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Abstract

Complex coherent dynamics is present in a wide variety of neural systems. A typical example is the voltage transitions
between up and down states observed in cortical areas in the brain. In this work, we study this phenomenon via a
biologically motivated stochastic model of up and down transitions. The model is constituted by a simple bistable rate
dynamics, where the synaptic current is modulated by short-term synaptic processes which introduce stochasticity and
temporal correlations. A complete analysis of our model, both with mean-field approaches and numerical simulations,
shows the appearance of complex transitions between high (up) and low (down) neural activity states, driven by the
synaptic noise, with permanence times in the up state distributed according to a power-law. We show that the
experimentally observed large fluctuation in up and down permanence times can be explained as the result of sufficiently
noisy dynamical synapses with sufficiently large recovery times. Static synapses cannot account for this behavior, nor can
dynamical synapses in the absence of noise.
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Introduction

Neural systems, even in the absence of external stimuli, can

exhibit a wide variety of coherent collective behaviors, as in vivo

and in vitro experiments show [1–3]. One of the most prominent

examples is the spontaneous transition between two different

voltage states, namely up and down states, observed in

simultaneous individual single neuron recordings as well as in

local field measures. Such behavior, which is generated within the

cortex, may provide a framework for neural computations [4], and

could also coordinate some sleep rhythms into a coherent

rhythmic sequence of recurring cortical and thalamocortical

activities [3,5,6]. The phenomenon of up and down transitions has

been measured in a number of situations, such as in the primary

visual cortex of anesthetized animals [7,8], during slow-wave sleep

[1,5,6], in the somatosensory cortex of awake animals [9], or in

slice preparation under different experimental protocols [3,10,11],

to name a few. The origin of such structured neuronal activity is

still unclear, although several studies have shown that both

intrinsic cell properties [12–14] and the high level of recurrency

present in actual neural circuits [3,15,16] may contribute to the

generation of up and down transitions. In particular, the

contribution that reverberations in recurrent neural networks

may have in the appearance of these transitions could depend

strongly on synaptic properties. It is known, for instance, that

excitatory synapses with a slow dynamics (such as synapses

mediated by NMDA receptors) may play a relevant role in the

generation of persistent activity or up cortical states [17]. On the

other hand, several modeling studies indicate that activity-

dependent synaptic mechanisms, such as short-term synaptic

depression and facilitation, can induce voltage transitions between

up and down neural states as well [16,18–20].

Many crucial points about the understanding of up and down

transitions are, however, still lacking. For instance, in vivo experi-

ments in the cat visual cortex show that the permanence times in

the depolarized or up state present a high variability, and can

range from a scale of milliseconds to seconds [7]. A similar level of

irregularity has also been recently found in in vivo recordings of up-

down transitions in the rat auditory cortex [21], as well as in sleep-

wake transitions [15,22,23], where power-law distributions in the

duration of wake states have been measured. Such complexity in

the time series of the neuron membrane potentials remains far to

be explained, and could reflect scale invariance in permanence

times, which could in turn be a (preliminary) indicative of

criticality. In fact, there are many recent studies that have shown

criticality in different contexts in the brain [24,25], as well as in

neural network models which present self-organization and

criticality properties [26–28], and even it has been reported to

occur in sleep-wake transitions in in vivo conditions [22,23].

Although it is worth noting that the irregularity of the dynamics of

up and down states is not a sufficient condition for criticality, a

concrete characterization of such irregularity may be a convenient

starting point for future works on this topic.

To study in detail the relevant issue of irregular up and down

cortical dynamics, we propose in this work a minimal model for up

and down transitions in neural media. We consider a simple

bistable rate model whose stable solutions represent two possible

voltage states of the mean membrane potential of the network.

More precisely, such states correspond, respectively, to high and

low levels of activity in the network (that is, the up and down

cortical states). In addition, we consider that the synaptic

connections between neurons of the network present short-term

synaptic depression (STD) mechanisms, which introduce temporal

correlations, as well as synaptic stochasticity, in the dynamics of
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the system [29–32]. A complete analysis of this simple mathemat-

ical model depicts, both numerically and within a theoretical

probabilistic approach, the appearance of power-law dependences

in the distribution of permanence times in the up state. Our results

show that the appearance of such scale free distributions is due to

the complex interplay between several factors including synaptic

stochasticity and the temporal correlations introduced by STD.

The emergence of power-law dependences could, indeed, explain

the high variability in permanence times in the up state suggested

by experiments [7,21].

Methods

Our starting point is a bistable rate model, which mimics the

dynamics of the electrical activity of a population of interconnect-

ed excitatory neurons (although it can be easily extended to other

situations) with two stable levels of activity. The model has the

form [33]

tn
dn(t)

dt
~{n(t)znmS½Jx(t)n(t){h�zf(t), ð1Þ

where n(t) is the mean firing rate of the (homogeneous) neural

population, nm is the maximum level of activity which can be

reached by the population (in absence of noise), J(w0) is the

synaptic coupling strength in absence of STD, and h is the firing

threshold of the neurons in the population. The variable f(t) is a

Gaussian white noise of zero mean and standard deviation d,

which takes into account the inner stochasticity of the neural

population (caused by other sources of uncontrolled noise in the

system). The parameter tn is the population time constant, which

may be assumed to be around the duration of the synaptic current

pulse [34,35]. For generality purposes, we set tn~1, and therefore

time and frequency are given in units of tn and t{1
n , respectively.

The term S(z): 1
2
½1z tanh (z)� represents the transduction

function, which gives the nonlinear effect that the mean

postsynaptic current (coming from recurrent connections of the

neural population) induces in the network mean firing rate.

