimal exploration is achieved through
symmetry breaking in the Bellman equation; that optimal actions can
be discontinuous in the beliefs; and that the optimal value function
is typically non-differentiable. This could pose a challenge for the
conventional design of value function approximations for solving
POMDPs.

1 Introduction
The problem of control theory and reinforcement learning is to chose
actions that optimize future rewards. When the state transition prob-
abilities and the rewards are known, the optimal action of the agent3

can be computed using a dynamic programming argument that re-
sults in the Bellman equation. However, when parts of this informa-
tion are not available, a complex situation arises because now the
agent can choose between actions that optimize expected reward and
actions that are expected to gain information. This presents the agent
the problem of finding the right compromise between probing and
control, a problem which is known in control theory as dual control
and was originally introduced by [3] (see [4] for a recent review).

Any dual control problem can be written as an ordinary control
problem by augmenting the state space with parameters that quan-
tify the belief of the agent in the world. This approach is known
as POMDP and BAMDP in the AI community and is closely re-
lated to model-based reinforcement learning. Augmentation of the
state space with a belief parameter provides a natural framework for
reasoning about exploration/exploitation trade-offs which are found
within many Bayesian reinforcement problems. An optimal balance
for this exploration/exploitation trade off can be found by calculat-
ing the optimal policy within the POMDP framework. However, the
calculation of these optimal policies turns out to be notoriously hard,
because policies scale exponentially with the time horizon. Several
authors have proposed heuristic methods such as [2, 7], solving the
problem of intractability by introducing parameterized value func-
tion approximations over the extended state space.

In the control literature, the problem of parameter estimation is
also well-known. For linear dynamical systems with known param-
eters, unobserved states and quadratic costs, the problem is absent.
One refers to these systems as certainty equivalent [9], which means
that the optimal control can be computed as if the state were observed
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and given by the expected (filtered) estimate of the past observations.
However, for the general dual control problem, certainty equivalence
does not hold. A particular action selection strategy is called probing,
where random, i.e. non-goal directed, actions are proposed with the
objective to learn the system parameters. Although it is argued con-
vincingly that probing is an effective way to obtain efficient dual con-
trol strategies, the optimal probing strategy is typically not known.

In this paper, we study a very simple dual control problem in con-
tinuous space with one binary unknown parameter and a finite time
horizon. Variants of this problem have been studied before [5, 11, 10]
and various heuristics for this problem have been proposed, but the
optimal solution has not been computed before. Because of the sim-
plicity of the control problem, we can gain valuable insight in the
optimal exploration/exploitation behavior, necessary to find the opti-
mal solution.

The studied example will show several features that are impor-
tant for the design of effective exploration strategies for POMDPs,
Bayesian RL or dual control.

• We will demonstrate that the optimal exploration in this model
is facilitated by a symmetry breaking mechanism. The symmetry
breaking separates two phases: a phase where there is sufficient
knowledge about the control task to exploit. In this phase the min-
imization over actions is convex and the optimal action is unique
(in this example) and closely resembles the optimal action when
there is complete knowledge. In the other phase there is insuffi-
cient knowledge to exploit. In this phase many actions are possi-
ble, each of them rather unrelated to reaching the goal. The mini-
mization over actions is non-convex and exploratory actions arise
as multiple local minima in the Bellman equation. The deepest
of these minima is a particular compromise between steering and
probing, depending on the state (distance to the goal), the hori-
zon time, the noise and the cost function. The symmetry breaking
is not controlled by an external parameter but arises dynamically
when the Bellman equation is iterated.

• As a result of the non-uniqueness of the choice of action, the
cost-to-go function J(x, θ, t) is non-smooth. In our example
J(x, θ, t) has discontinuous partial derivatives to θ, with this non-
differentiability exactly occurring in the regions of no/low knowl-
edge states. This has important consequences for a function ap-
proximation approach to POMDPs. Common function approxi-
mators use smooth C∞ functions and these will encounter diffi-
culty to model the non-smooth value function. The example shows
that these difficulties can be encountered in the no/low knowledge
states, which are of key importance for exploration.

• The model displays probing, which we define as control actions
that are stronger than needed if full information were available.
However, probing does not only depend on the amount of (lack



of) knowledge, but is shown to also depend in a complex way on
the state of the system and the horizon time.

