
Loop Corrected Belief Propagation

J. M. Mooij, B. Wemmenhove, H. J. Kappen

Department of Biophysics
Radboud University Nijmegen

6525 EZ Nijmegen, The Netherlands
{j.mooij|b.wemmenhove|b.kappen}@science.ru.nl

T. Rizzo

Laboratoire de Physique Théorique
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Abstract

We propose a method for improving Belief
Propagation (BP) that takes into account
the influence of loops in the graphical model.
The method is a variation on and general-
ization of the method recently introduced by
Montanari and Rizzo [2005]. It consists of
two steps: (i) standard BP is used to cal-
culate cavity distributions for each variable
(i.e. probability distributions on the Markov
blanket of a variable for a modified graph-
ical model, in which the factors involving
that variable have been removed); (ii) all cav-
ity distributions are combined by a message-
passing algorithm to obtain consistent single
node marginals. The method is exact if the
graphical model contains a single loop. The
complexity of the method is exponential in
the size of the Markov blankets. The results
are very accurate in general: the error is of-
ten several orders of magnitude smaller than
that of standard BP, as illustrated by numer-
ical experiments.

1 INTRODUCTION

Belief Propagation (BP), also known as the Sum-
Product Algorithm and as Loopy Belief Propagation,
is a popular algorithm for approximate inference on
graphical models. It often yields surprisingly accu-
rate results, using little computation time. It has
strong ties with the Bethe approximation [Yedidia
et al., 2001], which was developed in statistical physics
[Bethe, 1935]. Belief Propagation is the simplest case
in a family of related but more sophisticated algo-
rithms such as Generalized Belief Propagation (GBP)
[Yedidia et al., 2005] (which can be used e.g. for
the Cluster Variation Method (CVM) [Pelizzola, 2005,
Kikuchi, 1951]) and Expectation Propagation (EP)

[Minka, 2001].

It is well-known that Belief Propagation yields exact
results if the graphical model is a tree. However, if the
graphical model contains loops (cycles), the approxi-
mate marginals calculated by BP can have large errors.
Increasing the cluster size of the approximation (e.g.
by using CVM with larger clusters) does not necessar-
ily solve this problem if long, influential loops cannot
be completely included in one cluster. Using TreeEP
[Minka and Qi, 2004] one can correct for the presence
of loops to a certain extent, namely for those loops
that consist of part of the base tree and one additional
factor. The method we propose here effectively takes
into account all the loops in the factor graph, in many
cases yielding more accurate approximate marginals as
a result.

In the statistical physics community different meth-
ods for calculating loop corrections to the Bethe ap-
proximation have been proposed recently [Montanari
and Rizzo, 2005, Parisi and Slanina, 2005, Chertkov
and Chernyak, 2006]. The work we present here is a
variation on the theme introduced in [Montanari and
Rizzo, 2005]. The alternative that we propose here of-
fers two advantages compared to the original method
proposed in [Montanari and Rizzo, 2005]: (i) it has
better convergence properties in the case of relatively
strong interactions; (ii) it is directly applicable to arbi-
trary factor graphs, whereas the original method has
only been formulated for binary variables with pair-
wise factors.

This article is organized as follows. First we explain
the theory behind the proposed method, discussing dif-
ferences with the original approach in [Montanari and
Rizzo, 2005] along the way. Then we report numerical
experiments regarding the quality of the approxima-
tion and the computation time, comparing with other
approximate inference methods. Finally, we discuss
the results and state conclusions. More details and
more extensive numerical experiments can be found in
[Mooij and Kappen, 2006].



2 THEORY

2.1 GRAPHICAL MODEL CLASS,

NOTATIONS

Let V := {1, . . . , N} be an index set for N ran-
dom variables {xi}i∈V , where variable xi takes val-
ues in a discrete1 domain Xi. We will use a multi-
index notation, i.e. for any subset I ⊆ V , we write
xI := (xi1 , xi2 , . . . , xim

) if I = {i1, i2, . . . , im} and
i1 < i2 < . . . im. We consider probability distribu-
tions over x = (x1, . . . , xN ) that can be written as a
product of factors ψI :

P (x1, . . . , xN ) =
1

Z

∏

I∈F

ψI(xI). (1)

The factors (or “interactions”) ψI are indexed by sub-
sets of V , i.e. I ∈ F ⊆ P(V). Each factor is a non-
negative function ψI :

∏
i∈I Xi → [0,∞). This class

of probability distributions includes Markov Random
Fields as well as Bayesian Networks. In general, the
normalizing constant Z is not known and exact com-
putation of Z is infeasible. One can visualize a proba-
bility distribution of the form (1) with a factor graph

(c.f. Figure 1(a)), a bipartite graph having variable

nodes i ∈ V and factor nodes I ∈ F , with an edge
between i and I if and only if i ∈ I.

