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Abstract

This paper considers linear-quadratic control of a non-linear dynamical system subject to arbitrary
cost. I show that for this class of stochastic control problems the non-linear Hamilton-Jacobi-Bellman
equation can be transformed into a linear equation. The transformation is similar to the transforma-
tion used to relate the classical Hamilton-Jacobi equation to the Schrödinger equation. As a result of
the linearity, the usual backward computation can be replaced by a forward diffusion process, that can
be computed by stochastic integration or by the evaluation of a path integral. It is shown, how in the
deterministic limit the PMP formalism is recovered. The significance of the path integral approach
is that it forms the basis for a number of efficient computational methods, such as MC sampling, the
Laplace approximation and the variational approximation. We show the effectiveness of the first two
methods in number of examples. Examples are given that show the qualitative difference between
stochastic and deterministic control and the occurrence of symmetry breaking as a function of the
noise.

1 Introduction

The problem of optimal control of non-linear systems in the presence of noise occurs in many areas
of science and engineering. Examples are the control of movement in biological systems, robotics, and
financial investment policies.

In the absence of noise, the optimal control problem can be solved in two ways: using the Pontrya-
gin Minimum Principle (PMP) [1] which is a pair of ordinary differential equations that are similar to
the Hamilton equations of motion or the Hamilton-Jacobi-Bellman (HJB) equation which is a partial
differential equation [2].

In the presence of Wiener noise, the PMP formalism can be generalized and yields a set of coupled
stochastic differential equations, but they become difficult to solve due to the boundary conditions at
initial and final time (see however [3]). In contrast, the inclusion of noise in the HJB framework is
mathematically quite straight-forward. However, the numerical solution of either the deterministic or
stochastic HJB equation is in general difficult due to the curse of dimensionality. Therefore, one is
interested in efficient methods for solving the HJB equation. The class of problems considered below
allows for such efficient methods.

In section 3.1, we consider the control of an arbitrary non-linear dynamical system with arbitrary
cost, but with the restriction, that the control acts linearly on the dynamics and the cost of the control
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Figure 1: The drunken spider. In the absence of noise (alcohol in this case), the optimal trajectory for
the spider is to walk over the bridge. When noise is present, there is a significant probability to fall off
the bridge, incurring a large cost. Thus, the optimal noisy control is to walk around the lake.

is quadratic. For this class of problems, the non-linear Hamilton-Jacobi-Bellman equation can be trans-
formed into a linear equation by a log transformation of the cost-to-go. The transformation stems back
to the early days of quantum mechanics and was first used by Schrödinger to relate the Hamilton-Jacobi
formalism to the Schrödinger equation. See section 7 for a further discussion on this point. The log
transform was first used in the context of control theory by [4] (see also [5]).

Due to the linear description, the usual backward integration in time of the HJB equation can be
replaced by computing expectation values under a forward diffusion process. This is treated in section 3.2.
The computation of the expectation value requires a stochastic integration over trajectories that can be
described by a path integral (section 3.3). This is an integral over all trajectories starting at x, t, weighted
by exp(−S/ν), where S is the cost of the path (also know as the Action) and ν is the size of the noise.
It has the characteristic form of a partition sum and one should therefore expect that for different values
of the noise ν the control is qualitatively different, and that symmetry breaking occurs below a critical
value of ν.

In general, control problems may have several solutions, corresponding to the different local minima
of S. The case is illustrated in fig. 1. A spider wants to go home, by either crossing a bridge or by going
around the lake. In the absence of noise, the route over the bridge is optimal since it is shorter. However,
the spider just came out of the local bar, where it had been drinking heavily with its friends. He is not
quite sure about the outcome of its actions: any of its movements may be accompanied by a random
sway to the left or right. Since the bridge is rather narrow, and spiders don’t like swimming, the optimal
trajectory is now to walk around the lake. Thus, we see that the optimal control in the presence of noise
can be quantitatively different from the deterministic control.
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In addition to which path to chose, the spider also has the problem when to make that decision. Far
away from the lake, he is in no position to chose for the bridge or the detour, as he is still uncertain of
where his random swaying may bring him. In other words, why would he spend control effort now to
move left or right when there is a 50 % change that he may wander there by chance? He decides to delay
his choice until he is closer to the lake. The question is, when should he make his decision to move left
or right?

It is in these multi-modal examples, that the difference between deterministic and stochastic control
becomes most apparent. They are not only of concern to spiders, but occur quite general in obstacle
avoidance for autonomous systems, differential games, and predator-prey scenarios. Current efficient
approaches to control are essentially restricted to unimodal situations and therefore cannot address these
issues. The aim of the present paper is to introduce a class of multimodal control problems that can be
efficiently solved using path integral methods.

The path integral formulation is well-known in statistical physics and quantum mechanics, and several
methods exist to compute them approximately. The Laplace approximation approximates the integral by
the path of minimal S and is treated in section 4. This approximation is exact in the limit of ν → 0, and
the deterministic control law is recovered. The formalism is illustrated for the linear quadratic case in
section 4.2. Further refinements to the Laplace approximation can be made by considering the quadratic
fluctuations around the deterministic solution (also know as the semi-classical approximation), but I
believe that this correction has a small effect on the control (it does strongly affect the value of J but
not its gradient). The semi-classical approximation is not treated in this paper.

As is shown in section 4.3, in the Laplace approximation the optimal stochastic control becomes a
mixture of deterministic control strategies, weighted by exp(−S/ν) and can be computed efficiently, The
path integral displays a symmetry breaking at a critical value of ν: For large ν, the optimal control is
the average of the deterministic controls. For small ν, one of the deterministic controls is chosen. In
section 6.1.2 we give the example of the delayed choice problem that displays such symmetry breaking
as a function of the time to reach the target.

In general, the Laplace approximation may not be sufficiently accurate. Possibly the simplest alterna-
tive is Monte Carlo (MC) sampling. The naive sampling procedure proposed by the theory is presented in
section 5.1, but is shown to be rather inefficient in the double slit example in section 6.1. It is not difficult
to devise more efficient samplers. In section 5.2, we propose an importance sampling scheme, where the
sampling distribution is a (mixture of) diffusion processes with drift given by the Laplace deterministic
trajectories. The importance sampling method is compared with the exact results for the double slit
problem in section 6.1.1. In section 6.2, we compute the optimal control for the drunken spider for low
noise using the Laplace approximation and for high noise using MC importance sampling.