Employing this form for S(z), the up and down stable levels of

activity correspond to n^nm and n^0, respectively.

On the other hand, the variable x(t) in equation (1) takes into

account the dynamical modification of the strength of the synaptic

connections during short time scales due to high network activity,

and it is usually named short-term synaptic plasticity. Based on the

model proposed in [29,36] for short-term depression, and

following previous studies concerning the dynamics of neural

populations [16], we assume that x(t) evolves according to

dx(t)

dt
~

1{x(t)

tr

{ux(t)n(t)z
D

tr

j(t), ð2Þ

where tr is the characteristic time scale of the STD mechanism, and

u is a parameter related with the reliability of the synaptic

transmission. According to experimental measurements for these

parameters in the somatosensory cortex of the rat [36], we set

tr~1000 and u~0:6 unless specified otherwise. Assuming, for

instance, a population time constant of tn~1 ms, which would

approximately correspond to the duration of a fast synaptic current

pulse mediated by AMPA receptors, we obtain tr~1000 ms, which

is within the physiological range measured in [36]. The last term on

the right hand side of equation (2) is added to the original model in

[36] to include some level of stochasticity in this, otherwise,

deterministic description of synaptic transmission. The inclusion of

such term constitutes a simple manner of considering the

stochasticity due, for instance, to the unreliability of synaptic

transmission [31,32], the stochastic properties of receptor-transmit-

ter interactions [37], the sparse connectivity of cortical circuits

[38,39], or other sources of noise not yet considered (see the

Discussion Section for more details). The parameter D controls the

strength of this fluctuating term, and j(t) is a Gaussian white noise

with zero mean and variance one.

Equations (1) and (2) constitute our minimal model of an

excitatory neural network with stochastic depressing synapses. The

simplifications assumed by such model allows to obtain some

analytical derivations for the quantities of interest, and concretely

for the probability distributions of permanence times in the up

state, denoted by P(T). Bistable systems in the presence of

different sources of noise have been theoretically studied in detail

in many works [40–44]. Here, however, we have employed a

probabilistic approach which is very appropriate for the

computation of the distribution of permanence times. In the

following, we will derive an approximate expression for P(T)
within this approach. First, we obtain the potential function and

the conditions in which the dynamics of the system is driven by the

variable x. After that, we compute the probability distribution of

ruin times of x(t) which, as we will see, leads to the probability

distribution of permanence times in the up state, namely P(T).

A. The potential function
In order to compute the potential function of the dynamics (1,2)

(namely W(n,x)) one can see that, for realistic values of tr, the

dynamics of x is very slow compared to that of n. We therefore can

write equation (1) as

_nn~{LnW(n,x)zf(t)

W(n,x)~
1

2
n(n{nm){

nm

2Jx
log cosh (Jxn{h),

ð3Þ

where we have adiabatically eliminated x from the dynamics of n.

The extrema of W are given by the solutions of the equation

n~
1

2
nm½1z tanh (Jxn{h)�:f (n): ð4Þ

In the following, we choose h~Jx0n0, with n0: 1
2

nm and

x0:1=(1zutrn0). With this choice, one can easily check from

equation (3) that the potential becomes symmetric in n around n0

when x^x0.

Equation (4) may have one or three solutions, depending on the

slope of the hyperbolic tangent and on the value of h. In order to

obtain three solutions of (4) (that is, the bistable regime) the

maximal slope of the hyperbolic tangent must be large enough,

concretely the condition Jxn0w1 must be fulfilled. In addition, the

threshold term must be not too small or too large so that f (n) has

three crossing points with the straight line n rather than one. This

last condition can be written, as a first approach, as f (n1)wn1 and

f (n2)vn2, where n1,2 are the values where the curvature of the

hyperbolic tangent is maximal and minimal, respectively. The

points n1,2 can be easily computed from the third derivative of

f (n):

f ’’’(n)~{nmJ3x3 1{3 tanh2 (Jxn{Jx0n0)

cosh2 (Jxn{Jx0n0)
: ð5Þ

By setting f ’’’(n)~0 we obtain
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n1,2~
n0x0

x
+

tanh{1 (
ffiffiffiffiffiffiffiffi
1=3

p
)

Jx
: ð6Þ

Using now these values for n1,2, the conditions f (n1)wn1 and

f (n2)vn2 can be written as

{n0

ffiffiffiffiffiffiffiffi
1=3

p
z

1

Jx
tanh{1 (

ffiffiffiffiffiffiffiffi
1=3

p
)v

n0x0

x
{n0vn0

ffiffiffiffiffiffiffiffi
1=3

p
{

1

Jx
tanh{1 (

ffiffiffiffiffiffiffiffi
1=3

p
),

ð7Þ

which implies that, in order to have one maxima and two minima

in W(n,x), the variable x must be in the range x1vxvx2, where

x1:
n0x0z

1
J

tanh{1 (
ffiffiffiffiffiffiffiffi
1=3

p
)

n0(1z
ffiffiffiffiffiffiffiffi
1=3

p
)

, x2:
n0x0{

1
J

tanh{1 (
ffiffiffiffiffiffiffiffi
1=3

p
)

n0(1{
ffiffiffiffiffiffiffiffi
1=3

p
)

:

ð8Þ

From equation (8), one can see that the range of x that allows to

have three extrema in the potential is

Dx:x2{x1~
ffiffiffi
3
p

x0{
3

Jn0
tanh{1 (

ffiffiffiffiffiffiffiffi
1=3

p
): ð9Þ

The condition Dxw0 implies Jx0n0 *> 1:14 which is, therefore, a

sufficient condition to obtain a double well potential for some value

of x. One can find, however, a small discrepancy between this

approximate prediction and the actual properties of W(n,x). The

discrepancy appears because we have assumed that a sufficient

condition for the existence of the three fixed point solutions of

equation (4) is that f (n1)wn1 and f (n2)vn2, and such assumption is

only approximately correct. Plotting directly the potential as a

function of n reveals that the condition to obtain a double well

potential for x^x0 is Jx0n0w1, rather than Jx0n0w1:14.

