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Abstract We describe a software system, called just
enough delivery (JED), for optimising single-copy
newspaper sales, based on a combination of neural and
Bayesian technology. The prediction model is a huge
feedforward neural network, in which each output cor-
responds to the sales prediction for a single outlet.
Input-to-hidden weights are shared between outlets. The
hidden-to-output weights are specific to each outlet, but
linked through the introduction of priors. All weights
and hyperparameters can be inferred using (empirical)
Bayesian inference. The system has been tested on data
for several different newspapers and magazines. Con-
sistent performance improvements of 1 to 3% more sales
with the same total amount of deliveries have been ob-
tained.

Keywords Bayesian inference Æ Feed forward Æ
Multi-task learning Æ Neural networks Æ Time-series
prediction

1 Symbols

The following symbols are represented in the text:

ri(t) Actual sales of outlet i at time (edition) t
yi(t) Predicted sales
�i(t) Noise component in actual sales
xik(t), xi(t) Inputs (explanatory variables)
Di, D All sales data
Ii, I All input data
Aij, Ai, A Hidden-to-output weights and biases

(bias: j = 0)

Bjk Input-to-hidden weights and biases
(bias: k = 0)

M Prior mean of the hidden-to-output
weights

R Prior covariance between hidden-to-out-
put weights

ri, r Standard deviation of noise component
K All parameters shared between outlets
Di (t) Nonstationary correction term
mi(t) Dynamic noise component
d(t) Systematic noise component

2 Optimising newspaper sales

With declining sales in recent years, single-copy
newspaper and magazine sales are getting more and
more attention. One of the issues is how to distribute
the newspapers as efficiently as possible. Newspaper
sales are extremely irregular, but, since deliveries have
to be determined on a daily basis and for a huge
number of outlets, almost any performance improve-
ment is worth the effort. Advanced statistical tools can
help to obtain these improvements. In this article, we
describe our software solution called just enough
delivery (JED), which is built around a combination
of neural and Bayesian methodology. An earlier ver-
sion of JED is in operation at De Telegraaf, a major
Dutch newspaper company. The latest version, which
already has been tested on data from several other
international editors, is currently (July 2002) running
in shadow and is expected to go online within a
couple of months.

JED has been developed for newspapers and maga-
zines that have the right of return: the outlet returns the
unsold copies and only has to pay for the ones sold. The
financial accounting involved ensures that there is a
reliable registration of the number of returned copies, at
the level of the individual outlets and (usually) on a daily
basis. The corresponding continuous flow of informa-
tion is sketched in Fig. 1.
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Current systems for steering single-copy newspaper
sales can be roughly subdivided into two main classes:
rule-based and adaptive. The rule-based systems contain
simple user-specified rules of the type ‘‘if the outlet has
been sold out the last two weeks, increase the delivery
with two copies.’’ Sometimes exceptions are built in, e.g.,
for outlets that are presumed to be seasonally depen-
dent. Most adaptive systems are also very basic and
usually contain some version of exponential smoothing:
the delivery is a smoothed version of the recently ob-
served sales, with a few extra copies added.

Building more elaborate adaptive systems in which
newspaper sales are matched against explanatory vari-
ables is difficult due to the high risk of over fitting. It is
easy to come up with quite a number of (possibly)
explanatory variables, e.g., recent sales figures, sales
figures from last year, seasonal variables, information
about competitors, holidays, weather, news content, and
so on. But when straightforwardly trained on the data
for a single outlet (usually about two to three years of
data, i.e., 100 to 150 examples when newspapers for
different days of the weeks are treated independently),
serious overfitting is almost inevitable.

A Bayesian solution has been proposed recently in
[1]. Here the models trained on individual outlets are
automatically regularised using the so-called evidence
framework [2]. In this article we present an alternative
use of Bayesian technology that tries to explicitly take
into account the similarities between different outlets
such as to let them ‘‘learn from each other’’. This is
implemented in two ways: by choosing a specific neural
architecture and by introducing sensible priors on the
weights of this neural network. Formulating this in a
probabilistic framework, we describe how Bayesian

methodology can be applied for inference, prediction
and making decisions.

In this article, we will try to highlight the underlying
concepts, assumptions, and applied technology. Math-
ematical details can be found in [3, 4, 5].