In the following, we will use uppercase letters for in-
dices of factors (I, J,K, . . . ∈ F) and lowercase letters
for indices of variables (i, j, k, . . . ∈ V). For simplic-
ity we assume that no pair of variables is contained in
more than one factor, i.e. we assume that no loops of
length 4 are present in the factor graph.2 Let i ∈ V
and A ⊆ V ; we slightly abuse notation by writing A\ i
instead of A \ {i}, \A instead of V \ A and \i instead
of V \ {i}.

2.2 LCBP: A BRIEF OVERVIEW

The main idea of what is known in the statistical
physics community as the “cavity method” is to con-
sider modified graphical models in which a single vari-
able is removed, together with all factors in which that
variable appears, thus forming a “cavity” (c.f. Figure
1). The removed variable is called the cavity variable.
The method proposed in [Montanari and Rizzo, 2005]
(and our method, which is a variation and generaliza-
tion thereof) approximates for each variable its corre-
sponding cavity distribution, i.e. the marginal proba-
bility distribution of the cavity network on the neigh-
borhood (Markov blanket) of the cavity variable. Sub-

1The same ideas can be applied for the case of continu-
ous variables. Here we focus on the discrete case.

2For a more general approach, see Mooij and Kappen
[2006].

sequently, the removed factors are multiplied back in,
and we demand consistency of single node marginals.
This results in partial cancellation of errors in the ap-
proximated cavity distributions, improving the accu-
racy of the final result. The Bethe approximation is
obtained as the special case in which the cavity distri-
butions are assumed to factorize completely. We will
now explain the procedure in more detail.

2.3 CAVITIES

Let i ∈ V . We denote by ∂i := {j ∈ V : i, j ∈
I for some I ∈ F} the set of neighboring variables
of i, also called the Markov blanket of i. We define
∆i := ∂i∪{i}. We modify the original graphical model
(1) by removing variable xi and all the factors in which
it appears (c.f. Figure 1); the probability distribution
corresponding to the resulting cavity network is thus
by definition:

1

Z\i

∏

I∈F
i6∈I

ψI(xI). (2)

Note that the normalization constant Z\i differs from
the normalization constant Z of the original network
(1). We will call the marginal distribution of (2) on ∂i
(the Markov blanket of i) the cavity distribution P \i

of i:

P \i(x∂i) :=
1

Z\i

∑

x\∆i

∏

I∈F
i6∈I

ψI(xI). (3)

Writing Ψi for the product of the removed factors:

Ψi(x∆i) :=
∏

I∈F
i∈I

ψI(xI), (4)

the following identity is immediate:

P (x∆i) ∝ P
\i(x∂i)Ψi(x∆i), (5)

i.e. the marginal distribution on ∆i of the original

probability distribution (1) is proportional to the prod-
uct of the cavity distribution of i and the product of
the factors involving xi.

3 The cavity distribution sum-
marizes the rest of the network; it can be seen as an
“effective interaction” on x∂i. In particular, it sum-
marizes information about loops in which variable i is
contained. For example, in Figure 1, the cavity distri-
bution P \i(x∂i) contains the interaction ψO between
xm and xl, which is part of the loop iKmOlJi in the
original factor graph.

3Note that equation (5) is not one of the DLR equations
[Georgii, 1988]. The most similar DLR equation would
be P (xi) =

∑
x∂i

P (xi |x∂i)P (x∂i), whereas (5) implies

P (xi) ∝
∑

x∂i
Ψi(x∆i)P

\i(x∂i). Although the equations

may appear identical at first sight, they are not. Consider
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(b) Cavity graph of i

Figure 1: (a) Original factor graph; (b) cavity graph re-
maining after variable node i and the factor nodes that
contain i (i.e. I ,J ,K) have been removed. The neighbors
of i are ∂i = {j, k, l, m} and ∆i = {i, j, k, l, m}. The cavity

distribution P \i is defined as the marginal on x∂i of the
probability distribution corresponding to (b).