Assuming that the above condition (Dxw0) is satisfied, three

different shapes for the potential function W(n,x) can be found, as

the figure 1A illustrates. When xvx1 the potential function presents

only one minimum, located around n^0. Similarly, for x2vx the

potential presents also a single minimum, but now located around

n^nm. Finally, for x1vxvx2 the potential will take a double well

shape, with the maximum being located around n^n0 and the

minima located around n^0 and n^nm, respectively.

It is worth noting that x1vx0vx2, with x0 being the mean

value of x. Due to this, if the range Dx is small compared with the

fluctuations of x, namely sx, the potential function will spend most

of the time in the regimes xvx1 and x2vx, with the double well

regime appearing only when the system tries to jump from one of

these regimes to the other (that is, when x^x0). A direct

consequence of this is that the mean firing rate will basically be

switching between the up and down states (that is, n^0 and

n^nm), and that this switching will be driven by the dynamics of x,

as the figure 2 illustrates. Therefore, one expects that the

distribution of permanence times of n in the up (down) state,

becomes approximately equal to the distribution of permanence

times of x in the xwx0 (xvx0) regime, as long as Dx%sx is

satisfied. Due to this equivalence, in order to compute P(T) we

only need to compute the distribution of permanence times of the

variable x in the xwx0 regime, denoted as Px(T).

On the other hand, it should be noted that, since x is a fraction

of available neurotransmitters, its value should be kept within the

range ½0,1�. In practice, this means that the value of sx must not be

too large, so in order to make Dx%sx one has to restrict to Dx
small. In the results presented here, x remain in its realistic range

of values, and imposing ad hoc restrictions in such a way that x is

always within the range ½0,1� does not affect the results obtained

here.

B. Distribution of permanence times
In order to compute the distribution of permanence times of x

in the xwx0 (or xvx0) regime, one can assume that the firing rate

takes its mean value n^n0 in equation (2). This is a reasonable

approach since x is much slower than n for realistic values of the

parameters. Considering this approach, and after the rescaling

z:(1zutrn0)x{1, equation (2) can be written as

      

 

 

Figure 1. Considerations for the mean-field approach. (A) Potential function W(n,x), as a function of the mean firing rate n and for different
values of x. One can appreciate the different regimes explained in the main text. Other parameters are J~1:1 V , tr~1000, u~0:6 and nm~5:10{3.
(B) An Ornstein-Uhlenbeck (OU) process (see equation 10) with t~1000 and D~20. A typical return event (with return time T ) and a first passage
event (with first passage time T ’) are indicated for illustrative purposes. For the first passage time, the threshold (depicted as a blue dashed line) was
fixed to 0.15.
doi:10.1371/journal.pone.0013651.g001
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dz(t)

dt
~{

z(t)

t
z

D

t
j(t) ð10Þ

which is the equation of the Ornstein-Uhlenbeck (OU) process (see

[45] for details), with t:tr=(1zutrn0) being the correlation time

and z0:z(x0)~0. Therefore, computing the distribution of

permanence times in the up state for our system is equivalent to

obtain the distribution of the so called ruin times for the OU process

[46,47], which may be defined as follows: if we consider a stochastic

process y(t) starting at t~t0 from y~y0, the ruin time is the interval

t1{t0, where t1 is the time at which y(t) returns to y0 for the first

time. Since y(t) is a stochastic process, the ruin times are stochastic

quantities which follow a certain probability distribution.

The strategy employed here to calculate the distribution of ruin

times is based on the relation between the ruin time and the first

passage time, which is the typical time that a stochastic process needs

to arrive at a certain threshold value when starting from a certain

initial condition [47]. Because of the symmetry of the OU process,

the distribution of ruin times are equivalent when considering

excursions of the variable z in the zv0 region or in the zw0
region. If we consider excursions in the zv0 region, we can set a

small positive threshold e near zero (that is, 0vE%1), in such a

way that the typical ruin time will be approximately equal to the

corresponding first passage time, as the figure 1B illustrates. The

excursions in the region zw0 typically lead to very short first

passage times (since E is too small) which we will not take into

account in our calculations by considering only large enough ruin

times.

The first passage time for the OU process with a small threshold

E can be performed by using the relation

P(E,T D0,0)~

ðT

0

dtP(E,T DE,t)r(t), ð11Þ

where P(a,taDb,tb) is the conditional probability distribution of the

OU process, and r(t) is the first passage time distribution. This

equation can be solved by taking into account the following

property of the Laplace transformation

f1(t)~

ðt

0

dt’f2(t{t’)f3(t’)[f̂f1(s)~f̂f2(s)f̂f3(s), ð12Þ

where f̂fi(s) is the Laplace transform of fi(t). By solving the Fokker-

Planck equation associated with equation (10), one can obtain the

conditional probability for the OU process

P(z2,t2jz1,t1)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
x½1{ exp ({2Dt=t)�

p
exp {

½z2{z1 exp ({Dt=t)�2

2s2
x½1{ exp ({2Dt=t)�

( ) ð13Þ

where Dt:t2{t1w0, and sx:D=
ffiffiffiffiffi
2t
p

being the standard

deviation of x. From expression (13), and assuming that t is large

enough (more precisely, assuming that t&Dt, which is a valid

      
 