We begin our story with a brief derivation of the HJB equation for stochastic optimal control, which
is treated in depth in many good textbooks (see for instance [6, 5, 3]).

2 Stochastic optimal control

Consider the stochastic differential equation

dx = b(x(t), u(t), t)dt + dξ. (1)

x, b, dξ and dx are n-dimensional vectors and u is an m-dimensional vector of controls. dξ is a Wiener
processes with 〈dξkdξl〉 = νkl(x, u, t)dt. The initial state of x is fixed: x(ti) = xi and the state at final
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time tf is free. The problem is to find a control trajectory u(t), ti < t < tf , such that

C(xi, ti, u(·)) =

〈

φ(x(tf )) +

∫ tf

ti

dtf0(x(t), u(t), t)

〉

xi

(2)

is minimal. The subscript xi on the expectation value is to remind us that the expectation is over all
stochastic trajectories that start in xi.

The standard construction of the solution for this problem is to set up a partial differential equation
that is to be solved for all times in the interval ti to tf and for all x. For this purpose, we define the
optimal cost-to-go function from any intermediate time t and state x:

J(x, t) = min
u(t→tf )

C(x, t, u(t → tf )) (3)

where u(t → tf ) denotes the sequence of controls u(·) on the time interval [t, tf ]. For any intermediate
time t′, t < t′ < tf we can write a recursive formula for J in the following way:

J(x, t) = min
u(t→tf )

〈

φ(x(tf )) +

∫ t′

t

dtf0(x(t), u(t), t) +

∫ tf

t′
dtf0(x(t), u(t), t)

〉

x

= min
u(t→t′)

〈

∫ t′

t

dtf0(x(t), u(t), t) + min
u(t′→tf )

〈

φ(x(tf )) +

∫ tf

t′
dtf0(x(t), u(t), t)

〉

x(t′)

〉

x

= min
u(t→t′)

〈

∫ t′

t

dtf0(x(t), u(t), t) + J(x(t′), t′)

〉

x

(4)

The first line is just the definition of J . In the second line, we split the minimization over two intervals.
These are not independent, because the second minimization is conditioned on the starting value x(t′),
which depends on the outcome of the first minimization. The last line uses again the definition of J .

Setting t′ = t+ dt we can Taylor expand J(x(t′), t′) around t. This expansion takes place within the
expectation value and need to be performed to first order in dt and second order in dx, since

〈

dx2
〉

=
O(dt). This is the standard Itô calculus argument. Thus,

〈J(x(t+ dt), t+ dt)〉x =

〈

J(x, t) + ∂tJ(x, t)dt + (∂xJ(x, t))T dx+
1

2
Tr
(

∂2
xJ(x, t)dx2

)

〉

= J(x, t) + ∂tJ(x, t)dt+ (∂xJ(x, t))T b(x, u, t)dt+
1

2
Tr
(

∂2
xJ(x, t)ν(x, u, t)

)

dt

In this expression, ∂t and ∂x denotes partial differentiation with respect to t and x, respectively. Similarly,

∂2
xJ is the matrix of second derivatives of J and Tr(ν∂2

xJ) =
∑

ij νij
∂2J

∂xi∂xj
. Substituting this into Eq. 4,

dividing both sides by dt and taking the limit of dt → 0 yields

− ∂tJ(x, t) = min
u

(

f0(x, u, t) + b(x, u, t)T∂xJ(x, t) +
1

2
Tr
(

ν(x, u, t)∂2
xJ(x, t)

)

)

, ∀t, x (5)

which is the Stochastic Hamilton-Jacobi-Bellman Equation with boundary condition J(x, tf ) = φ(x).

4



Eq. 5 reduces to the deterministic HJB equation in the limit ν → 0. In that case, an alternative
approach to solving the control problem is the Pontryagin Maximum principle (PMP), which requires
the solution of 2n ordinary differential equations. These equations need to be solved with multi-point
boundary conditions at both ti and tf . Solving 2n ordinary differential equations may be more efficient
than solving the n-dimensional partial differential equation, using shooting methods (see for instance [7]),
but may be unstable in some cases.

In the stochastic case, there does not exist a generic alternative to solving the pde (see however [3]
for stochastic versions of the PMP approach). Thus, for stochastic control one needs to solve the HJB
equation, which suffers from the curse of dimensionality.

A notable exception is when b is linear in x and u and f0 is quadratic in x and u. This is called
the linear-quadratic (LQ) control problem. In that case, it can be shown that the solution for J(x, t)
is quadratic in x with time-varying coefficients. These coefficients satisfy coupled ordinary differential
(Ricatti) equations that can be solved efficiently [6].

3 A path integral formulation for control

3.1 A linear HJB equation

Consider the special case of Eqs. 1 and 2 where the dynamic is linear in u and the cost is quadratic in u:

dx = (b(x, t) +Bu)dt+ dξ (6)

C(xi, ti, u(·)) =

〈

φ(x(tf )) +

∫ tf

ti

dt

(

1

2
u(t)TRu(t) + V (x(t), t)

)〉

xi

(7)

with B an n × m matrix and R an m × m matrix. B, R and ν are independent of x, u, t. b and V
are arbitrary functions of x and t and φ is an arbitrary function of x. In other words, the system to
be controlled can be arbitrary complex and subject to arbitrary complex costs. The control instead, is
restricted to the simple LQ form.

The stochastic HJB equation 5 becomes

−∂tJ = min
u

(

1

2
uTRu+ V + (b+Bu)T∂xJ +

1

2
Tr
(

ν∂2
xJ
)

)

Minimization with respect to u yields:

u = −R−1BT ∂xJ(x, t) (8)

which defines the optimal control u for each x, t. The HJB equation becomes

−∂tJ = −1

2
(∂xJ)TBR−1BT∂xJ + V + bT∂xJ +

1

2
Tr
(

ν∂2
xJ
)

This partial differential equation must be solved with boundary condition J(x, tf ) = φ(x). Note, that
after performing the minimization with respect to to u, the HJB equation has become non-linear in J .