3 The model

3.1 Multi-task learning

To be able to use Bayesian machinery, we have to set up
a probabilistic model, specifying how the data is gener-
ated as well as prior probabilities on the parameters of
the model. Our model assumption is that the observed
sales si(t) for outlet i and edition t is given by the model
output yi(xi,(t)) (to be specified below) with additional
Gaussian noise �i(t) of standard deviation ri:

siðtÞ ¼ yiðxiðtÞÞ þ eiðtÞ ð1Þ

Strictly speaking, this model is incorrect, since
newspaper sales are always discrete and positive, and
can never be larger than the amount of deliveries.
Especially the latter restriction is important, since, when
not taken into account, this would lead to a structural
underestimation of the sales that can be obtained. A
practical, heuristic solution is to correct the observed
sales figures in case of a sell-out. The corrected sales
figure is then taken to be the expected sales that could
have been obtained with ‘‘infinite deliveries’’ given that
the sales are at least the actual amount of deliveries. This
number can be computed using the sales model (Eq. 1).
A more elegant solution is to explicitly take the sell-out
into account as partially observable (sales of at least the
amount of deliveries) [3], similar to the incorporation of
censored patients in survival analysis. For notational
convenience, we will act here as if the heuristic correc-
tions are applied. Furthermore, all sales data is rescaled
such that the observed sales per outlet have a zero mean
and unit standard deviation and, after this rescaling, we
take the same noise standard deviation ri = r for all
outlets.

Through definition of the model output yi(xi,(t)), we
can take into account the (possible) effect of explanatory
variables xik(t). Here k numbers the variables (e.g.,
temperature or recent sales) and the index i indicates
that the inputs xik(t) are specific to outlet i. The pre-
diction model is sketched in Fig. 2: a feedforward neural
network with a single layer of hidden units. In math, the
network output yi(t) given inputs xi(t) reads:

yiðtÞ ¼ yiðxiðtÞÞ ¼
X

j

Aijg
X

k

BjkxikðtÞ þ Bj0

 !
þ Ai0

ð2Þ

where g(Æ) is typically a sigmoidal function like the
hyperbolic tangent. It is important to note that where

Fig. 1 Sketch of the flow of information for a single outlet. The
model is updated based on the latest available information. Given
the current values for the explanatory variables, the model does not
only predict the upcoming sales, but also the uncertainty of this
prediction. Combined with the company�s strategy, e.g., a focus on
reducing returns or rather reducing sell-outs, the ‘‘optimal’’
delivery can be computed. The return copies are collected and
stored in the database
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the hidden-to-output weights Aij are specific to outlet i,
the input-to-hidden weights Bjk are shared between
outlets, even although the inputs xi(t) are outlet-specific.
This makes the so-called multi-task learning approach [6,
7] different from a standard regression task in which all
outputs are correlated with the same input patterns. In
this particular application, the hidden units form akind of
bottleneck and transform the high-dimensional input
space (typically 20 to 30 inputs) to a lower dimensional
feature space (about 2 to 6 hidden units). These are sup-
posed to represent features that are optimal for the overall
task of predicting sales for the particular newspaper or
magazine. Since the data for all tasks can be used to learn
this transformation (see below), the risk of overfitting this
part of the network is greatly reduced.

Last but not least, we assume independently and
identically distributed (iid) observations, yielding the
data likelihood term:

P ðDjA;B; IÞ ¼
Y

i

Y

t

ffiffiffiffiffiffiffiffiffiffi
1

2pr2

r
exp � 1

2r2
ðsiðtÞ � yiðtÞÞ2

� �

ð3Þ

with yi(t)=yi(xi(t)) as specified in Eq. 2. D stands for all
observed sales figures si(t), I for all explanatory variables
xik(t). The iid assumption is standard in many applica-
tions, but might be too strong for time-series data like
newspaper sales. Furthermore, the assumption that the
errors �i(t) for a particular edition are uncorrelated across
different outlets i is also tricky, especially when consid-
ering aggregate figures. Corrections and alternatives will
be discussed in a later section.