 

 

 

 

 

 

 

 

 

 

Figure 2. Time series showing the dynamics of our system. (A) Time series of the mean firing rate of the neural population for deterministic
depressing synapses. The temporal evolution of the variable x is also plotted for illustration purposes. (B) Histogram of the mean firing rate, which
shows the existence of two well defined states of activity in n*10{3 and n*5:10{3, corresponding to the down and up states respectively. The
values of the parameters are J~1:2 V , tr~1000, u~0:6, D~0, d~0:3 and nm~5:10{3 . (C) Same as (A), but with a certain level of intrinsic
stochasticity on the dynamics of the synapses (concretely, we set D~20). The two-headed arrow shows a typical interval of permanence in the up
state, denoted by T . (D) Same as (B), but for D~20. The other parameters take the same values as in (A) and (B).
doi:10.1371/journal.pone.0013651.g002
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hypothesis since most of the permanence times in the up state are

much lower than t), one arrives at

P(E,T D0,0)^
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ps2
xT=t

p exp {
E2t

4s2
xT

� �

P(E,T DE,t’)^
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ps2
x(T{t’)=t

p exp {
E2(T{t’)

4s2
xt

� �
:

ð14Þ

We denote f1(T):P(E,T D0,0) and f2(T{t’):P(E,T DE,t’). Em-

ploying the Laplace transformation in f1(T) and f2(T{t’) the

following expressions are obtained

f̂f 1(s)~

ffiffiffiffiffiffiffiffiffiffi
t

4ss2
x

r
exp {

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ts=s2

x

p� �
f̂f 2(s)~t=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2z4sts2

x

p
:

ð15Þ

Now, taking into account the property (12) in equation (11), the

expression for r̂r(s) is

r̂r(s)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2z4sts2

x

4sts2
x

s
exp {

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ts=s2

x

q� �
: ð16Þ

Finally, for small E one can approximate E2z4sts2
x^4sts2

x. With

this approximation, one can easily perform the inverse Laplace

transformation to equation (16) and obtain the distribution of first

passage times for the OU process

r(T)~

ffiffiffiffiffiffiffiffiffiffi
E2t

4ps2
x

s
T{3=2 exp {

E2t

4s2
xT

� �
: ð17Þ

A similar expression may be obtained if one considers more

classical derivations of the first passage time of the OU process

(see, for instance, [48]). In order to obtain the distribution of ruin

times of the OU process, one has to consider a small (but positive)

value of e, which leads to r(T)*T{3=2. The distribution of ruin

times of the variable x, namely Px(T), and therefore, the

distribution of permanence times in the up state, namely P(T),
for our system are also given by

P(T)*T{3=2, ð18Þ

which corresponds to a power-law probability distribution for T .

Summarizing, the three following conditions must be fulfilled to

obtain a power-law dependence in P(T) with exponent {3=2:

N Large enough values of tr. With this condition, we ensure that

the dynamics of x(t) is much slower than that of n(t).

N Large enough values of D. In particular, we must have

D&2tDx, according to the condition Dx%sx and the

definitions sx:D=
ffiffiffiffiffi
2t
p

and t:tr=(1zutrn0). This condition

can be achieved even with very small values of D, since Dx can

be arbitrarily small (by increasing J , for instance).

N The condition Jx0n0w1 must hold to ensure the existence of

two well defined (up-down) states.

All these conditions may be easily achieved (up to some point)

with realistic values of the model parameters, indicating that

power-law distributions of the permanence times in the up state

are plausible to be found in actual cortical media.

Results

As we have stated in the previous sections, equations (1–2)

govern the dynamics of our simplified neural system. A typical

time series of the dynamics of this model, for the case of

deterministic synapses (that is, D~0), is depicted in figure 2A. In

this case, the mean firing rate of the population is characterized by

a periodic switching between up and down states. This type of

periodic behavior was already found and analyzed in previous

theoretical studies [14,16,18] and yields bimodal histograms for

the mean firing rate of the neural population (see figure 2B), as the

experiments indicate [3]. However, these approaches ignore the

stochastic nature of synaptic transmission, and other forms of

stochasticity at the synaptic level, which seem to be crucial for

information processing in neural systems [31,32,49]. Considering

a certain level of synaptic stochasticity in addition to STD in our

model, one obtains a qualitatively different emergent behavior, as

is shown in figure 2C for D~20. The mean firing rate presents

then a complex switching between up and down states, and in

particular involves a high variability in the permanence times in

the up state.

When deterministic synapses are considered (that is, D~0) the

dynamics of the mean firing rate becomes quasi periodic, as it was

reported in [16,18,19], for instance. This type of dynamics

naturally leads to exponential distributions for the permanence

times. More precisely, for D~0 our model is similar (except for

the term f(t)) to the one analyzed in [16], which shows periodic

oscillations of the network mean firing rate. In our case, however,

the term f(t) introduces certain level of stochasticity which turns

these periodic oscillations into quasi-periodic oscillations. This

leads to the exponential distributions for the permanence times in

the up state. When D is increased, on the other hand, the

stochasticity of the synapses leads to the appearance of power-law

distributions for the duration of the up states. This behavior is

shown in figure 3A, where low values of D corresponds to

exponential distributions for P(T), while larger values of D give

P(T)*T{3=2 as predicted by our theoretical calculations. Such

power-law distributions may explain the high variability of

permanence times in the up state, which has been observed in a

number of in vivo experiments, such as in the cat visual cortex [7]

and rat auditory cortex [21], to name a few. Interestingly, similar

power-law dependences have been observed during sleep-wake

transitions in vivo when one measures the distribution of

permanence times in the wake state [22,23]. On the other hand,

exponential-like distributions, obtained for the case of having

D~0, are not able to explain this variability of the duration of up

states.

