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Abstract Most theories of generalization performance
of learning tell us that the generalization bias, which is de-
fined as the difference between an training error and an
generalization error, increases proportionally to the num-
ber of modifiable parameters in average. The present pa-
per, however, reports the case that the generalization bias
of a Gaussian mixture model does not increase even if the
superficial effective number of parameters increases, where
the number of elements in the Gaussian mixture is con-
trolled by a continuous parameter.
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1 Introduction

Gaussian mixture models have attracted a lot of attention because they have close relation
to several neural network models such as radial basis function (RBF) networks [11] and
hierarchical mixture of experts (HME) networks [4, 5].

An important problem of training Gaussian mixture models is to determine the optimal
number of Gaussian components[2]. We can fit a model to training samples as precisely
as needed by using enough number of components. However, such a model may be
different from the ‘true model’ from which training samples are generated. Therefore, the
performance of the model should be evaluated by the generalization error which measures
the error for test samples. There is a lot of literatures about the generalization problem
from the statistical point of view (Amari[l, 9], Moody|8], Vapnik[14], Rissanen[12]). Most
of these results address the generalization bias, which is defined as the difference between
a generalization error and a training error, increases as the complexity of the model,
usually modifiable parameters, increases.

In the present paper, we consider Radial Basis Boltzmann Machines (RBBM), a special
class of Gaussian mixture models proposed by Kappen [13, 6], where the complexity of the
model is controlled by a continuous parameter 3. When 3 is small, the ML solution of the
RBBM degenerates into one Gaussian. At a critical value of 3, the ML solution becomes
a mixture of several Gaussians. This phenomena of symmetry breaking, is repeated
recursively for increasing (3.

For a RBBM with h mixture components we first derive conditions for which the
symmetry breaking is 2-way or h-way, respectively.

Next, we show an analytical result that the generalization bias of the model does not
increase if the symmetry breaking is 2-way, even though the superficial effective number
of parameters increases. If we can assume that training error does not change significantly
around the symmetry breaking point, this result suggests that the ML solution just below
the critical temperature is expected to realize a smaller generalization error than just
above the critical temperature.

2 Radial Basis Boltzmann Machines (RBBM)

Let us consider a Gaussian mixture model in which the variance of all components is
identical,
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where W denotes the set of changeable parameters {w;,...,w}, h is the number of
Gaussian components and 3 is a control parameter called the ‘inverse temperature’ in
physics 3 is equal to half of the inverse variance. Only the centers of the individual
Gaussians W = {w,} are modifiable, and all temperatures are identical and fixed. The
maximal likelihood (ML) solution is derived for each temperature. This model is an
unsupervised version of Radial Basis Boltzmann Machines, which are originally proposed
by Rose [13] and generalized by Kappen[6, 7, 10]. In the present paper, RBBM indicates
the model of (1).



For different temperatures, the ML solution behaves qualitatively as follows: For small
(3, the ML solution is of the form w; = wy = --- = wy, i.e. the solution corresponds to
one cluster. At a critical value of 3, the cluster splits into smaller parts. These symmetry
breakings reoccur recursively at higher values of 3. Therefore, the number of Gaussian
components can be controlled by adjusting the temperature in this model. So at any 3,
although the total number of kernels is h, only a smaller effective number of kernels is
used. For this reason, we don’t much care about the number of Gaussian elements h, and
h is assumed to sufficiently large in the following sections.

An example of the ML solutions as a function of the temperature, illustrating the
symmetry breaking phenomenon is shown in Figure 1. The training data is generated
from the mixture distribution: (u[0.5,1.5] + N[—1,0.09])/2 where u[a,b] is the uniform
distribution on [a,b] and N|[u,v] is the normal distribution with mean y and variance v.
The number of training samples is 100 and the number of kernels is also 100.