We can remove the non-linearity and this will turn out to greatly help us to solve the HJB equation.
Define ψ(x, t) through J(x, t) = −λ logψ(x, t), with λ a constant to be defined. Then

−1

2
(∂xJ)TBR−1BT∂xJ +

1

2
Tr
(

ν∂2
xJ
)
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= − λ2

2ψ2

∑

ij

(∂xψ)i(BR
−1BT )ij(∂xψ)j +

λ

2ψ2

∑

ij

νij(∂xψ)i(∂xψ)j −
λ

2ψ

∑

ij

νij
∂2ψ

∂xi∂xj

The terms quadratic in ψ vanish if and only if there exists a scalar λ such that

ν = λBR−1BT (9)

In other words, the matrices ν and BR−1BT must be proportional to each other with proportionality
constant λ. In the one dimensional case, such a λ always exists, and Eq. 9 is not a restriction. In the
higher dimensional case, Eq. 9 restricts the possible choices for the matrices R and ν. To get an intuition
for this restriction, consider the case that u and x have the same dimension, B is the identity matrix and
both R and ν are diagonal matrices. Then Eq. 9 states R ∝ ν−1. In a direction with low noise, control
is expensive (Rii large) and only small control steps are permitted. In the limiting case of no noise, we
deduce that u should be set to zero: no control is allowed in noiseless directions. In noisy directions the
reverse is true: control is cheap and large control values are permitted. Loosely speaking, Eq. 9 states
that noise and control should operate in the same dimensions. 1

When Eq. 9 holds, the quadratic terms in the HJB equation cancel and the HJB becomes

∂tψ =

(

V

λ
− bT∂x − 1

2
Tr(ν∂2

x)

)

ψ

= −Hψ (10)

with H a linear operator acting on the function ψ. Eq. 10 must be solved backwards in time with
ψ(x, tf ) = exp(−φ(x)/λ). However, the linearity allows us to reverse the direction of computation,
replacing it by a diffusion process, as we will explain in the next section.

To simplify the exposure in the subsequent sections, we assume the control dimension m = n and B
the unit matrix.

3.2 Forward diffusion

For real functions ρ and ψ, define the inner product 〈ρ|ψ〉 =
∫

dxρ(x, t)ψ(x, t). Then we can define H†,
the Hermitian conjugate of the operator H , with respect to this inner product as follows.

〈

H†ρ|ψ
〉

= 〈ρ|Hψ〉 =

∫

dxρ(x, t)



−V (x, t)

λ
+ b(x, t)∂x +

1

2

∑

ij

νij
∂2

∂xi∂xj



ψ(x, t)

1As a natural example, consider a one-dimensional second order system subject to additive control θ̈ = f(θ, t) + u. The
first order formulation is obtained by setting x1 = θ and x2 = θ̇. Then

dxi = (bi(x, t) + Biu)dt, i = 1, 2

with b1(x, t) = x2, b2(x, t) = f(x1, t) and B = (0, 1)T . Since u is one-dimensional, R is a scalar and

BR−1BT =
1

R

(

0 0
0 1

)

Condition Eq. 9 states that the stochastic dynamics must have the noise restricted to the second component only:

dxi = (bi(x, t) + Biu)dt + dξδi,2, i = 1, 2

with
〈

dξ2
〉

= νdt and λ = νR.
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=

∫

dx



−V (x, t)

λ
ρ(x, t) − ∂x(b(x, t)ρ(x, t)) +

1

2

∑

ij

νij
∂2

∂xi∂xj
ρ(x, t)



ψ(x, t)

where we have performed integration by parts and assume that ρ vanishes at |x| → ∞. Thus,

H†ρ = −V (x, t)

λ
ρ(x, t) − ∂x(b(x, t)ρ(x, t)) +

1

2

∑

ij

νij
∂2

∂xi∂xj
ρ(x, t).

Let ρ(y, τ |x, t) be a probability density, initialized at t, x, that evolves forward in time according to the
diffusion process

∂tρ = H†ρ (11)

with drift b(x, t)dt and diffusion dξ, and with an extra term due to the potential V . Whereas the other two
terms conserve probability density, the potential term takes out probability density at a rate V (x, t)dt/λ.
Therefore, the stochastic simulation of Eq. 11 is a diffusion that runs in parallel with the annihilation
process:

dx = b(x, t)dt+ dξ

x = x+ dx, with probability 1 − V (x, t)dt/λ

xi = †, with probability V (x, t)dt/λ (12)

where † denotes that the particle is taken out of the simulation. Note that when V = 0 this diffusion
process is identical to the original control dynamics Eq. 6 in the absence of control (u = 0).

Since ψ evolves backwards in time according to H and ρ evolves forwards in time according to H† the
inner product

∫

dyρ(y, τ |x, t)ψ(y, τ) is time invariant (independent of τ). Since ρ(y, t|x, t) = δ(y − x), it
immediately follows that

ψ(x, t) =

∫

dyρ(y, tf |x, t)ψ(y, tf ) (13)

We arrive at the important conclusion that ψ(x, t) can be computed either by backward integration using
Eq. 10 or by forward integration of a diffusion process given by Eq. 11. The optimal cost-to-go is finally
given by

J(x, t) = −λ log

∫

dyρ(y, tf |x, t) exp(−φ(y)/λ) (14)

with ρ(y, tf |x, t) given by the stochastic process Eq. 12. The optimal control is given by Eq. 8. See
section 4.2 for a simple Gaussian example that illustrate these ideas.

3.3 The path integral formulation

In this section, we will write the diffusion kernel ρ(y, tf |x, t) in Eq. 14 as a path integral. For an
infinitesimal time step ǫ, we can write the probability to go from x to y as an integral over all noise
realizations. The probability of the Wiener is Gaussian with mean zero and variance νǫ. The particle
annihilation destroys probability with rate V (x, t)ǫ/λ. Combining annihilation with diffusion, we obtain

ρ(y, t+ ǫ|x, t) ∝ exp

(

− ǫ

λ

[

1

2

(

y − x

ǫ
− b(x, t)

)T

R

(

y − x

ǫ
− b(x, t)

)

+ V (x, t)

])

7



where we have used ν−1 = R/λ.
We can write the transition probability as a product of n infinitesimal transition probabilities:

ρ(y, tf |x, t) ∝
∫

dx1 . . . dxn−1

exp

(

− ǫ

λ

n−1
∑

i=0

[

1

2

(

xi+1 − xi

ǫ
− b(xi, ti)

)T

R

(

xi+1 − xi

ǫ
− b(xi, ti)

)

+ V (xi, ti)

])

In the limit of ǫ → 0, the sum in the exponent becomes an integral: ǫ
∑n−1

i=0 →
∫ tf

t
dτ and thus we can

formally write

ρ(y, tf |x, t) =

∫

[dx]yx exp

(

− 1

λ
Spath(x(t → tf ))