In section 2 we introduce the dual control problem, we derive the
corresponding Bellman equation and describe how to solve it. In sec-
tion 3 we present the results of our simulations for a task to reach an
configuration at the horizon time and for a tracking task where the
agent must stay as close as possible to a target location for the pe-
riod up to the horizon time. Finally we will discuss the results of our
analysis and their relevance in section 4.

2 The stochastic optimal control problem

We consider the following discrete-time continuous system

xt+1 = xt + but + ξt (1)

where xt is the location of the agent at time t, ut is the control
action, b = ±1 is an unknown binary parameter and ξt is a Gaus-
sian stochastic variable with a mean zero and variance ν. Given a
sequence of controls u0:T−1 over a future time interval 1, . . . , T and
an initial position x0, one can define a probability distribution over
future trajectories p(x1:T |u0:T−1, x0). The control cost is given by
the expectation value

C(x0, u0:T−1) =

⟨
Fx2

T +

T−1∑
t=0

Gx2
t +Ru2

t

⟩
(2)

where F,G,R and constants. We will study the tracking case
(F = 0, G = 1) and the end cost case (F = 1, G = 0) in sec-
tion 3,

When b is known, the control problem is of the linear quadratic
type and the optimal solution can be easily computed. When b is not
known (but fixed), the problem is an instance of a POMDP. It is then
effective to take a large control step so that but is large compared to
the ξt so that based on ut, xt and xt+1 a reliable estimate of b an be
computed.

The uncertainty regarding b can be modeled by defining a prob-
ability distribution over p(b|θ) that summarizes our belief about
the value of b. Since b is binary, we take p(b|θ) = σ(bθ), with
σ(x) = (1 + exp(−2x))−1. If θ = 0, we believe that b = ±1
with equal probability. If θ = ±∞, we are certain about the value of
b. Thus, we trade an unknown parameter b for a known distribution.

By observing the output xt+1 after the control action ut we can
update the belief parameter using the posterior obtained from Bayes’s
rule:

pt+1(b) = σ(bθt+1) = p(b|xt+1, xt, ut)

∝ p(xt+1|xt, ut)pt(b)

∝ exp

(
− (xt+1 − xt − but)

2

2ν

)
σ(bθt)

from which the following update rule for θt+1 can be derived:

θt+1 = θt +
1

ν
(xt+1 − xt)ut (3)

This update ensures that the belief about the control gain is adapted
after every control action and gives the system the possibility to
’learn’ from its actions. So at any given time t the state of the dynam-
ical system is characterized by (xt, θt). The initial state is (x0, θ0)
and θ0 defines our initial belief about the value of b.

Eq. 2 becomes

C(x0, θ0, u0:T−1) =

⟨
Fx2

T +

T−1∑
t=0

Gx2
t +Ru2

t

⟩
(4)

where the expectation is now over both the noise and the beliefs.
In this way, we have converted the dual control problem in x in an
ordinary control problem in (x, θ).

The standard approach to derive the Bellman equation is to define
the cost-to-go or value function

Jt(xt, θt) = min
ut:T−1

C(xt, θt, ut:T−1) (5)

that solves the control problem from an intermediate time t until T .
Note, that J in general depends on time. The Bellman equation re-
sults from a dynamic programming argument that relates Jt(x, θ) to
Jt+1(x, θ) and is given by [1]

Jt(xt, θt) = min
ut

(
Ru2

t +
⟨
Gx2

t+1 + Jt(xt+1, θt+1)
⟩
xt,θt

)
,

t = 0, . . . , T − 1
(6)

where the expectation value ⟨⟩xt,θt denotes that it is evaluated
conditioned on the current state xt, θt using Eqs. 1 and 3. Eq. 6 be-
comes

Jt(xt, θt) = min
ut

(
Ru2

t +
∑
b=±1

σ(bθt)

∫
dξN (ξ|0, ν)

(
G(xt + but + ξ)2 + Jt+1(xt + but + ξ, θt +

1

ν
(but + ξ)ut)

))
(7)

Eq. 7 is solved with boundary condition JT (x, θ) = Fx2. The
numerical details are given in the Appendix.