3 Symmetry breaking point (SBP) of the RBBM

In this section we study the symmetry breaking process in detail. Although the behavior
of symmetry breaking is complicated to analyze in general, we have some beautiful re-
sults on the first SBP (symmetry breaking point), the highest temperature in which the
phase transition occurs. Those results are expected to be applicable for the other SBPs
qualitatively.

3.1 The first SBP
Rose et al[13] has obtained the first SBP analytically as
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where A; is the maximal eigen value of the covariance matrix of ®. This means that the
first symmetry breaking occurs when (3 is equal to the variance of samples along the first
principal component axis.

This result is considered to be applicable to other SBPs as follows. Symmetry breaking
in a component occurs when [ is equal to the variance of samples in the neighborhood of
the component along the first principal component axis. this approximate description is
correct in the limit of large distance between component centers.

3.2 Above the first SBP

When the temperature is higher than 1/, all the Gaussian components are degenerated
into one Gaussian and the true ML solution w; is given by[13],

w; = <ﬂ3>, (3)

where (-) denotes expectation values with respect to ¢(z),



and g(@) is the true probabilistic density distribution from which training samples and
test samples are generated.

3.3 Below the first SBP

We can characterize behavior of the symmetry breaking under some assumptions.

Assumption 1 The target distribution g(z) is defined on R (one dimension), and is
assumed to be symmetric. Moreover, the number of Gaussian components h is
taken to be even.

Let 0® = ((z—(z))?) and s4 = ((z—(z))*) denote the second and fourth order moment
of the distribution ¢q. The fourth order cumulant is defined as k4 = s4 — 3(0?)? (k4/34 is
called ‘kurtosis’ in statistics).

Theorem 1 Under the Assumption 1, the behavior of the first symmetry breaking is
classified into the following two cases:

1. If k4 # 0 the symmetry breaking is 2-way : the components split into two
clusters.
The relation between the ML solution w; and 3 in the neighborhood of the
first SBP (3, is written as
S4
6(c?)*
where A =3 — 3. >0, Aw; = w; — ().

2. If k4 = 0 the symmetry breaking is h-way : The Gaussian components are
separated into h clusters in the sense of third order approximation. The relation

between the ML solution w; and 3 in the neighborhood of the first SBP 3, is

written as

Af ~

(Aw;)?, (5)

1 2
2(c2)2 7 (6)

Af ~
where o2 = %ZAwﬁ, Aw; = w; — (z).

K4 is equal to zero when ¢(z) is Gaussian; hence the condition represents the similarity
between ¢(z) and Gaussian in the sense of the forth order cumulant. Outline of the proof
of Theorem 1 is given in Appendix 1.

Equation (6) is interpreted as follows: Suppose the true distribution is one Gaussian
and there are an infinitely large number of Gaussian elements, we obtain the explicit form
of the ML solution as the distribution of w, which is a Gaussian distribution with the
variance 2(0?)?Af. This fact corresponds to (6).

4 Nonmonotonic generalization bias

In this section, we briefly summarize a generalization theory and show our main result
about nonmonotonic generalization bias of the RBBM.
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4.1 Generalization bias

A lot of theories of generalization of neural network learning have been proposed in recent
years. The goal of learning is to obtain the best possible generalization performance.
This is defined as the optimum of the true likelihood, and requires knowledge of the
complete target distribution. However, neural networks are trained so as to maximize a
likelihood calculated just from a finite set of training samples. The difference between the
true likelihood and the sample likelihood, which is called the generalization bias, causes
overtraining, which results in suboptimal performance on test samples. The optimal
model is selected by varying the number of adaptive parameters. Since for the RBBM
the effective number of adaptive parameters changes as a function of temperature, we
must find the temperature that gives the best generalization. Overtraining results in a
suboptimal effective number of components and this in a different clustering result from
desired one.

Although the generalization bias is stochastic and unknown in general, we can estimate
the mean value of the generalization bias. Using this value, we can select the model which
minimizes the sum of the training likelihood and the mean generalization bias in order to
solve the overtraining.