)

(15)

Spath(x(t → tf )) =

∫ tf

t

dτ

(

1

2

(

dx(τ)

dτ
− b(x(τ), τ)

)T

R

(

dx(τ)

dτ
− b(x(τ), τ)

)

+ V (x(τ), τ)

)

(16)

with x(t → tf ) a path with x(τ = t) = x, x(τ = tf ) = y,
∫

[dx]yx an integral over paths that start at x
and end at y. 2

Substituting Eq. 15 in Eq. 14 we can absorb the integration over y in the path integral and find

J(x, t) = −λ log

∫

[dx]x exp

(

− 1

λ
S(x(t → tf ))

)

(17)

where the path integral
∫

[dx]x is over all trajectories starting at x and

S(x(t → tf )) = φ(x(tf )) + Spath(x(t → tf )) (18)

is the Action associated with a path.
The path integral Eq. 17 is a log partition sum and therefore can be interpreted as a free energy.

The partition sum is not over configurations, but over trajectories. S(x(t → tf )) plays the role of the
energy of a trajectory and λ is the temperature. This link between stochastic optimal control and a free
energy has two immediate consequences. 1) Phenomena that allow for a free energy description, typically
display phase transitions and spontaneous symmetry breaking. What is the meaning of these phenomena
for optimal control? 2) Since the path integral appears in other branches of physics, such as statistical
mechanics and quantum mechanics, we can borrow approximation methods from those fields to compute
the optimal control approximately. First we discuss the small noise limit, where we can use the Laplace
approximation to recover the PMP formalism for deterministic control. Also, the path integral shows
us how we can obtain a number of approximate methods: 1) one can combine multiple deterministic
trajectories to compute the optimal stochastic control 2) one can use a variational method, replacing the
intractable sum by a tractable sum over a variational distribution and 3) one can design improvements
to the naive MC sampling.

2The paths are continuous but non-differential and there are different forward are backward derivatives [8, 9]. Therefore,
the continuous time description of the path integral and in particular ẋ are best viewed as a shorthand for its finite n

description.
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4 The Laplace approximation

4.1 The Laplace approximation

When λ is small (i.e. ν is small), we can expand an arbitrary path x̃(τ) around the classical path:

x̃(τ) = x(τ) + δ(τ), t < τ < tf

where x(τ) is the classical path that we need to determine, and δ(τ) is an independent fluctuation of the
path at time τ . Fluctuations are also allowed at τ = t and τ = tf . The Action Eq. 18 can be expanded
to first order in δ(τ) as

S(x̃(t→ tf )) = S(x(t → tf )) + δi(tf )∂iφ(x(tf ))

+

∫ tf

t

dτ

(

(ẋ(τ) − b(x, τ))iRij

(

d

dτ
δj(τ) − δk(τ)∂kbj(x, τ)

)

+ δi(τ)∂iV (x(τ), τ)

)

= S(x(t → tf )) + δi(tf ) (∂iφ(x(tf )) + pj(tf )) − pj(t)δj(t)

−
∫ tf

t

dτδk(τ)

(

d

dτ
pk(τ) + pj(τ)∂kbj(x, τ) − ∂kV (x(τ), τ)

)

(19)

where ∂k means partial differentiation with respect to xk, repeated indices are summed over and p is
defined as

pk(t) = (ẋ(t) − b(x, t))jRjk (20)

The term proportional to δk(τ) under the integral must be zero and defines an ODE for the classical
trajectory:

d

dt
pk(t) +

∂

∂xk
(pj(t)bj(x, t) − V (x, t)) = 0 (21)

Eq. 20 can be seen as a definition of p, but also as a dynamical equation for x that must be solved
together with the dynamical equation for p, Eq. 21. These equations must be solved with boundary
conditions. The boundary condition for x is given at initial time and the term proportional to δi(tf )
defines the boundary condition for p(t) at t = tf :

xi(t) = x, pj(tf ) = −∂φ(x(tf ))

∂xj
(22)

Define the Hamiltonian,

H(x, p, t) =
1

2
pTR−1p+ pT b(x, t) − V (x, t) (23)

Then, Eqs. 20 and 21 can be written as

dx

dt
=
∂H(x, p, t)

∂p
,

dp

dt
= −∂H(x, p, t)

∂x
(24)

The Hamiltonian system Eqs. 24 with the mixed boundary conditions Eqs. 22 are the well-known ordinary
differential equations of the Pontryagin Maximum Principle.
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In the Laplace approximation, the path integral Eq. 17 is replaced by the classical trajectory only.
Thus,

J(t, x) ≈ S(x(t → tf ))

since fluctuations at initial time are zero: δi(t) = 0. The optimal control is given by

u = −R−1∂xJ ≈ −R−1 δS(x(t → tf ))

δx(t)
= R−1p(t) = ẋ(t) − b(x(t), t) (25)

where we have used
δS(x(t→tf ))

δx(t) = −p(t) from Eq. 19. The intuition of the Laplace approximation is that

one needs to solve the deterministic equations for the whole interval [t, tf ], starting at the current place
x. In particular, the end boundary condition (the location of the target) will affect the location of the
optimal path for all [t→ tf ]. The control is then given by the value of the pseudo-gradient ẋ(t)−b(x(t), t)
on this trajectory.

Note the minus sign in front of V in Eq. 23, which has the opposite sign from a normal classical
mechanical system. The term 1

2p
TR−1p can be interpreted as the kinetic energy of the system. Thus,

the ’energy’ H is not the sum, but the difference of kinetic and potential energy. When H does not
explicitly depend on time (b(x, t) = b(x) and V (x, t) = V (x)), H is conserved under the deterministic
control dynamics:

dH

dt
=
∂H

∂x

dx

dt
+
∂H

∂p

dp

dt
= 0

because of Eqs. 24. To understand this behavior, consider b = 0. Then along the trajectory:

1

2
uTRu = V (x) +H

with H independent of time. This relation states that the optimal trajectory is such that much control
is spent in areas of large cost and little control is spent in areas of low cost.

Note, that the optimal control is independent of the noise ν as we expect from the Laplace approx-
imation. Numerically, we can compute the classical trajectory by discretizing xcl(τ) = x1, . . . , xn and
minimizing S(xcl) = S(x1, . . . , xn) using a standard minimization method.