2.4 CONSISTENCY OF SINGLE NODE

MARGINALS

Consider two variables i, j ∈ V with i ∈ ∂j; let I be
the common factor involving both xi and xj . The joint
marginal on xi and xj in the absence of the factor I is
given by

P \I(xi, xj) ∝
∑

x\{i,j}

∏

J∈F
J 6=I

ψJ (xJ ). (6)

We can calculate this joint marginal from the cavity
distribution of i:

P \I(xi, xj) ∝
∑

x∂i\j

P \i(x∂i)Ψ
\I
i (x∆i) (7)

where we defined:

Ψ
\I

i (x∆i) :=
∏

J∈F
i∈J,J 6=I

ψJ (xJ ) =
Ψi

ψI

for i ∈ I, I ∈ F .

Alternatively, we can calculate (6) from the cavity dis-
tribution of j (interchanging i and j):

P \I(xi, xj) ∝
∑

x∂j\i

P \j(x∂j)Ψ
\I

j (x∆j). (8)

The results are obviously identical if the cavity distri-
butions P \i and P \j are exact.

In practice, the exact cavity distributions are unavail-

able and we can only obtain approximations Q
\k
0 ≈

e.g. a star-shaped model with a central variable i coupled
to its neighbors by pairwise factors. In that case, P \i(x∂i)
is completely factorized, whereas P (x∂i) is not.

P \k. Replacing {P \k}k∈V by their approximations

{Q
\k
0 }k∈V in equations (7) and (8) will yield inconsis-

tent results; the main idea of the method proposed in
[Montanari and Rizzo, 2005] is to deform the approxi-

mate cavity distributions {Q
\k
0 }k∈V in such a way that

the single node marginals of xi and xj in equations (7)
and (8) become consistent.4 In [Montanari and Rizzo,
2005], the single node marginals of the approximate
cavity distributions are varied whereas the higher or-
der cumulants are kept fixed.5 Instead, we propose
here to deform the approximate cavity distributions

Q
\i
0 in the following way:

Q\i(x∂i) ∝ Q
\i
0 (x∂i)

∏

j∈∂i

φ
\i

j (xj). (9)

Thus we change the single variable interactions by mul-
tiplying with single node factors but keep higher order

interactions fixed. The single node factors φ
\i
j (xj) are

chosen such that the single node marginals of xi and
xj are consistent in the absence of factor I, i.e. such
that

∑

x∆i\i

Q\i(x∂i)Ψ
\I
i (x∆i) ∝

∑

x∆j\i

Q\j(x∂j)Ψ
\I
j (x∆j).

(10)
This should hold for all pairs of neighboring variables
i, j ∈ V with i ∈ ∂j. In this way, first order errors

in the initial approximate cavity distributions Q
\k
0 are

cancelled out.

To calculate the values for the corrections φ
\i
j (xj), we

use Algorithm 1, which is a simple fixed-point algo-
rithm based on equations (10). After convergence, we
calculate single node marginals qi(xi) ≈ P (xi) from
the final deformed approximate cavity distributions

Q
\i
∞ using:

qi(xi) ∝
∑

x∂i

Q\i
∞(x∂i)Ψi(x∆i).

In our experiments, Algorithm 1 always converged to a
reproducible fixed point, even without damping. Note

4Instead of demanding consistency of single node
marginals xi and xj in the absence of the factor I con-
necting xi with xj , one could alternatively demand con-
sistency of the single node marginals in the presence of
all factors, i.e. demanding that

∑
x∂i\j

P \i(x∂i)Ψi(x∆i) ∝
∑

x∂j\i
P \j(x∂j)Ψj(x∆j) for all i ∈ V, j ∈ ∂i. This might

appear more natural, but it turns out that the resulting
method is inferior to the one presented here if factors in-
volving more than two variables are present (see also sec-
tion 4).