A well known generalization bias is AIC (Akaike’s information criterion), which is
given by the number of independent parameters. However, AIC assumes that the target
distribution belongs to the model set, and NIC (neural information criterion) proposed
by Murata et al[9] or an effective number of parameters by Moody [8] generalizes AIC to
apply the case that the target distribution does not belong to the model set.

4.2 Neural information criterion (NIC)

Given a set of P training samples X(¥) = {&,,...,2p} from g¢(z), the ML solution
W = W) maximizes the expected likelihood over the training samples,

1 P
Ren(W3 ) = 5 3 logp(: | W3 ). (7
The true likelihood for the parameter W is defined by

Rexp(W;8) = (log p( | W;8)). (8)

When P is large enough, the mean generalization bias is asymptotically given by

hxic
(REL(W®); 8)) — Rexp(WF); 8) ~ 5 (9)
where the average is taken over X (P) and hnic, the neural information criterion defined
by

hnic(8) = Te[H(W*)™' D(W*)], (10)

where W* denotes the true ML solution. H(W) and D(W) are the following matrices,
H;;(W) = —(9,0;l0g p(2; W, B)), (11)
Dij(W) = <& logp(m | W,ﬂ) 6J~ logp(m | W,ﬂ», (12)

4



66 . If () belongs to the model set, NIC is equal to AIC from H(W*) =
w;

where 0; =

D(W*).

In the following subsections, we provide behavior of NIC for RBBM. Our analysis
explains that the linear increase of NIC before the symmetry breaking as well as the
reason of the decrease.

4.3 Above the first SBP

When there is only one cluster (8 < 3,), we can compute hyyc explicitly. The following
theorem shows that the generalization bias increases linearly in proportion to 3.

Theorem 2 If 8 < 3., NIC is given by

hnic(8) = 28Tr[Ve], (13)
where Vg is the covariance matrix of g(a).

Therefore, the NIC of the RBBM increases in proportion to 3. Outline of the proof of
Theorem 2 is given in Appendix 2.

4.4 Below the first SBP

Although the situation below the critical temperature is very complicated, we can analyze
the NIC under the same assumption in section 3.3.

Theorem 3 Under the Assumption 1, and also if k4 # 0 and s4 # (0?)?, the right
differential coefficient of NIC with respect to (3 is

0
%thc(ﬁc) = —00. (14)

The condition s4 # (o?)? applies to all distributions except for a mixture distribution

of 2 é-functions. If g(z) = (6(z — 1) + (= + 1))/2, Ohnic(B.)/08 = —4.

Outline of the proof of Theorem 3 is given in Appendix 3. Theorem 3 states that the
NIC of the RBBM decreases even if the superficial number of parameters increases when
the symmetry breaking in the first SBP is 2-way.

It is not easy to analyze the case k4 = 0, since the symmetry breaking is h-way and
the ML solution is not uniquely determined in the sense of third order approximation as
shown in Theorem 1.

5 Experiments

In this section, we show some computer simulation results for the two cases with different
forth order cumulants presented in Theorem 1. In both cases, the target distribution g(z)
is created so that the mean is 0.0 and the variance is 1.0. Therefore, log 3. ~ —0.693, and
the ML solution for training samples breaks around this value. In the following simulation,
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we use the EM algorithm (with acceleration)[3], by which the solution sometimes gets
trapped into a local minimum when 8 > (.. Both the number of training samples(P)
and the number of Gaussian components(k) is set to 100. The initial solution of the EM
algorithm is that a center of each Gaussian component is set to each training sample.
100,000 test samples are generated from the same distribution as training samples to
calculate the generalization bias.

5.1 The case of k4 # 0

The true distribution is a mixture of two Gaussians expressed by

o(@) = %\/g [exp {=Ci(e — C2)2} + exp {~Ci( + C2)?}] . (15)

where C; = 12.5,C3 = 1/0.96.