4.2 The linear quadratic case

To build a bit of intuition for the diffusion process, the path integral and Laplace approximation, we
consider in this section some simple one-dimensional linear quadratic examples.

First consider the simplest case of free diffusion:

V (x, t) = 0, b(x, t) = 0, φ(x) =
1

2
αx2

In this case, the forward diffusion described by Eq. 11 and 12 can be solved in closed form and is given
by a Gaussian with variance σ2 = ν(tf − t):

ρ(y, tf |x, t) =
1√
2πσ

exp

(

− (y − x)2

2σ2

)

(26)

10



Since the end cost is quadratic, the optimal cost-to-go Eq. 14 can be computed exactly as well. The
result is

J(x, t) = νR log

(

σ

σ1

)

+
1

2

σ2
1

σ2
αx2 (27)

with 1/σ2
1 = 1/σ2 + α/νR. The optimal control is computed from Eq. 8:

u = −R−1∂xJ = −R−1σ
2
1

σ2
αx = − αx

R+ α(tf − t)

We see that the control attracts x to the origin with a force that increases with t getting closer to tf .
Note, that the optimal control is independent of the noise ν. This is a general property of LQ control.

As an extension, we now add a quadratic potential to the above problem: V (x) = 1
2µx

2. We now
compute the optimal control in the Laplace approximation. The Hamiltonian is given by Eq. 23

H(x, p) =
1

2
R−1p2 − 1

2
µx2

and the equations of motion and boundary conditions are given by Eqs. 24 and 22:

ẋ = p/R ṗ = µx

x(t) = x p(tf ) = −αx(tf )

We can write this as the second order system in terms of x only:

ẍ = µx/R, x(t) = x ẋ(tf ) = −αx(tf )/R

The solution for t < τ < tf is

x(τ) = Ae
√

µ/R(τ−t) +Be−
√

µ/R(τ−t)

The boundary conditions become A + B = x and Aγ(
√

µ/R + α/R) = B/γ(
√

µ/R − α/R), γ =

e
√

µ/R(tf−t) from which we can solve A and B. The classical Action Eq. 18 is computed by substi-
tuting the solution for x :

S(x(t → tf )) =
1

2
αx(tf )2 +

1

2

∫ tf

t

dτ(Rẋ2(τ) + µx2(τ)) =
1

2

√

µRx2
γ2 −

√
µR−α√
µR+α

γ2 +

√
µR−α√
µR+α

which is equal to the cost-to-go in the Laplace approximation. The optimal control is minus the gradient
of the cost-to-go. Note, that the classical trajectory as well as the minimal action only depends on the
initial condition x and the time-to-go tf − t. For pure diffusion (µ→ 0) the classical Action reduces to

S(x(t→ tf )) =
1

2

αRx2

R+ α(tf − t)

which is identical to the exact expression Eq. 27 except for the volume factor (which does not affect the
control, since it does not depend on x).

11



4.3 The multi-modal Laplace approximation

The Action S in Eq. 17 may have more than one local minimum. This is typical for control problems,
where ”many roads lead to Rome”. Let xα(t → tf ), α = 1, . . . denote the different optimal deterministic
trajectories that we compute by minimizing the Action:

xα(t→ tf ) = argminx(t→tf )S(x(t→ tf )), α = 1, . . .

These trajectories all start at the same value x. In our drunken spider example, there are two trajectories:
one is over the bridge and the other is around the lake. Then, in the Laplace approximation the path
integral Eq. 17 is approximated by these local minima contributions only:

J(x, t) ≈ −λ log
∑

α

exp(−S(xα(t→ tf )/λ) (28)

The Laplace approximation ignores all fluctuations around the mode. Although these fluctuations can be
quite big, their x dependence is typically quite weak and must come from beyond Gaussian corrections.
This can be seen from the pure LQ case when the Gaussian fluctuation term in Eq. 27 is independent of x.
In the LQ case, the Laplace approximation for the control (not for the cost-to-go) coincides with the exact
solution. Therefore, for unimodal problems (S has only one minimum) one can often safely ignore the
contribution of fluctuations to the control. However, for multi-modal problems these fluctuation terms
may have a strong α dependence (they have in the spider problem) and therefore play an important role
when weighting the different contributions in Eq. 28.

The optimal control becomes a soft-max of deterministic strategies

u(x, t) = −R−1
∑

α

wα∂xS(xα(t→ tf )

wα =
e−S(xα(t→tf )/λ

∑

β e
−S(xβ(t→tf )/λ

where ν plays the role of the temperature.

5 MC sampling

A natural method for computing the optimal control is by stochastic sampling. However, as is often the
case with MC sampling, a naive sampler such as the one based directly on Eqs. 12 may be very inefficient.
In this section, we show how this naive sampler works and how it can be improved using importance
sampling.

5.1 Naive MC sampling

The stochastic evaluation of Eq. 13 consists of running N times the diffusion process Eq. 12 from t to tf
initialized each time at x(t) = x. Denote these N trajectories by xi(t → tf ), i = 1, . . . , N . Then, ψ(x, t)
is estimated by

ψ̂(x, t) =
∑

i∈alive

wi, wi =
1

N
exp(−φ(xi(tf ))/λ) (29)

12



where ’alive’ denotes the subset of trajectories that do not get killed along the way by the † operation.
Note that, although the sum is typically over less than N trajectories, the normalization 1/N includes
all trajectories in order to take the annihilation process properly into account.

The computation of u requires the gradient of ψ(x, t) instead of ψ itself. First note, that when we
vary the initial point of a path x(t → tf ) from Eq. 19 and 20 we obtain

δS(x(t → tf ))

δx(t)
= (ẋ(t) − b(x, t))R

Thus combining Eq. 8 and Eq. 17, we obtain

u =
1

ψ(x, t)

∫

[dx]x(ẋ(t) − b(x, t)) exp(−S/λ)

Note, that we can sample u by the same batch of (naive) trajectories. For each trajectory, the quantity
ẋ(t)− b(x, t) is proportional to the realisation of the noise in the initial time t: ẋ(t)− b(x, t) = dξi(t)/dt.
Therefore,

ûdt =
1

ψ̂(x, t)

N
∑

i∈alive

widξi(t) (30)

with wi given by Eq. 29. This expression has a particular intuitive form. The optimal control at time t
is obtained by averaging the initial noise directions of the trajectories dξi(t), weighted by their success
wi at the final time tf .