By looking at the data for D~20 in figure 3A, one can observe

the existence of a small deviation of the numerical results (blue

points) with respect to the theoretically predicted slope (solid line)

for very large values of T . Such deviation is due to the fact that the

separation of timescales between the dynamics of n(t) and x(t) (a

necessary condition to obtain power-law dependences in P(T)) is

only approximate when considering realistic values of the

parameters (and in particular, realistic values for tr). More

precisely, the approximation fails when the activity of the system

falls in the occasional periods of very long permanence times in the

up state (that is, for large enough values of T , comparable with tr).

In order to study the effect of the separation of timescales between

n(t) and x(t), we have computed P(T) for different (increasing)

values of tr while keeping fixed values for Dx and D=tr (this can be

done by properly modifying J and D with tr, respectively). As a

consequence of this, the only effect of increasing tr will be a clearer

separation of timescales between n(t) and x(t). The results are
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shown in figure 3B, where one can see that larger values of tr (that

is, clearer separation of timescales) lead to a displacement of the

effective cut-off towards higher values of T , as expected, and a

clearer power-law distribution emerges.

It is worth noting that the appearance of an effective cut-off in T
for realistic conditions does not represent an unrealistic feature of

the model, but rather it constitutes a prediction about the effective

range of permanence times which are expected to occur in actual

neural systems. Indeed, for realistic values of the parameters, our

results predict permanence times in the up state up to *1000 ms,

which is the maximum permanence time observed in experimental

realizations [7]. Larger permanence times in the up state (of about

 

 

Figure 3. Probability distributions of permanence times in the up state. (A) Probability distribution P(T), obtained with numerical
simulations, for different values of the noise strength D. One can see that high values of D lead to the appearance of power-law distributions
P(T)*T{c with c~3=2, as the mean-field solution predicts. For numerical simulations, we employed time series of duration 106 and averaged over
100 trials. The values of the other parameters were J~1:1 V , u~0:6, tr~1000, d~0:3 and nm~5:10{3 . To compute P(T), we have considered that
the up state has been reached during a period T (with Tw2) if nwgnm during this period. We set g~0:8. (B) Probability distributions of permanence
times in the up state, for different values of tr and fixed Dx^0:065 and D=tr~0:02. In order to fix Dx and D=tr , we have conveniently modified J
and D, respectively, for each value of tr . We employed time series of duration 106 and averaged over 600 trials. Other parameters are u~0:04, d~0:3
and nm~5:10{3 .
doi:10.1371/journal.pone.0013651.g003
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10 seconds, for instance) should be expected to appear only as a

consequence of input driven mechanisms (such as persistent

activity associated with working memory tasks [50,51]), and not as

a consequence of spontaneous transitions between different voltage

levels, which are the matter of interest in this work.

For a better characterization of the dynamics of the system, one

can use, for instance, other statistical magnitudes such as the

autocorrelation function C(t’) of n, which can be defined as

C(t’):Sn(tzt’)n(t){n(t)n(t’)T: ð19Þ

Here, S � � �T indicates a temporal average. The autocorrelation

function is depicted in figure 4A for the case of deterministic

depressing synapses (D~0) and stochastic depressing synapses

(D~20). C(t’) presents, for D~0, two well located peaks at

t’^+200, which indicates a strong periodicity of the time series

(as can be seen in figure 2A). On the contrary, the inclusion of a

certain level of intrinsic stochasticity in the dynamics of x
introduces more pronounced temporal correlations in the

dynamics of the system. This fact reflects the existence of long

permanence stays in the up state, which occurs with more

probability for high enough values of D, as we have already

discussed.

The spectral properties of the dynamics can be analyzed as well,

via the power spectrum defined as

F(f ):
ð

C(t’) exp (2pift’)dt’: ð20Þ

As one could expect, the power spectrum of the case D~0
presents a pronounced peak around a certain frequency, which in the

particular case presented in the figure 4B is f*5:10{3. The power

spectrum for higher values of D shows however different properties

than the case D~0. For instance, the figure 4B (which considers

D~20) indicates an approximated power-law behavior for the power

spectrum, F (f )*f {b with b^1:7. This scale-free dependence can

be understood by considering that, if P(T) is algebraic with exponent

c, the corresponding power spectrum becomes also algebraic with

exponent b, where the equation czb~3 relates both exponents

[44]. In our particular case, since c^1:5, one obtains a theoretical

prediction of b^1:5 for the exponent of the power spectrum. The

theoretical relation between P(T) and F (f ) exposed above, however,

is only valid under the so called single interval approximation, which

implies that the integration variable t in equation (20) is smaller than

the permanence time T (see [44] for details). This condition does not

strictly hold for our system (where T ranges over several scales), and

therefore it may introduce deviations in the theoretically predicted

value of b (which is around b^1:5) with respect to the value found in

simulations (of around b^1:7).

Besides the level of synaptic stochasticity, i.e. D, other

parameters of the model could have an important effect on the

dynamics as well. The parameter d, for instance, controls the level

of stochasticity of the dynamics of n, and therefore one should

expect that increasing its value could strongly influence the

probability distribution P(T). This is shown in figure 5A, where an

increase of d disrupts the appearance of power-law dependences,

and exponential distributions appear instead. This change in P(T)
is due to the fact that high levels of the additive noise d make the

system to jump more frequently from one state to the other, and

therefore long stays in the up state (and thus distributions with long

power-law tails) rarely occur.

