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Abstract

The paper discusses the problem of modelling intelligent behaviour using stochas-
tic optimal control theory. The stochastic control solution requires state feed-back
which requires vast computational resources both in terms of memory and compu-
tation. We argue that an efficient approach to this problem requires an integration
of sensory and motor computation. We propose the path integral control frame-
work as a natural theory for sensori-motor integration using a Bayesian frame-
work.

1 Introduction

The over-aching goal of both artificial intelligence and cognitive (neuro-)science is to build models
that provide an integrated understanding of how sensory stimuli are processed to yield motor actions.
So far, we have a relatively good understanding of peripheral neural processing, both on the sensory
and on the motor side, but the integration of these two modalities is much less understood. The
progress is made difficult because the computational principles that underly sensori-motor integra-
tion are obscured by the neural hardware that implements them. As a result, bottom-up approaches
that reveal ’what neurons are doing’ need to be complemented by top-down, functional, approaches
that guide our understanding on what principles may be used and how they are implemented.

On the sensory side, much progress has been made using ideas from statistics. Features in natural
images that are ’statistically optimal’ are in close agreement with the features that are computed by
neurons in the brain of animals. On the motor side it is much less understood what principles guide
our actions. For peripheral motor tasks, such as arm movement, or locomotion, or eye movement,
there exists a basic understanding in terms of deterministic control theory and it is assumed that
noise has a limited effect on the optimal solution.

Control theory is a natural candidate to also describe the complete behaviour of an animal or intel-
ligent system, from now on referred to as the agent. Such a theory would be able to compute the
behaviour of an agent in a complex, partially unknown, environment which contains other agents
of various types with their own objectives. However, there are fundamental problems that have
prevented the successful development of a theory of this type sofar:

• Due to limited sensing capability, the agent is to a large extend ignorant about the world
around him, now and in the future. This setting is often referred to as partial observability.
Partial observability may have a profound effect on what the agent should do. When the
agent has full knowledge of a food location and the course of action of its predators, it
can compute an optimal trajectory that leads to the food and avoids the predators. But this
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course of actions may be disastrous when knowledge is uncertain. Partial observability
can be encoded in terms of beliefs, which are distributions over the quantity of interest.
However, the computation of controls in terms of beliefs is very costly.
• Furthermore, due to the stochastic nature of the problem, selecting the optimal action re-

quires current state information. This policy should either be computed in real-time for any
state that is visited or should be stored, requiring either massive computation or massive
memory.

Thus, there is both a representation problem and a computation problem: representing the environ-
ment, the beliefs, and entire policies requires vast memory; computing the control for any given
instance is intractable in terms of number of operations. These problems are absent for deterministic
control problems and are tractable for Gaussian models and explain why stochastic optimal control
theory has failed to provide a successful computational framework to model intelligent behaviour.

In our research, we aim to address these problems using the path integral and KL control formalism
which connects the fields stochastic optimal control theory with statistical inference and statistical
physics[1, 2, 3]. The optimal control can be computed using the efficient approximate inference
methods that have been developed in the machine learning community. The path integral control
methods have been applied with great success in robotics by the group of Stefan Schaal (see for
instance [4]) showing their superiority to RL and adaptive control methods and in biological systems
[5, 6]. In this paper we review path integral control theory. We then give an example for coordination
of agents. Finally we discuss how this approach can be used for sensori-motor integration.

2 Path integral control theory

Here we summarise a simplified setting of path integral control theory. Consider the stochastic
control problem

dx = f(x, t)dt+ g(x, t)(udt+ dξ) C =

〈
φ(xT ) +

∫
dtV (xt, t) +

1

2
uTRu

〉
(1)

with x the state and u the control and where I have suppressed all component notation. If one
assumes that there exists a constant λ such that the matrices R and the noise covariance matrix ν
satisfy λ1 = Rν, it can be shown that the optimal cost-to-go is given by the Feyman-Kac formula

J(x, t) = −λ log
∫
dτq(τ |x, t) exp (−S(τ)/λ) S = φ(xT ) +

∫ T

t

dtV (xt, t) (2)

where τ denotes a trajectory starting at x, t and q(τ |x, t) the distribution over trajectories under the
uncontrolled stochastic dynamics Eq. 1 with u = 0 and S the action. There is a corresponding Gibbs
distribution over optimally controlled trajectories

p(τ |x, t) = q(τ |x, t) exp(J(x, t)/λ− S(τ |x, t)/λ) (3)
The optimal control can be expressed as an expectation value with respect to p(τ |x, t):

uj(x, t)dt = 〈dξj〉 (4)

The path integral control theory can be obtained as a particular instance of a larger class of problems
that minimizes the Kullback-Leibler (KL) divergence between distributions over trajectories. This
is illustrated in the simplest case of a discrete state space and discrete time.