5.2 Importance sampling

The sampling procedure as described by Eqs. 12 and 29 gives an unbiased estimate of ψ(x, t) but can
be quite inefficient. The problem is is well known, and one of the simplest procedures for improving the
sampling is by importance sampling. For path integrals this works as follows. We replace the diffusion
process that yields ρ(y, tf |x, t) with Action Spath (Eqs. 15 and 16) by another diffusion process, that will
yield ρ′(y, tf |x, t) with corresponding Action S′

path . Then,

ψ(x, t) =

∫

[dx]x exp (−Spath/λ) exp (−φ/λ)

=

∫

[dx]x exp
(

−S′
path/λ

)

exp
(

−(φ+ Spath − S′
path)/λ

)

The idea is to chose the diffusion process ρ′ such as to make the sampling of the path integral as efficient
as possible.

A suggestion that comes to mind immediately is to use the Laplace approximation to compute a
deterministic control trajectory x∗(t → tf ). From this, compute its derivative ẋ∗(t → tf ) and define a
stochastic process to sample ρ′ according to

dx = ẋ∗(t)dt+ dξ

x = x+ dx, with probability 1 − V (x, t)dt/λ

xi = †, with probability V (x, t)dt/λ (31)
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The Action S′
path for the Laplace-guided diffusion is given by Eq. 16 with b(x(τ), τ) = x∗(τ), t < τ < tf .

The estimators for ψ and u are given again by Eqs. 29 and 30, with the difference that

wi =
1

N
exp

(

−
(

φ(xi(tf )) + Spath(xi(t → tf )) − S′
path(xi(t→ tf ))

)

/λ
)

(32)

and xi(t → tf ) is a trajectory from the sampling process Eq. 31 instead of Eq. 12. We will illustrate the
effectiveness of this approach in section 6.1.

6 Numerical examples

In this section, we introduce some simple one-dimensional examples to illustrate the methods introduced
in this paper. The first example is a double slit, and is sufficiently simple that we can compute the
optimal control by forward diffusion in closed form. We use this example to compare the Monte Carlo
and Laplace approximations to the exact result. Using the double slit example, we show how the optimal
cost-to-go undergoes symmetry breaking as a function of the noise and/or some other characteristics of
the problem (in this case the time-to-go). When the targets are still far in the future, the optimal control
is to ’steer for the middle’ and delay the choice to a later time.

The second example is similar to the first, except that the slit is now of finite thickness, allowing the
particle to get lost in one of the holes. When one hole is narrow and the other wide, this illustrates the
drunken spider problem. We use both the Laplace approximation and the the Monte Carlo importance
sampling to compute the optimal control strategy, for different noise levels.

6.1 The double slit

Consider a stochastic particle that moves with constant velocity from t to tf in the horizontal direction
and where there is deflecting noise in the x direction:

dx = udt+ dξ

The cost is given by Eq. 7 with φ(x) = 1
2x

2 and V (x, t1) implements a slit at an intermediate time t1,
t < t1 < tf :

V (x, t1) = 0, a < x < b, c < x < d

= ∞, else

The problem is illustrated in Fig. 2a where the constant motion is in the t direction and the noise and
control is in the x direction perpendicular to it.

Eq. 9 becomes λ = νR and the linear HJB becomes:

∂tψ =

(

V

λ
− ν

2
∂2

x

)

ψ

which we must solve with end condition ψ(x, tf ) = e−φ(x)/λ.
Solving this equation by means of the forward computation using Eq. 13 can be done in closed form.

First consider the easiest case for times t > t1 where we do not have to consider the slits. This is the
case we have considered before in section 4.2 and the solution is given by Eq. 27 with α = 1.
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Figure 2: (a) The particle moves horizontally with constant velocity from t = 0 to tf = 2 and is deflected
up or down by noise and control. The end cost φ(x) = x2/2. A double slit is placed at t1 = 1 with openings
at −6 < x < −4 and 6 < x < 8. Also shown are two example trajectories under optimal control. (b)
J(x, t) as a function of x for t = 0, 0.99, 1.01, 2 as computed from Eq. 27 and 33. R = 0.1, ν = 1, dt = 0.02.

Secondly, consider t < t1. ρ(y, tf |x, t) can be written as a diffusion from t to t1, times a diffusion from
t1 to tf integrating over all x in the slits. Substitution in Eq. 13 we obtain

ψ(x, t) =

∫

dy

(

∫ b

a

+

∫ d

c

)

dx1 exp(−y2/2λ)ρ(y, tf |x1, t1)ρ(x1, t1|x, t)

ρ(y, tf |x1, t1) is Gaussian and given by Eq. 26. Therefore, we can perform the integration over y in closed
form. We are left with an integral over x1 that can be expressed in terms of Error functions. The result
is

J(x, t) = νR log

(

σ

σ1

)

+
1

2

σ2
1

σ2
x2 − νR log

1

2
(F (b, x) − F (a, x) + F (d, x) − F (c, x)) (33)

with F (x0, x) = Erf
(
√

A
2ν (x0 − B(x)

A )
)

, A = 1
t1−t + 1

R+tf−t1
and B(x) = x

t1−t . Eqs. 27 and 33 together

provide the solution for the control problem in terms of J and we can compute the optimal control from
Eq. 8.

A numerical example for the solution for J(x, t) is shown in fig. 2b. The two parts of the solution
(compare t = 0.99 and t = 1.01) are smooth at t = t1 for x in the slits, but discontinuous at t = t1 outside
the slits. For t = 0, the cost-to-go J is higher around the right slit than around the left slit, because the
right slit is further removed from the optimal target x = 0 and thus requires more control u and/or its
expected target cost φ is higher.
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Figure 3: Monte Carlo sampling of J(x, t = 0) with ψ from Eq. 12 for the double slit problem. The
parameters are as in fig. 2. (a) Sample of trajectories that start at x to estimate J(x, t). Only trajectories
that pass through a slit contribute to the estimate. (b) MC estimate of J(x, t) = 0 with N = 100000
trajectories for each x.