The parameters involving the dynamics of x also affect the

probability distributions P(T). The parameter u, for instance, is

responsible for the modulation of x via the mean firing rate n (see

equation (2)), and therefore it can influence both the dynamics of x

and n. As one may see in figure 5B, when u takes low values a

bump in P(T) emerges for high T . Such deviation from the

power-law dependence indicates that long stays in the up state

occur more frequently than in the power-law case. Attending at

equation (2), one can see that an increase of the mean firing rate n
decreases the variable x via the parameter u. Therefore, if u takes

lower values the decrement of x will be smaller. As a consequence,

the stays of x in the x0%x regime (see Methods Section) will last

longer, and the stays of the system in the up state will also last

longer, causing the observed deviation from the power-law

tendency. It should be noted, however, that the values of u which

allow the appearance of power-law dependences in P(T) for our

model agree with the values of u measured in actual cortical media

where up and down transitions are observed [36].

 

 
 

 

Figure 4. Autocorrelation and power spectra. (A) Autocorrelation function of the mean firing rate for deterministic (D~0) and stochastic
(D~20) synapses, in the presence of STD. (B) Power spectra of the mean firing rate for the two cases illustrated in (A). For both panels, we have
averaged over 105 time series of duration 106 each, and we have fixed J~1:1 V , u~0:6, tr~1000, d~0:3 and nm~5:10{3.
doi:10.1371/journal.pone.0013651.g004
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We have also analyzed in detail the effect that varying tr has on

the probability distribution of permanence times. Note that,

contrarily to the previous study presented above, we have now

varied the parameter tr while all the other parameters are kept

fixed. This implies that the modification of tr will now have an

effect on the separation of timescales between n(t) and x(t), but

also on the concrete value of Dx and on the amplitude of the noisy

term of equation (2) (namely D=tr). The results are shown in

figure 5C, where one can distinguish three different regimes as a

function of the particular value of tr. For low tr (red region in the

figure), the probability distributions show an exponential decay for

large permanence times. The reason for this decay is that, for low

tr, the variable x does not perform long excursions in the region

x0%x (see Methods Section), and therefore the probability to have

large values of T decreases and the power law behavior for P(T) is

not obtained. As tr is increased, long excursions for x begin to

occur, and we obtain a power law behavior P(T)*T{3=2 (green

region in the figure). Finally, one can appreciate that, for even

larger values of tr (blue region in the figure), the probability

distribution of permanence times in the up state presents a power

law dependence P(T)*T{c(tr) with c(tr)w3=2, being an

increasing function of tr. Such dependence can not be explained

by our previous theoretical predictions, based in the assumption

that the system is in the bistable regime, and deserves a detailed

analysis which will be exposed in the next section.

Further analysis
In the Methods Section, we established several conditions which

had to be fulfilled in order to obtain power law dependences for

P(T). In particular, our previous analysis indicates that the

condition Jx0n0w1 must hold in order to have a potential function

W(n,x) with three extrema (bistable regime). However, as we will

see in the following, power law expressions for P(T) may appear

even if the potential function has only one extremum in n
(concretely, one minimum), although the origin of such power law

distributions is different from the one considered in previous

sections, as we will see.

When Jx0n0v1 (which occurs for J%1 or tr&1, for instance),

the potential function W(n,x) has only one minimum in n, whose

location strongly depends on x. An approximated expression for

the location of this minimum as a function of x can be obtained by

expanding the hyperbolic tangent of the fixed point expression of

n(t) (see equation (4)) around its argument (which is small in this

limit), yielding

nmin^n0(1{Jx0n0)z(Jn2
0{J2x0n3

0)xzJ2n3
0x2, ð21Þ

where nmin is the value of n which corresponds to the minimum of

the potential function. Therefore as x varies around x0, the

location of the minimum of the potential nmin also varies in the

same way around n0. As an example, time series of both n and x
are shown in figure 6A for a given set of parameters which satisfies

Jx0n0v1. In this time series, the variable n fluctuates around the

value nmin, which is fully determined by x (that is, the variable n
becomes a slave variable of x). The predictions of equation (21)

agree approximately well with simulations and with the numerical

evaluation of the fixed points of equation (1), as the figure 6B

shows.

 

 

 

Figure 5. Influence of other parameters of the model. (A) Probability distributions of permanence times in the up state, for different values of
d. Other parameters are J~1:1 V , u~0:6, tr~1000, D~20 and nm~5:10{3. (B) Same as in (A), but for different values of u. The other parameters
take the same values as in (A), except for d~0:3. (C) Probability distribution P(T) as a function of T and tr . The three different regimes are shown
with different colors (see main text for details). Other parameters are J~1:1 V , u~0:6, D~20, d~0:3 and nm~5:10{3 . For all panels, we have
averaged over 100 times series of duration 106 each.
doi:10.1371/journal.pone.0013651.g005
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Since n behaves now as a stochastic variable which does not

present a clear bistable dynamics, the numerical computation of

the distribution of the permanence times will depend on the exact

value of n above which the system is considered to be in the up

state. As we have seen before, this threshold value takes the form gnm

(see caption of figure 3), where usually g may take a value between

0:6 and 0:9. While the results presented for Jx0n0w1 (that is, the

bistable regime) are quite robust for different values of g, in the

regime Jx0n0 this parameter has indeed some effect on P(T),
which indicates the difficulty to accurately analyze the up and

down dynamics in this case.