3.2 Prior information

In a maximum likelihood setting, we would simply try to
find the weights (including biases) {A,B} maximising the
data likelihood (Eq. 3). In essence, this would yield a
standard optimisation procedure with a backpropaga-

tion-type learning rule. This may seem fine for the input-
to-hidden weights B, but leads to severe overfitting on
the hidden-to-output weights for any reasonable number
of hidden units. One option is to introduce regularisa-
tion, for example, by adding a so-called weight-decay
term, the strength of which can be determined through
cross-validation. In the Bayesian framework, such a
regularising component can be introduced through def-
inition of a prior. Here we propose to define a prior on
the hidden-to-output weights 1

2Ai ¼ Ai0;Ai1; ::::Aihf g:

P ðAijM;RÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð2pÞhþ1detR

s
exp �1

2
ðAi�MÞ

� T

R�1ðAi�MÞ�

ð4Þ

with M a vector of length h+1, with h the number of
hidden units, and S an (h+1) · (h+1) covariance ma-
trix. This corresponds to a so-called exchangeability
assumption (the same M for all tasks) and implements a
tendency for similar hidden-to-output weights across
tasks. Exactly how similar is determined by the covari-
ance matrix S. M and S are referred to as hyperpa-
rameters. As for the input-to-hidden weights, we can use
all available data to try and infer them (see below). Note
that the standard approach in the evidence framework,
which is also taken in [1], is to choose M = 0 and S as
spherical or at most diagonal.

The exchangeability assumption is rather strong. It
means that, prior to the arrival of any (sales) data, there
is no reason to distinguish between the different outlets.
It is relatively straightforward to relax this assumption
and consider outlet-dependent averages Mi that depend
on the characteristics of the outlet [4]. A simple example
is to choose different means for outlets in different parts
of the country. Another option is to have the different
outlets cluster themselves into groups with different
means and/or covariances. This can be implemented by
introducing a mixture of Gaussians as the prior [5, 8]. In
this article, we will stick to the simplest case of a single
mean. Our model is fairly similar to a so-called multi-
level model in statistics (see e.g., [9]), with the hidden-to-
output weights Aij playing the role of the ‘‘random ef-
fects’’ and the input-to-hidden weights Bjk and prior
mean M making up the ‘‘fixed effects’’.

4 Bayesian inference

4.1 Empirical Bayes

In a full (hierarchical) Bayesian framework, we should
also specify hyperpriors on the hyperparameters M and
S, as well as on the input-to-hidden weights B and noise
standard deviation r. The multi-task setting, however,
suggests an efficient alternative, called empirical Bayes
[10]. Empirical Bayes consists of two steps. First, we try
to find the ‘‘hyperparameters’’ K� that maximise the
likelihood of the data:

Fig. 2 Neural network architecture. Input information is propa-
gated through a bottleneck of hidden units to the outputs, each
representing a particular outlet
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K� ¼ argmax
K

P ðDjK; IÞ ð5Þ

In our case, K consists of all parameters that are
shared between outlets, i.e.,

K ¼ fM;R;B; rg ð6Þ

Given these maximum likelihood hyperparameters, we
then approximate the distribution of the model param-
eters through:

P ðAijD; IÞ � P ðAijK�;Di; IiÞ
/ P ðDijAi;B�; r�I�ÞP ðAijM�;R�Þ ð7Þ

Empirical Bayes is an approximation of the full
hierarchical Bayesian approach, asymptotically equiva-
lent when the number of outlets goes to infinity. The
huge number of outlets in the cases we are considering
here (on the order of a few hundred at least), makes it an
excellent approximation. The evidence framework de-
scribed and applied in [1, 2] can be interpreted as an
empirical Bayesian approach for single-task learning. In
the single-task learning case, the argument for taking the
maximum likelihood value of the hyperparameters is less
obvious and has been the subject of a lively debate (see
e.g., [11]).

The likelihood to be maximised in Eq. 5 involves a
high-dimensional integral over the hidden-to-output
weights A:

PðDjK; IÞ ¼
Y

i

Z
dAiPðAi;DijK; IiÞ

¼
Y

i

Z
dAiPðDijAi;B; r; IiÞP ðAijM;RÞ

ð8Þ

where Di and Ii denote the data (observed sales and
explanatory variables, respectively) for outlet i and the
integrals are over the (h + 1)-dimensional vectors of
hidden-to-output weights and biases Ai. To find its
maximum, we can make use of the (generalised) expec-
tation-maximisation (EM) algorithm [12]. In the expec-
tation step, we compute the probabilities
P ðAijKold ;Di; IiÞ(in fact, we only need the means and
covariances) of the hidden-to-output weights and biases
given the current hyperparameters Koldusing Eq. 7 with
Kold substituted for K�.