Let q denote a Markov process on this state space. Consider a control problem to find a Markov
process p that minimizes C = KL(p||q) + 〈V 〉p , with KL(p||q) the KL divergence and p(τ), q(τ)
distributions over trajectories τ according to the Markov processes p and q, respectively and τ a
trajectory of length T starting at a given initial state x0. The optimal control solution is given by the
discrete time version of Eq. 3, with optimal cost C(x0) = − logψ(x0). The solution p is a Markov
process with

pt(xt|xt−1) = q(xt|xt−1) exp(−V (xt))
βt(xt)

βt−1(xt−1)
(5)

where the functions βt(x) are found by message passing.

It can be shown that when q and R do not explicitly depend on time in the limit of T → ∞ the KL
control problem becomes an extremal eigenvalue problem [2].
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Figure 1: Approximate inference KL-stag-hunt using BP for M = 10 hunters in a large grid. (Left) Risk
dominant control is obtained for λ = 10, where all hunters go for a hare. (Right) Payoff dominant control is
obtained for λ = 0.1. In this case, all hunters cooperate to capture the stags except the ones on the upper-right
corner, who are too far away from the stag to reach it in T = 10 steps. Their optimal choice is to go for a hare.
N = 400, Rs = −10, H = 2M and Rh = −2.

3 Multi Agent cooperative game (KL-stag-hunt)

In this section we consider a variant of the stag hunt game, a prototype game of social conflict
between personal risk and mutual benefit [7]. The original two-player stag hunt game consists of
two hunters that can either hunt a hare by themselves giving a small reward, or cooperate to hunt a
stag and getting a bigger reward, see table 1.

Stag Hare
Stag 3,3 0, 1
Hare 1, 0 1,1

Table 1: Payoff matrix for the stag-hung game: if both
go for the stag, they both get a reward of 3. If one hunter
goes for the stag and the other for the hare, they get a
reward of 0 and 1 respectively.

Both stag hunting (payoff equilibrium, top-left)
and hare hunting (risk-dominant equilibrium,
bottom-right) are Nash equilibria,

We define the KL-stag-hunt game as a multi-
agent version of the original stag hunt game
where M agents live in a 2d grid of N loca-
tions and can move to adjacent locations on the
grid. The grid also contains hares and stags at
certain fixed locations. The game is played for a
finite time T and at each time-step all the agents
move.

We formulate the problem as a KL control
problem. The uncontrolled dynamics factorizes among the agents. It allows an agent to stay on
the current position or move to an adjacent position (if possible) with equal probability, thus per-
forming a random walk on the grid. The state dependent cost V (x)/λ defines the profit when two
agents are at the same time at the location of of a stag, or individual agents are at a hare location.

Computing the exact solution using this procedure becomes infeasible even for small number of
agents, since the joint state space scales as NM . The belief propagation (BP) algorithm is an alter-
native approximate algorithm that we can run on an extended factor graph and has polynomial time
and space complexity [3].

The result is illustrated in Figure 1, where an example for λ = 10 and λ = 0.1 are shown. For high
λ (left plot), each hunter catches one of the hares. In this case, the cost function is dominated by KL
term. For small enough values of λ (right plot), the V/λ term dominates and both hunters cooperate
to catch the stag. Thus λ can be seen as a parameter that controls whether the optimal strategy is
risk dominant or payoff dominant.

This example shows how KL control can be used to model a multi-agent cooperative game. It ex-
plains the emergence of cooperation in terms of an effective temperature parameter λ. Approximate
inference methods like BP provide an efficient and good approximation for large systems where
exact inference is not feasible.

3



w

Rxx

y y

w

Figure 2: Sensori-motor model of world and brain coupled through observations. x denotes the activity
of neural network/hidden graphical model at a given time. y are sensory neurons (retina, cochlea) and w
represents the state of the outside world. The brain affects the world (x → w) and knows about the world
through observations y only.

Discussion: Sensor-motor integration

Using the path integral control theory, the control computation and the representation problem can be
integrated as a single inference computation in a Bayesian network providing an integrated approach
to sensori-motor control for both natural and artificial systems as schematically depicted in fig. 2:

• (Hidden) graphical models (x → x) that yield efficient ’coarse grained’ representation for
the stochastic control problem in terms of suitable features of the problem (x→ y).

• Efficient inference algorithms to compute the optimal control in these models (as for in-
stance illustrated above for the stag hunt game).

• For biological systems, the rewards are functions of the brain state (pleasure, pain) and
not of the outside world, as is usually assumed for artificial systems: eating food sends a
pleasure signal to the brain, activating a particular brain state. The control problem is to get
the brain into the food state, which requires actions in the outside world.

The optimal hidden dynamics has the combined role to represent the environment dynamically (sen-
sory problem) as well as to implement the optimal control (motor problem, see Eq. 5) by adapting
the synaptic weights/hidden representation.
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