5Cumulants are called “connected correlations”
in [Montanari and Rizzo, 2005] and are defined
as certain polynomial combinations of moments∑

x∂i
P \i(x∂i)

∏
j∈A xj with A ⊆ ∂i, where all vari-

ables are assumed to be ±1-valued.



that if we would start with the exact cavity distribu-

tions, i.e. Q
\i
0 = P \i for all i, the algorithm would ter-

minate immediately because the single node marginals
would already be consistent. Obviously, one can use
other update schemes than the parallel one given in
Algorithm 1; in our experiments, we have used a se-
quential update scheme.

2.5 COMPUTING Q
\i
0

We have discussed in the previous subsection how to

deform the initial approximate cavity distributions Q
\i
0

to make them consistent; we now discuss how to obtain

the Q
\i
0 in the first place.

In [Montanari and Rizzo, 2005] it is suggested to ini-
tialize the second-order cumulants of the approximate
cavity distribution using BP in combination with lin-
ear response and to assume higher order cumulants
to be zero (although in principle one could use higher
order linear response estimates for the higher order
cumulants).

Here, instead, we propose to initialize the approxi-
mate cavity distributions by using standard BP on a
“clamped” network. This means that for each cavity
variable i, we fix some setting x∂i of its Markov blan-
ket, use BP to calculate the corresponding Bethe free
energy FBethe(x∂i) for that particular setting, iterate
over all possible settings, and finally calculate the ap-
proximate cavity distribution

Q
\i
0 (x∂i) ∝ e

−FBethe(x∂i). (11)

In this way we capture all effective interactions, also
higher order ones, in the initial cavity distributions.

One can think of many other ways to approximate the
initial cavity distributions. The procedure described
above is exponential in the size of the cavity. An al-
ternative way of initializing the cavity distributions
is to estimate the pair marginals P \i(xj , xk) for each
pair (j, k) ∈ ∂i2. This can be done by clamping xj to
some value, using BP to approximate P \i(xk |xj) and

Algorithm 1 LCBP update algorithm (parallel up-
dates)

1: t← 0
2: repeat

3: for all i, j ∈ V s.t. i, j ∈ I for some I ∈ F do

4: Q
\j
t+1 ∝ Q

\j
t

∑
x∂i

Q
\i
t Ψ

\I
i∑

x∆j\i
Q

\j
t Ψ

\I
j

5: end for

6: t← t+ 1
7: until convergence

FBethe(xj). An approximation of P \i(xj , xk) is then
given by

q
\i
0 (xj , xk) ∝ P \i(xk |xj)e

−FBethe(xj).

The approximate cavity distributionQ
\i
0 is then simply

the product of all approximated pair marginals:

Q\i(x∂i) ∝
∏

{j,k}
j,k∈∂i

q
\i
0 (xj , xk) (12)

This procedure is quadratic in cavity size. However,
the update equations are still exponential in the cavity
size.

As a side note, one can show that by simply tak-
ing completely factorized initial cavity distributions

(i.e. Q
\i
0 (x∂i) ∝

∏
j∈∂i q

\i
j (xj) for arbitrary q

\i
j ), fixed

points of BP are fixed points of Algorithm 1 (see [Mooij
and Kappen, 2006] for a detailed proof). Thus LCBP
can indeed be regarded as a loop correction scheme for
the Bethe approximation.

2.6 EXACTNESS IN CASE OF ONE LOOP

It was shown in [Montanari and Rizzo, 2005] that
the method proposed there is exact if the graphical
model contains only one loop, possibly attached to
treelike structures. Using a similar argument, we can
show that a similar result holds for our alternative
method. Suppose the graphical model contains exactly
one loop. Consider first the case that i is part of the
loop; removing i will break the loop and the remaining
cavity graph will be singly connected, hence the cav-
ity distribution calculated by BP will be exact. On the
other hand, if i is not part of the loop, removing i will
divide the network into several connected components,
one for each neighbor of i; this implies that the cavity
distribution calculated by BP contains no higher or-

der interactions, i.e. Q
\i
0 is exact modulo single node

interactions. Hence, after running the LCBP update
algorithm, all cavity distributions will be exact, which
obviously implies that the final single node marginals
will be exact.

3 EXPERIMENTS

We have performed numerical experiments to compare
the quality of the results and the computation time of
the following approximate inference methods:

BP Standard BP, using the recently proposed update
scheme [Elidan et al., 2006], which converges also
for difficult problems without damping.