In figure 7A, one observes that the distribution P(T) shows also

a power law behavior P(T)*T{c for g~0:75 and different values

of D, for a set of parameter values which satisfies Jx0n0v1 (that is

the monostable regime). The concrete value of c depends strongly

on D and it has also a weaker dependence with g, as the figure 7B

illustrates. This type of power-law behavior appearing in the

monostable regime corresponds to the blue region in figure 5C, as

well.

It is worth noting that actual recordings of up and down

transitions does not present a clear distinction between up and

down states, and several nontrivial methods are commonly

employed to discriminate between both states [52]. Therefore,

the results found for the regime Jx0n0v1 could indeed reflect the

behavior of actual cortical up-down transitions, showing power

law dependences in P(T) with cw3=2 and indicating that the

concrete nature of the transitions is a synaptic-driven monostable

dynamics.

For a complete characterization of the model, one can

summarize all the observed behaviors in a phase plot such as

the one presented in figure 8A. A total of four different behaviors

can be found in the (tr, D) space. The first one concerns the

dynamics of n whose permanence times in the up state follows an

exponential distribution (labeled as ‘‘E’’ in the figure). If the noise

amplitude D is sufficiently high, one can increase the value of tr to

reach the regime ‘‘C’’, in which the dependence P(T)*T{1:5 is

obtained. By increasing tr even more, the probability distribution

P(T) takes the form *T{c, with cw1:5 (regime denoted by ‘‘S’’),

as we have already seen in figure 6. Finally, we also observe that

when the depression time scale is not large enough (and Dv*3), a

regime of quasi-periodic time series of n is obtained, with a well-

defined duration of up states (regime denoted by ‘‘P’’). The lines

 

 

 

 

 

 

 

    

 

   

 

 

 

 

 

 

 

Figure 6. Behavior of the system when the condition Jx0n0v1 holds. (A) Time series of the variables n and x. (B) The same time series, but
represented on the x{n plane, illustrates the fact that n is a slave variable of x (although some level of inner stochasticity on n is still present). The
green line corresponds to the approximate expression (21), while the blue line is the numerical evaluation of the fixed point solutions of n(t) (see
equation (4)). The inset shows the situation in which the system shows a bistable dynamics, analyzed in the previous section. (C) The potential
function as a function of n for different values of x. One can appreciate the existence of only one minimum, whose location is controlled by x. (D)
Histograms of the mean firing rate of the system for different values of J . For the cases showed in this panel, the condition Jx0n0v1 is only satisfied
for the case J~0:55. For all panels, u~0:6, tr~1000, D~20, d~0:3, nm~5:10{3 , and J~0:55 V unless specifically specified.
doi:10.1371/journal.pone.0013651.g006
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between the different regimes have been obtained by visual

inspection of P(T) for different values of tr and D. In particular,

the regime ‘‘P’’ is characterized by the appearance of a bump in the

probability distribution for some value of T (which reflects a

preferred duration of the up state), and the existence of such bump

has been used as a criterion to distinguish between regimes ‘‘P’’

and ‘‘E’’. Similarly, we assumed that the regimes ‘‘C’’ and ‘‘S’’

correspond to the situation in which a power-law behavior that

extends for two decades or more is found for P(T). Such criterion,

together with an estimation of the slope of the power-law via

standard Levenberg-Marquardt fitting algorithms, allows to

distinguish between regimes ‘‘E’’, ‘‘C’’ and ‘‘S’’.

It must be clarified, however, that actual up and down cortical

transitions present most likely a richer repertoire of dynamical

regimes than the one obtained with our simplified model. It is

known, for instance, that attractor neural networks with dynamic

synapses may exhibit different dynamics corresponding to

memory, non-memory and switching regimes [18,19]. In this

work, we have extensively explored different regimes of switching

behavior, and its implications for the up and down dynamics

observed in the cortex. The memory and non-memory regimes,

however, can be also found in our simplified model by assuming

that D, d?0. After taking these limits, the system will be in the

memory regime if the potential function W(n,x) is bistable, or in

the non-memory regime if W(n,x) is monostable.

Discussion

We have shown that the experimentally observed large

fluctuations in up and down permanence times can be explained

as the result of sufficiently noisy dynamical synapses with

sufficiently large recovery times. Our study suggests that a

power-law distribution for these permanence times may emerge

as a consequence of these two ingredients. Static synapses cannot

account for this behavior, nor can dynamical synapses in the

absence of noise.

The origin of up and down cortical transitions is still unclear,

although different factors that may influence their occurrence have

been recently reported. It is known, for instance, that inhibitory

GABAergic currents strongly contribute to the temporal coding

and spike timing precision of cortical networks during up states of

activity [3,53,54]. Several modeling studies also show the

relevance of inhibitory interneurons in the generation of many

types of oscillations in the brain (see for instance [55]). However,

other studies indicate that most of the main features of up and

down transitions depends strongly on synaptic plasticity mecha-

nisms, both of long-term and short-term ones [16,56], and that the

transitions appear even in the absence of inhibition [16]. In this

work we have made the common assumption that the effects of

inhibition can be treated as additive and can be incorporated in

the threshold of the neuron. This is known to be a valid

approximation in mean field neural network analysis, but may fail

when precise timing and details of the dynamical aspects of the

neuron affect the inhibition [57,58].

Regarding to synaptic characteristics, recent works show that

synaptic fluctuations could have an important role in the

generation of transitions between up and down states [14,59,60].