3 Numerical results
Using the theoretical framework derived in the previous section we
can now analyse the optimal solutions to a end cost problem and a
tracking problem for finite time horizons.

3.1 End cost problem
3.1.1 Optimal control

We will first study the case with only end costs, i.e. F = 1, G =
0. The end cost x2 forces the agent to reach the end goal x = 0
with minimal control cost. In the limit that θ → ∞, the agent is
fully certain that b = 1 and the dual control problem reduces to an
ordinary control problem for which the optimal control solution can
be easily computed and is given by

u∗
t (x, θ = ∞) = − x

R+ T − t
, t = 0, . . . , T − 1 (8)

The optimal control obtained from our simulations with arbitrary θ
is analyzed relative to this certain optimal control, by defining the
relative control

γt(x, θ) =
u∗
t (x, θ)

u∗
t (x,∞)

(9)

Deviation of the relative control from the value 1, indicates how the
optimal dual control differs from the ordinary control solution.



The optimal control is shown in fig. 1 for various x as a function of
the θ and the time-to-go. When the system is certain about the value
of b (large θ), the control approaches the control Eq. 8. In these states
the agent exploits its beliefs and steer toward the desired end-state in
the optimal manner.

(a) x = −1 (b) x = −2

(c) x = −3 (d) x = −9

Figure 1. Dual control solution for the end cost problem.
ν = 0.5, R = 1, F = 1, G = 0. Each plot shows the relative control

γt(x, θ) as a function of θ for different values of t. The lighter curves with
the larger values of γt are for larger times-to-go, this decreases as the curves

get darker. When θ is large, γt(x, θ) approaches one, indicating that the
control law when b is known is recovered. The different plots show the same

results for different values of x.

However, when uncertainty in b increases (smaller absolute values
of θ), the optimal behavior starts to differ more and more from the
certain case. For most of these situations the relative control becomes
large than 1 and the system starts to show probing behavior. The
longer the time-to-go (T − t), the more aggressive this probing gets.

In addition to probing, there is another interesting phenomenon.
For a short time-to-go and large uncertainty in b (small θ), the sys-
tem will control less than with no uncertainty; the relative optimal
control is smaller than one. In this case, the agent accepts that it is
in an impossible situation and that there is insufficient time left for
probing. Probing would significantly increase the distance from the
goal and the remaining time-to-go and the poor estimate of b are
likely to be insufficient to steer back to the goal. Instead, the agent
becomes risk aversive and reduces its gain in order not to risk to steer
even further away from the goal.

In fig. 1a one can see that the optimal control even becomes nega-
tive in some case, meaning that based on the agents belief about the
most likely sign of b, the agent will steer in the direction away from
the goal. The reason is that for any b the expected changes in x and
θ are correlated, as shown in fig. 2.

In the optimal control case (u− in fig. 2) the agent will end up
in one of two locations, depending on whether his belief is correct.
If the agent is right about the sign of b, it will move away from the
goal but also increases θ and thus gains information (the location
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Figure 2. Expected next time states (xt+1, θt+1), given a (xt, θt) both
close to zero for the optimal control direction (u−) and the opposite control
(u+). In either case one must distinguish the situation that the agent is right

or wrong about his belief.

indicated by (-+) in fig. 2). If the agent is wrong about the sign of b,
the result of the control step is to move toward the goal (+), but will
not gain information (in fact will lose information) (+-).

We compare this optimal choice with the suboptimal control u+

in the opposite direction, i.e. the agent steers toward the goal (again
based on the agents belief about the most likely sign of b). Again,
there are two possible outcomes. If the agent is right about the sign
of b, it will indeed get closer to the goal and also increase θ (++).
However, if the agent is wrong about the sign of b, it will steer away
from the desired state and it will not learn (- -). This last option is
very unfavorable. The reason that the agent decides to steer away
from the target is because the average expected cost of the outcomes
(+-) and (-+) is less than the average expected cost of the outcomes
(++) and (- -).

3.1.2 Symmetry breaking and non-differentiability of J

The observed probing behavior arises as the result of a symmetry
breaking in the right hand side of Eq. 7 and is illustrated in fig. 3.