CVM-∆ A double-loop implementation [Heskes
et al., 2003] of CVM using the sets {∆i}i∈V as
outer clusters.6

CVM-4 A double-loop implementation of CVM using
as outer clusters all factors together with all loops
in the factor graph that consist of up to 4 different
variables.

TreeEP TreeEP [Minka and Qi, 2004], without
damping.

LCBP-CUM The original cumulant-based loop cor-
rection scheme described in [Montanari and Rizzo,
2005]. Response propagation (i.e. linear response)
is used to approximate the initial second-order
cavity cumulants; the update equations are the
exact equations with the assumption that cumu-
lants of order higher than two are zero.

LCBP LCBP with cavities initialized as in (11).

LCBP-PAIR LCBP with cavities initialized as in
(12).

To be able to assess the errors of the various approx-
imate methods, we limited ourselves to problems for
which exact inference (using a standard junction tree
method) was still feasible.

For each approximate inference method, we have cal-
culated the maximum error in the approximate single
node marginals qi as follows:

max
i∈V

max
xi∈Xi

|qi(xi)− pi(xi)| (13)

where pi(xi) = P (xi) is the exact marginal.7

The computation time was measured as CPU time in
seconds on a 2.4 GHz AMD Opteron 64bits proces-
sor with 4 GB memory. The timings should be seen
as indicative, as we have only optimized BP. The im-
plementations of the other approximate inference can
still be optimized for speed, which may alter the tim-
ings reported here by some constant depending on the
method.8

6We have used a double-loop implementation of CVM
instead of GBP because the former is guaranteed to con-
vergence to a local minimum of the Kikuchi free energy
[Heskes et al., 2003], whereas the latter often only would
converge with strong damping, where the required damp-
ing constant is not known a priori.

7We have considered other error measures as well (av-
erage maximum single node error, maximum and average
Kullback-Leibler divergence). We do not report these re-
sults here because of space constraints and because the
choice of error measure does not affect our conclusions.
Furthermore, by use of Scheffe’s theorem, the ℓ1 norm can
be used to obtain bounds on the probabilities of events.

8Our C++ implementations of the various algorithms
are released as free/open source software, licensed under

We have studied three different model classes: (i) ran-
dom graphs with fixed degree d = 5 and binary vari-
ables; (ii) periodic square grids with binary variables;
(iii) the ALARM network. For more extensive numer-
ical experiments, see also Mooij and Kappen [2006].

3.1 RANDOM REGULAR GRAPHS WITH

BINARY VARIABLES

We have compared various approximate inference
methods on random graphs with fixed degree |∂i| = 5
with ±1-valued variables. Random graphs are spe-
cial in the sense that the number of short loops
is relatively small. As single node factors we took
ψi(xi) = exp(θixi) for i.i.d. weights θi drawn from a
N (0, β) distribution. For the pairwise factors we took
ψij(xi, xj) = exp(Jijxixj) for i.i.d. weights Jij , also
drawn from a N (0, β) distribution. The parameter β
controls the strength of the interactions and the diffi-
culty of the inference problem.

Figure 2 shows the results for β = 0.5. BP is the fastest
method (taking less than 0.01 s for almost all N) but
is not very accurate. CVM-∆ performs remarkably
bad, being the slowest and the least accurate method
of all. This is remarkable, since one would expect
that it should at least improve on BP because it uses
larger clusters. It shows that although both LCBP
and CVM-∆ use identical clusters, the nature of both
approximations is very different.9 TreeEP is more ac-
curate than BP but still very efficient in terms of com-
putation time. LCBP is the most accurate method
and its improvement upon BP is often more than one
order of magnitude. The quality of the LCBP-PAIR,
LCBP-CUM, CVM-4 and TreeEP results does not dif-
fer substantially in this case. For N ≥ 70, the tree
size became so large that exact inference was infea-
sible, whereas the approximate methods can still be
used for larger N .

Figure 3 shows the results for higher interaction
strengths β = 0.8. The picture largely remains the
same, with the notable difference that in this case,
LCBP-CUM does not converge for the majority of in-
stances. LCBP-PAIR and LCBP have no convergence
problems; LCBP is still the most accurate method.