6.1.1 MC sampling

We assess the quality of the naive MC sampling scheme, as given by Eqs. 12 and 29 in fig. 3, where we
compare J(x, 0) as given by Eq. 33 with the MC estimate Eq. 29. The left figure shows the trajectories of
the sampling procedure for one particular value of x. Note, the inefficiency of the sampler because most
of the trajectories are killed at the infinite potential at t = t1. The right figure shows the accuracy of the
estimate of J(x, 0) for all x between −10 and 10 using N = 100000 trajectories. Note, that the number
of trajectories that are required to obtain accurate results, strongly depends on the value of x and λ due
to the factor exp(−φ(x)/λ) in Eq. 12. For high λ or low 〈φ〉, few samples are required (see the estimates
around x = −4). For small noise or high 〈φ〉 the estimate is strongly determined by the trajectory with
minimal φ(x(tf )) and many samples may be required to reach this x. In other words, sampling becomes
more accurate for high noise, which is a well-known general feature of sampling. Also, low values of the
cost-to-go are more easy to sample accurately than high values. This is in a sense fortunate, since the
objective of the control is to move the particle to lower values of J so that subsequent estimates become
easier.

The sampling is of course particularly difficult in this example because of the infinite potential that
annihilates most of the trajectories. However, similar effects should be observed in general due to the
multi-modality of the Action.

We can improve the sampling procedure using the importance sampling procedure outlined in sec-
tion 5.2, using the Laplace approximation. The Laplace approximation to J requires the computation
of the optimal deterministic trajectories. In general, one must use some numerical method to compute
the Laplace approximation, for instance minimizing the Action Eq. 18 using a time-discretized version
of the path. In this particular example, however, we can just write down the classical trajectories ’by
hand’. For each x, there are two trajectories, each being piecewise linear. The Action for each trajectory
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Figure 4: Comparison of Laplace approximation (dotted line) and Monte Carlo importance sampling
(solid jagged line) of J(x, t = 0) with exact result Eq. 33 (solid smooth line) for the double slit problem.
The importance sampler used N = 100 trajectories for each x. The parameters are as in fig. 2.

is simply

Si(x) =
1

2
R

∫ 2

0

dtẋi(t)
2 =

R

2
(ai − x)2 +

R

2
a2

i , i = 1, 2

since φ(x(tf )) = V (x(t1), t1) = 0 by construction. ai = 6 and −4 for the two trajectories, respectively.
The cost-to-go in the Laplace approximation is given by Eq. 28:

JLaplace(x, 0) = −νR log

(

exp

(

−S1(x)

λ

)

+ exp

(

−S2(x)

λ

))

For each x, we randomly choose one of the two Laplace approximations with equal probability. We then
sample according to Eq. 31 with x∗ the selected Laplace approximation and estimate ψ using Eq. 29 and
weights Eq. 32. The Laplace approximation and the results of the importance sampler are given in fig. 4.
We see that the Laplace approximation is quite good for this example, in particular when one takes into
account that a constant shift in J does not affect the optimal control. The MC importance sampler
dramatically improves over the naive MC results in fig. 3, in particular since 1000 times less samples are
used and is also significantly better than the Laplace approximation.

6.1.2 The delayed choice

Finally, we show an example how optimal stochastic control exhibits spontaneous symmetry breaking.
To simplify the mathematics, consider the double slit problem, when the size of the slits becomes in-
finitesimally small. Eq. 33, with a = 1, b = 1 + ǫ, c = −1 − ǫ, d = −1 becomes to lowest order in
ǫ:

J(x, t) =
R

T

(

1

2
x2 − νT log 2 cosh

x

νT

)

+ const.

where the constant diverges as O(log ǫ) independent of x and T = t1 − t the time to reach the slits. The
expression between brackets is a typical free energy with inverse temperature β = 1/νT . It displays a
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Figure 5: (a) Symmetry breaking in J as a function of T implies a ’delayed choice’ mechanism for optimal
stochastic control. When the target is far in the future, the optimal policy is to steer between the targets.
Only when T < 1/ν should one aim for one of the targets. ν = R = 1. (b) Sample trajectories (top row)
and controls (bottom row) under stochastic control Eq. 34 (left column) and deterministic control Eq. 34
with ν = 0 (right column), using identical initial conditions x(t = 0) = 0 and noise realization.

symmetry breaking at νT = 1 (fig. 5a). For T > 1/ν (far in the past) it is best to steer towards x = 0
(between the targets) and delay the choice which slit to aim for until later. The reason why this is optimal
is that from that position the expected diffusion alone of size νT is likely to reach any of the slits without
control (although it is not clear yet which slit). Only sufficiently late in time (T < 1/ν) should one make
a choice. The optimal control is given by the gradient of J :

u =
1

T

(

tanh
x

νT
− x
)

(34)

Figure 5b depicts two trajectories and their controls under stochastic and deterministic optimal con-
trol, using the same realization of the noise. Note, that at early times the deterministic control drives x
away from zero whereas in the stochastic control drives x towards zero and smaller in size. The stochastic
control maintains x around zero and delays the choice for which slit to aim until T ≈ 1.

The fact that symmetry breaking occurs in terms of the value of νT , is due to the fact that S ∝ 1/T ,
which in turn is due to the fact that u ∝ 1/T . Clearly, this will not be true in general. For an arbitrary
control problem, S does not need to be monotonic in T , which means that in principle control can be
shifting back and forth several times between the symmetric and the broken mode as T decreases to zero.

6.2 The drunken spider

In order to illustrate the drunken spider problem, we change the potential of the double slit problem so
that it has a finite thickness: V (x, t) = 0 for all t < t1 and t > t2 and for t1 < t < t2:

V (x, t) = 0, a < x < b, c < x < d
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= ∞, else (35)

The problem is illustrated in Fig. 6 and the parameter values are given in the caption.
The cost-to-go in the Laplace approximation is given by Eq. 28, with S(x(α(t → tf )), α = 1, 2 the

cost of getting home over the bridge or around the lake, respectively. It is plotted as a function of the
current position x as the solid line in fig. 6c, for both ν = 0.001 and ν = 0.1 (these two curves coincide
for these values of ν, since S/ν is so large that the softmax is basically a max).

In addition, we compute J using importance sampling as outlined in section 5.2. For each x, we run
m = 1000 trajectories. For each trajectory, we select randomly one of the two Laplace trajectories with
equal probability, which we denote by x∗(t→ tf ). The stochastic trajectory x(t→ tf ) is then computed
from Eq. 31. It contributes to the partition sum Eq. 29 with a weight that is computed by Eq. 32, where
Spath(x(t → tf )) and S′

path(x(t → tf )) are given by Eq. 16 with b(x(τ), τ) = 0 and b(x(τ), τ) = x∗(τ),
respectively.