At the final time, JT (x, θ) = x2 independent of θ and the rhs of
Eq. 7 is quadratic in uT−1, yielding a unique optimum. The value
function at t = T − 1 depends on both x and θ and as a result
JT−1 becomes a complex non-linear function of uT−2. At a certain
time-to-go, the rhs of Eq. 7 develops multiple minima in ut. Around
θ = 0 these minima are equally deep and either solution for ut is
equally good. Both solutions are explorations in either the positive
or negative direction, and neither are goal directed. Choosing one of
the two will have symmetry breaking in the value function as direct
consequence.

The multiple optimal control solutions in the Bellman optimiza-
tion also give rise to a discontinuity in the optimal control as func-
tion of the belief parameter. At a certain time-to-go the optimal con-
trol u∗(θ) becomes discontinuous at θ = 0, as is shown in fig. 1.
This gives rise to non-differentiability of the value function from that
point on in the Bellmann iteration, this is shown in fig. 4Left, where
we plot Jt(x, θ) for t = T − 2, x = −2 and t = T − 2, x = −6 as
a function of θ. In fig. 4Right we also plot the same J as a function
of the belief p(b = 1|θ) and recover the well-known result that the
optimal cost-to-go is convex in the belief [8].
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Figure 3. The choice of the agent for exploitation or exploration is realized
through a symmetry breaking mechanism in the Bellman equation. We plot

the rhs of the Bellman equation as a function of u and its derivative for
θ = 0. The different curves correspond to different values of x, these values

increases with the lightness of the curve. Exploratory behavior (u ̸= 0)
arises in the no-knowledge state θ = 0 by proposing non-zero controls. The

singularity is absent at t = T − 2 and present starting from t = T − 3.

3.2 The tracking problem

We now look at the problem with F = 0, G = 1, where the agent
must track a goal location x = 0. The main difference between the
end cost task and the tracking task is that for the end cost task the
optimal control and value function are time dependent for all times,
while with increasing time-to-go, the control and value function for
the tracking task converge to a time-independent value.

In fig. 5a, we show the optimal control as a function of θ for x =
−1. Note, how the solution converges and becomes independent of
time as the time-to-go increases. Note that, as in the end cost case, the
smooth solution for small time-to-go (exploitation) breaks for larger
time-to-go yielding the discontinuity at θ = 0.

The main difference with the end cost task is that probing is much
less pronounced and only occurs in states close to the goal. The rea-
son is that in the end cost task probing is not penalized with state
costs until the agent reaches the the end time. As a result, the agent
can probe to gain knowledge and once b is learned, steer back to
reach the goal in time. In the tracking problem, the system pays state
costs at each time and thus probings are much more expensive.

The optimal control solutions for the end cost task and tracking
task for short time-to-go are very similar, as should be expected. As
before, one finds instances where the optimal control steers away
from the goal.

We focus on the large time-to-go behavior, when the control solu-
tion has converged to a stationary value. In fig. 5b we have redrawn
the solution for x = 1, where we have also drawn the sub-optimal
control solution that arise from the minimization of the rhs of Eq. 7.
It indicates the region of symmetry breaking in u around θ = 0 that
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Figure 4. Left) The optimal value function Jt(x, θ) for
t = T − 2, x = −2 (gray) and t = T − 2, x = −6 (black) versus θ

rescaled to fit in the same plot, showing that the value function is smooth for
small time-to-go and becomes non-differentiable at θ = 0 for larger

time-to-go. Right) Same as left, but as a function of the belief: Jt(x, p), with
p = p(b = 1|θ). The optimal cost-to-go is convex in the belief for any

time-to-go.

is caused by the uncertainty in b. Similar regions of uncertainty can
be defined for the end cost problem in fig. 1.

4 Discussion
We have presented a detailed analysis of a simple dual control prob-
lem. The analytical solutions to this problem show that optimal ex-
ploration occurs through symmetry breaking in Bellman equations,
an effect which is accompanied with non-differentiability in the op-
timal value function. In the example considered here, the optimal
exploration that is characterized by a Mexican hat shaped value func-
tion with high valued non-exploratory actions on the top of the hat,
and the low valued exploratory actions in rim of the hat. The systems
must choose an action corresponding to one of the minima in order to
advance in its state of knowledge, and by doing so the symmetry of
the value function is broken. Alternatively the low knowledge state
is a minimum itself, in which case no exploration takes place.