For weaker interaction strengths (not shown), the rel-
ative improvement of LCBP over TreeEP and BP in-
creases.

the GNU Public License, at http://www.mbfys.ru.nl/
~jorism/libDAI/

9Indeed, the similarity between LCBP and CVM-∆ is
only superficial: CVM tries to estimate the dependencies
in a cluster as the algorithm runs, instead of in a prepro-
cessing phase, and CVM passes multi-variable messages,
while LCBP passes single-variable messages.



 1e-04

 0.001

 0.01

 0.1

 1

 10  20  30  40  50  60

E
rr

or

N

BP

TreeEP

LCBP

CVM-∆
CVM-4

LCBP-CUM

LCBP-PAIR

EXACT

 0.01

 0.1

 1

 10

 100

 1000

 10  20  30  40  50  60

T
im

e 
(s

)

N

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1e-06 1e-05 1e-04 0.001  0.01  0.1  1

L
C

B
P 

E
rr

or

BP Error

Figure 2: Errors and computation times for random graphs with degree 5 and interaction strength β = 0.5. Left: errors
of single node marginals vs. graph size. Middle: computation time vs. graph size. Right: LCBP error vs. BP error. Each
point in the left and middle plots is an average (in the log-domain) over 10 randomly generated instances.
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Figure 3: Similar setup as in Figure 2, now with higher interaction strength β = 0.8. LCBP-CUM did not converge
within 10000 iterations in the majority of the cases and is therefore not plotted, whereas all other methods converged in
all cases.

3.2 PERIODIC SQUARE GRIDS

The next class of models are periodic square grids
(i.e. square grids on a torus) with binary variables.
These models have many short loops, making them dif-
ficult problems for approximate inference. The special
topology of these graphical models allows for a natu-
ral choice of the outer clusters for CVM, namely 2× 2
plaquettes. Thus in addition to CVM-∆ (which in this
case uses +-shaped clusters consisting of 5 variables),
we compare with CVM-4, a double-loop implementa-
tion of CVM using the 2× 2 plaquettes. We took the
same kind of interactions as for the random graphs.

The results can be found in Figure 4. CVM-∆ was so
slow that we did not consider it. As for random graphs,
the fastest method is BP, and TreeEP improves signif-
icantly on BP using little computation time. Again
LCBP uses more computation time but improves the
accuracy even more. The CVM-4 method shows a sur-
prising behavior: its accuracy improves as the grids
get larger, and for large grids it is the most accurate
of all methods that were considered. Note that the tree
width quickly increases with N and for N = 121 com-
putation time for exact inference already exceeds that
of the slowest approximate inference methods. Note
that LCBP uses less computation time than CVM-4,
although for larger N the difference becomes smaller.

3.3 ALARM NETWORK

The ALARM network10 is a well-known Bayesian net-
work consisting of 37 variables and higher order fac-
tors. In addition to the usual approximate inference
methods, we have compared with GBP, using maxi-
mal factors as outer clusters. The results are reported
in Table 1. Apart from the error measure (13) (“Max
MAD”), we also report the average maximum absolute
deviation of the single node marginals (“Avg MAD”).

The accuracy of GBP is almost identical to that of BP
on this model. Again we see that simply enlarging the
cluster size (CVM-∆) does not improve the results, it
even makes them worse. CVM-4, which uses clusters
that contain small loops, does lead to an improvement,
but needs much time to converge. TreeEP is very fast
and obtains a comparable improvement. LCBP-PAIR
also obtains a similar improvement, using more time
than TreeEP but less than CVM-4. LCBP takes even
longer but obtains an impressive improvement: the er-
ror is reduced by a factor of about 400. LCBP-CUM
is not applicable because the network contains vari-
ables with more than two possible values and factors
consisting of more than two variables.

10http://compbio.cs.huji.ac.il/Repository/
Datasets/alarm/alarm.dsc
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Figure 4: Periodic square grids, β = 0.6. Left: errors of single node marginals vs. graph size. Middle: computation time
vs. graph size. Right: LCBP error vs. BP error. Each point in the left and middle plots is an average (in the log-domain)
over 10 randomly generated instances.