A typical solution of the ML solution by changing the temperature around the first
SBP is shown in Figure 2.

The generalization bias averaged over 50 experiments with different random numbers
are shown in Figure 3, which supports the result of Theorem 3 qualitatively.

5.2 The case of k4 =0
The true distribution is one Gaussian with a unit variance,

q(z) = \/:;Trexp(—a:?/m. (16)

In this case, the convergence of the EM algorithm was much more unstable than in the
case of the previous section, because the lower order terms degenerate.

A typical solution of the ML solution by changing the temperature around the first
SBP is shown in Figure 4.

The generalization bias averaged over 50 experiments with different random numbers
are shown in Figure 5. We did not observe a clear case among this 50 experiments where
the likelihood is maximal around the first SBP as clearly as in the case of k4 # 0.

6 Conclusion

We have shown the nonmonotonical behavior of the generalization bias of a special class
of Gaussian mixture models, called the Radial Basis Boltzmann Machines. For high
temperature (large variance in the Gaussian kernels), the generalization error increases
linearly with 3. On the other hand, below the critical temperature, the symmetry breaking
phenomenon depends critically on the value of the forth cumulant k4. If k4 # 0, the
generalization bias decreases with 3 below the critical temperature. This means that
the NIC, decreases during the symmetry breaking process. After symmetry breaking is
complete NIC increases again. While NIC decreases, the effective number of adaptive
parameters increases because the kernels split up. It is normally assumed that NIC
measures the effective number of adaptive parameters. We conlude that this relation is



violated around the SBPs. Since the training error is approximately constant around the
SBP, we conclude that this model gives slightly better generalization error (in terms of
NIC) just below the critical temperature than at or just above the critical temperature. If
k4 ~ 0 we predict theoretically that symmetry breaking is h-way, but this is not observed
numerically. We attribute this discrepancy to the delicacy of the symmetry breaking
process and the numerical instability of the optimization procedure.

The analysis of the case that Assumption 1 does not hold and the experiments for
more general type of mixture models are future works. In addition, we conjecture that one
may avoid instabilities associated with k4 ~ 0 by using super-Gaussians or sub-Gaussian
kernels.
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Appendix 1 Outline of the proof of Theorem 1

We assume (z) = 0 without loss of generality. Since we assume the Gaussian components
of the RBBM model is even, let h = 2A'.

Since the true distribution is symmetric and the number of Gaussians is even, the ML
solution can be written as

1 & /3
z | W;B)=— —pilz | wi, P), 17
e 1 W38) = 53 22 e i (1)
where
pi(z | w;, B) = exp(—B(z — wi)2) + exp(—B(z + wi)z). (18)

The derivative of log likelihood is defined by

0 Oipi(z | wi, B)
Lz |W,3) = logp(z | W,B3) = —————, 19
(2 W) = 5o logale | W) = 55 el (19)
and the mean value of L; is equal to zero at the true ML solution,
Rexp(W*,8) = (Li(= | W*, B)) = 0. (20)
Expanding L;(z | W,3) by W and 3 around the first SBP,
2 1 84 2
(Li(z | W,B)) = EABA’UH — 5%:.(712'2(0'2)2 — 1) Aw; Aw;
i#
1 84 3, 84 3
—3— —(+—= 1) ¢ Aw;
T\ e )
+ higher order terms, (21)

which is equal to zero if W = W*.
Neglecting higher order terms, we obtain A’ simultaneous equations of A3 and Aw;.



Since a solution Aw; = 0 gives a local minimum of the likelihood, we can assume
Aw; # 0. If 54 # 3(0?)?, we obtain Aw} = Aw? and AB = {s4/6(c*)*} Aw}, which is the
first case of Theorem 1.

On the other hand, if s4 = 3(0?)?, the simultaneous equations degenerate to the
following equation, A3 = 3, Aw?/{2h'(¢?)?}, which is the second case of Theorem 1 and
it means w; can not be determined uniquely from 3 when we neglect higher order terms.