In the maximisation step, we update the hyperpa-
rameters such as to increase the ‘‘full data loglikeli-
hood’’:

HðK;Kold ¼
Z

dA PðAjKold ;D;IÞ logP ðA;DjK;IÞ

¼
X

i

Z
dAi P ðAijKold ;Di;IiÞ logP ðDijAi;B;r;IiÞ

�PðAijM;RÞ ð9Þ

It can be shown that an increase in HðK;KoldÞ implies
that:

P ðDjK; IÞ > PðDjKold ; IÞ ð10Þ

and thus that the EM algorithm converges to a (local)
maximum of the likelihood P ðDjK; IÞ. More details can
be found in [3, 5].

With a linear transfer function g(Æ) and some further
simplifications, the integral in Eq. 8 happens to be
analytically doable [4]. In this case, we can directly
optimise the likelihood, which makes the optimisation
an order of magnitude faster than with the EM algo-
rithm. In practical applications, the fast algorithm can
be used for an initial estimate, which is then fine-tuned
with the more elaborate EM procedure.

4.2 An example

The Bayesian machinery does not only lead to improved
performance (see below and [4] for a comparison with
single-task and non-Bayesian techniques), but the results
obtained also tend to make a lot of sense. An example is
given in Fig. 3, showing a Hinton diagram of the input-
to-hidden weights Bjk obtained when training the model
with two hidden units on a set of 343 outlets, concerning
156 consecutive editions of Saturday�s newspaper. The
inputs include recent sales (four to six weeks in the past),
last year�s sales (51 to 53 weeks in the past), weather
information (temperature, wind, sunshine, precipitation
quantity and duration) and season (the cosine and the
sine of the scaled week number). It can be seen that one
hidden unit focuses on recent sales figures (referred to as
‘‘short term’’) and the other one on last year�s sales and
season (referred to as ‘‘seasonal’’).

The effect of the prior can be seen in Fig. 4. The left
panel plots the maximum likelihood (ML) solutions for
the hidden-to-output weights Ai of the different outlets;
the right panel the maximum a posteriori (MAP) solu-
tions. The definitions of these maximum likelihood and
maximum a posteriori solutions are, respectively,

Fig. 3 A Hinton diagram of the hidden-to-input weights Bjk.
Positive weights are white, negative weights are black. The absolute
magnitude of each weight corresponds to the size of its square. Past
sales figures are coded in inputs 1–6, inputs 7–11 represent weather
information and 12–13 indicate the season. The rightmost squares
represent the biases Bi0 of the hidden units
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AML
i ¼ argmax

Ai

PðDijAi;B�i ;r
�; IiÞ

AMAP
i ¼ argmax

Ai

PðDijAi;B�i ;r
�; IiÞP ðAijM�;R�Þ:

ð11Þ

It can be seen that the regularised MAP solutions are
closer together than the ML solutions. An important
difference with a standard regularisation approach is
that the map solutions are regressed towards the mean
M*, rather than towards zero. For example, the positive
mean for the short-term effects implies that higher recent
sales in general have a positive effect on current sales.

5 Operation and evaluation

5.1 Online operation

The hyperparameters L describe the overall character-
istics of all prediction tasks. Theoretical and empirical
evidence [7, 4] indicates that data for on the order of a
few hundred outlets is sufficient to estimate them: the
performance hardly gets better when more outlets are
considered. It also seems reasonable to assume that these
characteristics under normal conditions do not change
very rapidly. Updating these once every few years is then
sufficient. The characteristics at the more local level of
the individual outlets, represented by the hidden-
to-output weights Ai, may change much more frequently
and better be updated on a weekly or at least monthly
basis. In practice, all hyperparameters are computed
online, based on a representative set of outlets. After
that, the hyperparameters are kept fixed, and the outlets
operate independently, regularly updating the (proba-
bility distribution of the) hidden-to-output weights Ai.