4 DISCUSSION AND

CONCLUSIONS

We have proposed a method for improving BP that
corrects for the influence of all the loops in the fac-
tor graph, which is a variation of the one proposed in
[Montanari and Rizzo, 2005]. We have shown that it
can significantly outperform other approximate infer-
ence methods in terms of accuracy. On the downside,
the computation time is rather high and application is
limited to graphical models with small cavities. Fur-
ther we have shown that simply increasing the cluster
size in CVM (GBP) does not guarantee better results.
In fact, often the results were even worse than for the
simplest cluster choice (i.e. the outer clusters being
the maximal factors, which coincides with BP in case
of pairwise factors). Because LCBP and CVM-∆ use
identical clusters, one might think näıvely that both
approximation method will behave similarly; however,
as we have shown, this is not the case, and the na-
ture of both approximations appears to be completely
different.

For all instances that we considered, LCBP gave sig-
nificantly smaller marginal errors than both BP and
TreeEP. Only for grids we encountered an approximate
inference method that appears to be structurally bet-
ter than LCBP (at least for large N). Here, CVM
with 2 × 2 plaquettes outperforms LCBP. A possible

Table 1: ALARM Network Results

Method Max MAD Avg MAD Time (s)

BP 0.203 0.0081 0.00
GBP 0.203 0.0076 0.18
CVM-∆ 0.223 0.074 296.0
CVM-4 0.035 0.0064 161.0
TreeEP 0.039 0.0109 0.22
LCBP 0.00054 0.000015 23.4
LCBP-PAIR 0.033 0.0009 13.2
LCBP-CUM n/a n/a n/a

explanation may be that in this case the shortest and
most important loops are included in an outer cluster
each (although this does not explain why the error is
larger for smaller grids).

The most important difference between the method
proposed here and the original one in [Montanari and
Rizzo, 2005] is that we assume that the cavity distri-
butions contain no higher order interactions (i.e. in-
teractions involving more than two cavity variables),
whereas the original proposal is to assume that higher
order cumulants vanish. Both approaches are identical

to first order in the corrections φ
\i

j (xj). However, the
cumulant-based formulation has several disadvantages.
First, it is difficult to work with in practice, because
it leads to rather complicated expressions. Further,
it is not obvious how to generalize it beyond the bi-
nary, pairwise case, although this should be possible
in principle. Finally, the approximation of vanishing
higher order cumulants turns out to break down in the
regime of strong interactions, whereas our interaction-
based approximation still works in that regime.

There still appears to be room for improvement of the
LCBP method as formulated here. In particular, var-
ious alternatives to the LCBP update equations (line
4 of Algorithm 1) are possible and can give even bet-
ter results. As an example, consider altered update
equations in which the connecting factor ψI is not di-
vided out (equivalent to demanding consistency of sin-
gle node marginals for the original, unmodified, prob-
ability distribution (1)). This does not significantly al-
ter the results for weak, pairwise factors, but appears
to be more robust if the factors are stronger. On the
other hand, in the presence of factors involving more
than two variables, this alternative approach leads to
significantly worse results. This observation suggests
the possible existence of update equations in the same
spirit as line 4 in Algorithm 1, but which give better
results in general.11

11Another update equation that gives better results in
the case of interactions involving more than two variables
is considered in [Mooij and Kappen, 2006].



Another important direction for future research would
be to extend and generalize the loop correction frame-
work (e.g. by considering other clusters than cavities)
in order to find different tradeoffs between computa-
tion time and accuracy. In particular, the fact that
computation time is exponential in the cavity size lim-
its applicability of the current method.

Finally, many approximate inference methods (Mean
Field, BP, GBP, EP) can be derived by minimizing an
appropriate “free energy” (e.g. BP can be derived from
the Bethe free energy). It is thus natural to expect that
the method presented here can also be derived from an
appropriate free energy. However, despite some efforts,
we have not yet been able to find such a free energy.
Furthermore, we have not yet found an expression for
the loop corrected approximation of the normalization
constant Z in (1) within this framework.

Concluding, the LCBP method proposed in this work
appears to be ideally suited to compute with high
accuracy single node marginals for graphical models
having small cavities, especially when the graph has
“long” loops which cannot easily be taken into ac-
count exactly using CVM or other region-based meth-
ods. On these graphical models, the quality of the
results turned out to be superior to the other approx-
imate inference methods we compared with. For large
graphs, where exact inference can become intractable,
LCBP may provide a viable alternative (provided the
cavities are small) that in our experience often gives
highly accurate results.
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