Appendix 2 Outline of the proof of Theorem 2

If the temperature is higher than the first SBP, all Gaussians degenerate to one Gaussian,
therefore the only thing we should do is to calculate NIC for one Gaussian model.

We derive D(W*) and H(W™) for one Gaussian model as follows,
Dy(W*) = 48V, (22)

Hi;(W*) = 286, (23)

where V;; is a covariance between z; and z; and J;; is Kronecker’s §. Therefore NIC is
given by
thc(ﬁ) = TI‘[H(W*)_ID(W*)] = 2/8T1‘[V;13] (24)

Appendix 3 Outline of the proof of Theorem 3

Similar to Appendix 1, we assume (z) = 0 without loss of generality. The symmetry
breaking is 2-way from the assumption of Theorem 3, we analyze NIC of the model of 2
Gaussians.

The model of 2 Gaussians is written by

ple L, si8) = 1y [2 [exp{=lo =} +exp{—pa 4 wf)]. (29

D(w;,ws) and H(w;,ws) can be calculated by definition, and letting w; = wy = w because
w; = wy at the ML solution, we obtain

4 4]

D(w,w) = d(2) d(2) ) (26)
g d ]

H(w,w) = d: dj , (27)

where

d = (48%(z —w)’

d = do+<2ﬂ%—4ﬁ2(w—w)2%>, (29)

P1Pp2
P’ )

dy = <—4ﬂ2(m—w)(a:—|—w)



where p; = exp(—f(z — w)?), p» = exp(—B(z + w)?) and p = pl + p2. Let
iZNIC(/va) = TI[H(wvw)_lD(waw)]a (31)

which is equal to hnio(8) if w = w*. Expanding izNIC(ﬁ,w) around the first SBP (8 =
Be,w* = 0) with respect to 8 and w,

A dod; — d2
haic(B,w) = Tr[H'D] = 2222, (32)
d? — d?
we obtain
. . O »
hnic(B,w) = hnic(B.,0) + %hNIC(ﬂmO) ApB
1( 6% .
+§ {whNIC(ﬁmO)} Aw2
+ higher order terms, (33)

where both the second and the third terms of the right hand side of the above equation
is of order AB, since Aw? ~ {6(c?)*/s4}AB at the ML solution from (5).

Substituting dy, d;, ds by their values, the coefficient of the second term is given by

9 .
—h .,0) = 207, 34
3 nic(Be, 0) g (34)
and the coefficient of the third term before substituting 8 = 3. is given by
16 . s 1 —4B%s,

Using the fact that 8, = 1/(20?) and s4 > (0?)?, (35) diverges to —oo as 3 converges to
B. from right, if s4 # (0?)%.

The only case that s4 = (¢%)? is when g(z) is equal to §(z) or (§(z — a) + &(z + a))/2.
Since there is no SBP in the former case, only the problem is the latter case. Without
loss of generality, we assume a = 1 and the right differential coefficient is derived from a
simple calculation,

0 »
%hNIC(ﬂC,O) = —4. (36)
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Figure 1: An example of ML solution and symmetry breaking phenomena. horizontal
axis : log(f3); vertical axis : w or z, + signs show the ML solution for each temperature,
— signs in the right end show the training samples.
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show the ML solution for each temperature, —
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Figure 3: Generalization bias (k4 # 0) averaged over 50 experiments. horizontal axis :
log(B); vertical axis : generalization bias multiplied by the number of training samples.
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Figure 4: ML solution (Gaussian) horizontal axis : log(/3); vertical axis : w or z, + signs
show the ML solution for each temperature, — signs in the right end show the training
samples.
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Figure 5: Generalization bias (Gaussian) averaged over 50 experiments. horizontal axis :
log(B); vertical axis : generalization bias multiplied by the number of training samples.
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