Since our model introduces stochasticity in the synaptic dynamics

in a highly simplified manner, however, the last term in equation

(2) should not be associated only with ureliability in synaptic

transmission. Indeed, we have assumed that other sources of

stochasticity may be contributing to this fluctuating term in the

mean-field quantities n(t) and x(t). For instance, it is widely known

that connectivity in actual cortical media is highly sparse. Such

feature implies that, in order to obtain the mean-field quantity

x(t), the average over synapses must be performed over a number

of C synapses, with C ranging over 100*1000 connections per

neuron [38]. In this situation, the fluctuations of x(t) would be of

order 1=
ffiffiffiffi
C
p

, which leads to a range of 0:1*0:03 for the values

given above. As we have seen, our results state that a value of

D=tr~0:02 is enough to obtain power-law distributions (see

figure 3), which lies within this range. Therefore, topology-induced

fluctuations constitute an important source of stochasticity which

could be responsible of the appearance of power-law distributions

in P(T). Other sources of stochasticity at synaptic level, such as the

stochastic properties of receptor-transmitter interactions, may also

 

 

 

 

 

Figure 7. Statistics of permanence times in the up state for Jx0n0v1. (A) Probability distribution of permanence times in the up state in the
Jx0n0v1 regime, for g~0:75 and different values of D. One can see that power law relations P(T)*T{c appear. (B) Dependence of c with D for the
conditions presented in (A). The inset shows the dependence of c with the parameter g for the case D~200. We have averaged over 100 time series
of duration 106 each. Other parameters are J~0:05 V , tr~1000, u~0:6, d~0:3 and nm~5:10{3 .
doi:10.1371/journal.pone.0013651.g007
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contribute to the last term of equation (2). Moreover, the low

activity rates typical from cortical media lead to a poor time-

averaging of the incoming input, and therefore the fluctuations at

the postsynaptic level will be large at these short-time scales (of the

order of the typical synaptic integration time constant).

On the other hand, the amplitude of the noisy term, D=tr, does

not need to be very high to induce the appearance of power-law

distributions in P(T). As we have stated above, a sparse

connectivity already induces a level of stochasticity which is within

the desired range, for instance. Furthermore, the noisy term could

even be arbitrarily small: attending to our theoretical predictions, a

necessary condition to have power-law distributions is that

fluctuations of x(t) must be much larger than Dx (see Methods

Section). Since Dx may be lowered to arbitrary levels (by

increasing J, for instance), even a small noisy term in the

dynamics of x(t) may induce power-law distributions.

It is also known that short-term synaptic mechanisms, such as

short-term depression and facilitation, usually play a role in the

efficient processing of information. In particular, they may be

relevant in many tasks, such as in signal detection and coding

[29,61–63] or switching between different activity patterns

previously stored [19,64]. However, their role on the transitions

between cortical states has been pointed out only by a few studies

[15,16,65], and their possible effects on the statistics of the

transitions, which is the focus of our work, have been ignored. To

the best of our knowledge, the present study is the first one which

analyzes, even in a simplified manner, the strong effect of synaptic

stochasticity– in a general sense– and dynamic synapses in the

statistics of the up and down transitions. The possible role of other

short-term synaptic mechanisms, such as STF, has not been

addressed yet and constitutes a interesting issue still open.

In our analysis we assumed that the dynamics is symmetric in

the up and down states. This is in contradiction with experimental

evidences [66] which shows that power-law distributions are

obtained for permanence times in the up state, while permanence

times in the down state are exponentially distributed. However,

this discrepancy disappears when one considers a more realistic

transduction function which gives an asymmetric potential for the

dynamics, and as a consequence the up-down symmetry is broken.

More detailed studies considering, for instance, some of the

biologically realistic aspects discussed above, should be performed

to test our predictions. In particular, a more elaborated study

considering realistic neuron models (such as Hodgkin-Huxley

model [67]) and stochastic STD models (see [29,49], for instance)

is necessary, as well as more detailed experimental studies which

may confirm our predictions.

From a general point of view, evidences of criticality have been

recently found in an increasing number of neural systems, such as

in the functional connectivity of the living human brain [24], in

critical avalanches of neuronal activity [25], or in sleep-wake

transitions [23], to name a few. According to the results presented

in this work, transitions between up and down cortical states could

also present some relevant properties typical of systems at

criticality. Some of these properties have been already measured

in experiments, such as a high sensitivity of the system to external

stimuli [8], or the presence of power-law dependences in the

power spectra of the neural dynamics [53].

It is worth noting that other kind of probability distributions for

P(T), such as a log-normal distribution, could also satisfactorily

explain the irregularity in the up states found in experiments. Our

study shows the importance of some biophysical factors, such as

the neurotransmitter recovery time and the inherent synaptic

stochasticity, and predicts a power-law dependence on P(T) as a

consequence of such factors. However, further study is needed to

investigate other mechanisms, not taken in account in this work,

which could influence the permanence times in the up state. In a

more general sense, our results may proportionate a new

perspective of the phenomena of up and down transitions (and a

theoretical framework) that could serve to conciliate the main

experimental findings, and that could help for a deep understand-

ing of this complex dynamics of the brain activity.

 

 

 

 

 

 

 

 

Figure 8. The different dynamical regimes of the model. (A)
Phase plot which shows the different behaviors found in our system.
These behaviors corresponds to time series of n for which permanence
times in the up state follow an exponential distribution (E), a power-law
distribution P(T)*T{c with c~3=2 (C), or a power-law distribution
with cw3=2 (S). In addition, a phase with a well-defined duration of the
up state is found (P). In panel (B) some of these behaviors are depicted.
From top to bottom one can see situations P, E and C. Other parameters
are J~1:1 V , u~0:6, d~0:3 and nm~5:10{3 .
doi:10.1371/journal.pone.0013651.g008
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