The results of the MC importance sampling for various x for low noise (ν = 0.001) and high noise
(ν = 0.1) are also shown in fig. 6c. The dots are the results of the MC importance sampling at low noise
and closely follow the Laplace results. Note the discontinuous change in slope at x = −6, which implies
a discontinuous change in the optimal control value u at that point: For x > −6 the spider steers for
the bridge, which requires a larger control value than for x < −6 when the optimal trajectory is around
the lake. Thus, the optimal path is simply given by the shortest path and noise is ignored in these
considerations.

The MC estimates for ν = 0.1 are indicated by the stars in fig. 6c. Since noise is large, the Laplace
approximation is not valid, and indeed are very different from the MC estimate. The Laplace approxi-
mation ignores the effect of deviations from the deterministic trajectory on the Actions . Thus, it does
not take into account that the spider may wander off the bridge and drowns, which at this level of noise
will happen with almost probability one and makes Sbridge much larger than Slake. The MC importance
sampling is guided by trajectories around the lake, that likely survive and by trajectories over the bridge,
that will likely drown and thus will not contribute to Eq. 29. The estimate for J is thus dominated
by trajectories around the lake and the cost-to-go increases with increasing x. Also note, that the MC
estimate puts the minimum of J not at x = −6 but safely away from the lake, so that spider is not likely
to fall in the lake on the low side either, and will have a safe journey home.

7 Discussion

In this paper, we have addressed the problem of computing stochastic optimal control. The direct solution
of the HJB equation requires a discretization of space and time. This computation naturally becomes
intractable in both memory requirement and cpu time in high dimensions. We have shown, that for a
certain class of problems the control can be computed by a path integral. The class of problems includes
arbitrary dynamical systems, but with a limited control mechanism. It includes LQ control as a special
case. The path integral approach has the advantage that the n-dimensional x-space integration of the
HJB equation is replaced by an n-dimensional sampling problem. For high-dimensional problems, a
stochastic integration method is expected to be much more efficient than numerical integration of the
HJB equation directly, which scales exponentially in n.

The obvious approximation methods to use are the Laplace approximation, the variational approxi-
mation and MC sampling. The Laplace approximation is very efficient. The deterministic trajectories are
found by minimizing the action, which can be done by standard numerical methods. It typically requires
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Figure 6: The drunken spider problem. A spider located at x and t = −1 wants to arrive home (x = 0)
at time tf . The lake is indicated by the white square area, interrupted by a narrow bridge. The
lake is modelled by the infinite potential given by Eq. 35 with −a = b = 0.1, c = −∞ and d = −6.
t1 = 0, t2 = 4, tf = 5 and R = 1. The cost-to-go is computed by forward importance sampling as outlined
in section 5.2. The guiding Laplace approximations are the deterministic trajectories over the bridge and
around the lake. Time discretization dt = 0.012. (a) Some stochastic trajectories used to compute J for
ν = 0.001. (b) Some stochastic trajectories used to compute J for ν = 0.1. (c) The optimal cost-to-go
J(x, t) in the Laplace approximation for ν = 0.001 and ν = 0.1 solid line (these two curves coincide).
The MC importance sampling estimates are based on 1000 trajectories per x for ν = 0.001 (dots) and
for ν = 0.1 (stars).
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O(n2k2) operations, where n is the dimension of the problem and k is the number of time discretizations.
We have seen that the multi-modal Laplace approximation gives non-trivial solutions involving symmetry
breaking.

Computing the path integral by MC sampling is clearly a very generic approach, that for many
practical control applications may well be the best way to go. Naive sampling should be replaced by
more advanced sampling schemes. I have only considered one simple improvement using importance
sampling. Other possible improvements could be a Gibbs sampler or a Metropolis-Hasting sampler.
Clearly, more work in this direction must be done.

In this paper we have numerically computed the path integrals using the most simple discretization
strategy: short time averaging [10]. The computation can be made much more efficient using Fourier
discretization [11, 12] or other subspace approximations (compact splines or wavelets) [13]. In each of
these methods the path integral is reduced to a high (but finite) dimensional Riemann integral, which is
approximated using a Monte Carlo method. These more advanced discretizations can be combined with
any of the mentioned MC methods.

I have not discussed the variational approximation in this paper. This approach to approximating the
path integral is also known as variational perturbation theory and gives an expansion of the path integral
in terms of the anharmonic interaction terms and a variational function that is to be optimized [14]. The
lowest term in the expansion is similar to what is known as the variational approximation in machine
learning using the Jensen’s bound [15], but one can also consider higher order terms. The expansion is
around a tractable dynamics, such as for instance the harmonic oscillator, whose variational parameters
are optimized such as to best approximate the path integral. The application of this method to optimal
control would be the topic of another paper. A complication of such an analytic treatment is the presence
of topological constraints, such as walls and obstacles.

There exist other fields of research that use path integrals and where dedicated numerical methods
have been developed to solve them. For instance, in chemical physics path integrals are used to describe
conformational changes in molecules over large time scales. The problem is similar to an optimal control
problem such as navigating a maze: The begin and end positions are known, and one or more path of
minimal cost needs to be found. A prominent method in this field is transition path sampling [16], which
can be viewed as a Metropolis-Hasting sampling scheme in path space, where a new path is sampled
by changing part of the current path and accepting the new path with a probability. This approach is
probably also suitable for optimal control.

There is a superficial relation between the work presented in this paper and the body of work that seeks
to find a particle interpretation of quantum mechanics. In fact, the log transformation was motivated
from that work. Madelung [17] observed that if Ψ =

√
ρ exp(iJ/h̄) is the wave function that satisfies the

Schrödinger equation, ρ and J satisfy two coupled equations. One equation describes the dynamics of ρ
as a Fokker -Planck equation. The other equation is a Hamilton-Jacobi equation for J with an additional
term, called the quantum-mechanical potential which involves ρ. Nelson showed that these equations
describe a stochastic dynamics in a force field given by the ∇J , where the noise is proportional to h̄
[8, 18].

Comparing this to the relation Ψ = exp(−J/λ) used in this paper, we see that λ plays the role of h̄ as
in the QM case. However, the big difference is that there is only one real valued equation, and not two
as in the quantum mechanical case. In the control case, ρ is computed as an alternative to computing
the HJB equation. In the QM case, the dynamics of ρ and J are computed together. The QM density
evolution is non-linear in ρ because the drift force that enters the Fokker-Planck equation depends on ρ
through J as computed from the HJ equation.
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