This behavior is not only true and intuitive for a binary system, but
also for other types of systems, e.g. with higher dimensionality. In the
general case there are by definition many possible control actions that
could be useful for exploration. Depending on the belief state, some
of these actions will have a lower expected future cost than others.
However, at some particular points in the belief state the expected
future cost can be the lowest for a subset of different actions. In this
case all the actions within this subset are optimal, and by choosing
one of the actions as solution the symmetry of the system will be
broken. Furthermore, the optimal control as function of the belief
parameter will be discontinuous for these particular states, this has
non-differentiability in the value function as a direct consequence, as
was also shown in the example problem.

We now summarize what we believe that this example says about
the type of problems that one may encounter in a POMDP setting
and require further investigation.
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Figure 5. a). Dual control solution for the tracking problem.
ν = 0.5, R = 1, F = 0, G = 1, showing ut(x, θ) for x = 1 as a function
of θ for different times-to-go t (increasing for lighter curves) The tracking
task displays much less pronounced probing compared to the end cost case.
As in the end cost case, the optimization for u has local minima resulting in
the discontinuity at θ = 0. b). Asymptotic solution at infinite time-to-go.

The tracking problem is similar to an infinite horizon discounted
reward RL problem without absorbing state, where the horizon ex-
ponentially decays with characteristic length 1/ log γ [6]. The end
cost problem is similar to an RL problem with absorbing state. Thus,
we expect that in POMDPs the optimal exploration will display sim-
ilar features as discussed here: non-convexity in the minimization
of the Bellman equation with respect to u; optimal actions that are
discontinuous in the beliefs; and a non-differentiable (but convex)
optimal value function. It is in particular important to realize that the
non-convexity in the minimization of the Bellman equation co-exists
with the convexity of the optimal value function.

The non-differentiability of the value function poses a problem for
function approximation. In our example, we had only one belief vari-
able and the singularity was restricted to the point θ = 0. In this case,
we could construct separate solutions for θ positive and negative. In
general, however, with many belief parameters this singular struc-
ture may become a quite complex high dimensional object. A smooth
function approximation approach that ignores these singularities will
not succeed in finding an accurate approximation. One could argue
that these difficulties are not of great importance, because they are
restricted to some isolated region in parameter space. However, as
we also showed in our example, it is exactly in the region of no/low
knowledge space were these difficulties are encountered. It is this
region that specifically characterizes the initial phase of exploration
and therefore is of key importance for optimal exploration. For in-
stance in the method proposed in [2] for finding the optimal policies

in POMDPs similar to the analyzed example, the assumption is made
that the value function is smooth under the belief state. From the re-
sults of our analysis we see that one has to be careful with making
these kind of assumptions for these problems.

By analyzing a simple example we were able to get some insight
in the intricacies of optimally solving an exploration/exploitation
problem. These results provide some hints as to where possible
weak spots are in the conventional approach to solving explo-
ration/exploitation in RL. It is hoped that this paper will stimulate
further research into these types of problems, so new and better ap-
proaches to doing Bayesian RL and solving POMDPs can be devel-
oped.

A Numerical aspects
To numerically solve the Bellman equation, we discretize x uni-
formly with step size ∆x = 0.25 between x− = −9 and x+ = 9,
and θ non-uniformly with increasing step size for small θ between
θ− = −13 and θ+ = 13. For each grid point and each time step,
we minimize the rhs of Eq. 7 with respect to ut using a conjugate
gradient descend method.

The integral over ξ is computed by discrete integration in the range
xT+1 ∈ [xt+but−10

√
ν, xt+but+10

√
ν], with step size ∆xt+1 =

2−4 and cubic spline interpolation between the x, θ grid points. Note,
that θt+1 is given, once xt, xt+1, ut and b are given. The range of
points (xt+1, θt+1) thus considered exceeds the above defined grid,
meaning that Jt+1(xt+1, θt+1) needs to be extrapolated. This is done
in the x-direction by fitting a second order polynomial to J for the
large values of x only and in the θ direction J saturates to a constant
value.

The minimization over u is run multiple times with different ini-
tializations to ensure that the global minimum is obtained.
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