The posterior distribution of these weights takes into
account the last two to three years of data, with the most
recent examples replacing the oldest ones. This sliding-
window approach implicitly still assumes that the sales
data can be considered roughly stationary on a time
scale of a few years. This may be fine for the hidden-to-
output weights Aij (for j ‡ 1, i.e., excluding the biases
Ai0). For example, we expect an outlet�s sensitivity to
weather circumstances or seasonal effects to be more or
less constant over a few years. Nonstationarity seems to
have the largest impact on the average sales, i.e., on the
biases Ai0. This average may change quite a lot on a time

scale smaller than a few years. Examples are an increase
due to new construction in the vicinity of the outlet, or a
decrease due to the arrival of a strong competitor. These
are typical nonstationary effects that are hard to predict
in advance. The naive sliding-window approach, in these
situations, leads to a structural underestimation and
overestimation, respectively. To take nonstationarity in
the bias into account, we add a correction term to the
(stationary) prediction of the average sales yi(t):

~yiðtÞ ¼ yiðtÞ þ DiðtÞ with DiðtÞ ¼ Diðt � 1Þ þ miðtÞ ð12Þ

a random-walk equation for the correction Di(t) with
Gaussian white noise vi(t). This random-walk equation
describes a simple dynamic model. Keeping track of the
distribution of Di(t) using Bayesian update equations is
straightforward [13]. A limiting case of the resulting
procedure leads to exponential smoothing, but the dy-
namic linear model has many principled advantages
(coherence, interpretability and validity even for just a
few data points). In short, the incorporation of this
nonstationary model component makes the system very
robust against unexpected and unpredictable changes,
while it hardly bothers the performance of the system if
no such changes take place.

5.2 Optimal delivery

Suppose that we have to determine the delivery for an
outlet i given input xi(t), based on all available data D
and I up to edition t. Following our probabilistic model,
the sales distribution reads (the random-walk compo-
nent Di(t) can be easily taken into account as well, but is
omitted here for notational convenience):

PðsijxiðtÞ;D;IÞ¼
Z

dK
Z

dAiP ðsijAi;xiðtÞ;KÞ

�P ðAijDi; Ii;KÞP ðKjD;IÞ

�
Z

dAiP ðsijAi;xiðtÞ;Ii;K
�ÞP ðAijDi;Ii;K

�Þ

ð13Þ

where the approximation follows from the empirical
Bayesian assumption that for all practical purposes we
can consider the maximum-likelihood solution K� for

Fig. 4 The maximum
likelihood values for the
hidden-to-output weights (left
panel), and their maximum
a posteriori values (right
panels). Each mark represents
the value of the ‘‘short-term’’
and ‘‘seasonal’’ weights for one
outlet. The ellipse in the right
panel indicates the 95%
confidence interval of the priors
imposed on the weights
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the hyperparameters. The integration over the hidden-
to-output weights, rather than taking their most
probable value, takes into account their uncertainty.
Bayesian decision theory (see e.g., [10]) can now be ap-
plied to choose the delivery l�i that maximises the ex-
pected utility (note that here we assume that yield and
costs are a linear function of the number of copies: any
other rational choice can be handled in a similar way):

UðlijxiðtÞ;D; IÞ ¼
Zli

0

dsisiPðsijxiðtÞ;D; IÞ � yield per copy

� li � costs per copy: ð14Þ

In a first approximation, this optimal delivery only
depends on the expected sales, the width of the distri-
bution (the ‘‘uncertainty’’ in Fig. 1), and a so-called cost
factor which is defined as the ratio between yield and
costs per copy. The setting of this cost factor is up to the
company and depends on the company�s ‘‘sales strat-

egy’’: the higher the cost factor the more expansive the
sales strategy, the lower the more conservative. In
practice, determining this cost factor is far from trivial,
but operators usually have some gut feeling of appro-
priate values (typically around 5 for newspapers and
somewhat lower for magazines). An alternative is to
tune this cost factor such that another set point is met,
e.g., a desired total amount of deliveries or a particular
(expected) percentage of returns (see Fig. 5). Keeping
the same cost factor for all outlets then guarantees that
the same utility criterion is optimised for all of them.

5.3 Aggregate sales

In writing down the data likelihood, we made the
assumption that the errors (difference between observed
and predicted sales) �i(t) are uncorrelated across outlets
for a particular edition t. This assumption may not hurt
a lot when considering the predictions for individual
outlets, but is very dangerous when aggregate sales fig-
ures are involved and especially when estimating error
bars on these aggregate values [13]. For example, with
uncorrelated noise the relative accuracy of the total sales
of n outlets would scale with 1=

ffiffiffi
n
p

and thus vanish for
large n. This is, obviously, not the situation in practice:
there are factors (such as, for example, news content)
that may have a relatively small effect on the sales of

Fig. 5 A sheet visualising the impact of the cost factor (the
horizontal axis) on aggregate sales, deliveries, returns and sell-outs.
Solid lines indicated expected values, dashed lines error bars. It
allows the operator to implement a different sales strategy by
choosing a different cost factor
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individual outlets, but, since this effect tends to point in
the same direction for all outlets, cannot be neglected at
the aggregate level. One way to incorporate this is to
model the error �i(t) as:

eiðtÞ ¼ dðtÞ þ ~eiðtÞ ð15Þ

with d(t) an edition-specific noise component, the same for
all outlets, and ~eiðtÞ a component specific to both edition
and outlet. The relative importance of these two compo-
nents can be estimatedwithin the same empirical Bayesian
framework [4]. For the newspaper data that we have
encountered the variance of the systematic edition-specific
component is between 5% and 15% of the total variance.

Adapting the sales model (Eq. 1) in this way, we can
combine the individual sales predictions and estimate
expected sales, return and sell-out figures at the aggre-
gate level with the appropriate error bars. As an exam-
ple, different settings of the cost factor are given in
Fig. 5 (here for a set of 500 outlets). The operator can
use these estimates to tune the cost factor to a specified
(expected) performance, e.g., to choose the cost factor
such as to achieve an expected sales of 4200 copies.

Fig. 6 The model�s performance in three case studies. The total
amount of actual deliveries, issued by the company�s current
system, and observed sales, based on these deliveries, are both
indexed to 100 (crosses). Solid lines give the sales that could have
been obtained if the model�s suggestions had been followed for
different amounts of deliveries. Dashed lines indicate the sales (fl)
and delivery break-even points ( ‹ )

Fig. 7 Sheet visualising the properties of a particular outlet and
explaining the predicted sales in terms of the explanatory variables
and how this is translated into a suggested delivery. Based on this
information, the operator can judge whether to accept or change
the suggested delivery
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5.4 A performance evaluation

The model�s suggestions can be compared with the
company�s deliveries for a range of different strategies,
implemented by changing the cost factor. Results ob-
tained in three different case studies are shown in Fig. 6.
The graphs report test performance (the company re-
turned the results only after our model had suggested the
deliveries) based on more than 500 outlets followed for
at least 13 consecutive weeks. The company�s own
amounts are indexed to 100, shown by the crosses, i.e.,
the axes can be interpreted as percentages relative to the
company�s performance. Of special interest are the
delivery and sales break-even points, indicated by the
dashed lines. Here the cost factor is chosen such that our
model uses exactly the same total amount of deliveries or
yields the same sales results, respectively. It can be seen
that the sales improvement with same total amount of
deliveries ranges from about 1% (case 1 and 3) to almost
3% (case 2). The results for the sales break-even points
are even more impressive: the same sales can be reached
with more than 3% (case 1 and 3) to even 13% (case 2)
less deliveries.

6 Discussion

In this article we have described the methodology behind
JED, a software system for optimising the distribution
of newspapers and magazines. JED is based upon a
probabilistic framework and uses Bayesian inference
whenever possible to manipulate these probabilities.
Considering the size of the problem and its daily
occurrence, the ongoing challenge is to find sensible
approximations that speed up the calculations, without
hurting the performance. One of our current interests is
to integrate the (empirical) Bayesian approach for multi-
task learning with the Bayesian methodology for time-
series analysis. So-called dynamic hierarchical models
[14] are in the right direction, but lack a bottleneck of
feature units and do not quite contain the time depen-
dencies that are appropriate for newspaper sales.

Prediction performance is important, but definitely
not the whole story behind a successful product. We

have also put quite some effort in algorithms that pro-
vide insight in the model and its decisions, examples of
which are given in Figs. 5 and 7. Also with regard to
these ‘‘secondary’’ tools, the underlying probabilistic
framework helps a lot to increase the coherence between
the tools and model components and makes them easier
to apply and interpret.
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