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Abstract Exact inference in large, complex Bayesian networks is
computationally intractable. Approximate schemes are therefore of great
importance for real world computation. In this paper we consider an
approximation scheme in which the original Bayesian network is approx-
imated by another Bayesian network. The approximating network is op-
timised by an iterative procedure, which minimises the Kullback-Leibler
divergence between the two networks. The procedure is guaranteed to
converge to a local minimum of the Kullback-Leibler divergence. An im-
portant question in this scheme is how to choose the structure of the
approximating network. In this paper we show how redundant structures
of the approximating model can be pruned in advance. Simulation results
of model selection and model optimisation are provided to illustrate the

methods.
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§1 Introduction
Bayesian networks provide a rich framework for probabilistic modelling

1. 2.3 Their graphical structure provides an intuitively appealing

and reasoning
modularity and is well suited to the incorporation of prior knowledge. Bayesian
networks are often used in a domain with causal structures, such as speech recog-
nition and medical diagnosis. The invention of algorithms for exact inference
during the last decades has lead to the rapid increase in popularity of Bayesian
networks in modern Al. However, exact inference is NP-hard *. In practice,
this 1s reflected in the fact that large densely connected networks, which can be
expected to appear in real-world applications, are intractable for exact compu-
tations *.

In this paper, we address the problem of approximate inference in in-
tractable Bayesian networks. In this context, the variational methods gain in-
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creasingly interes . An advantage of these methods is that they provide
bounds on the approximation error. This is in contrast to stochastic sampling
methods ** which may yield unreliable results due to finite sampling times.
Until now, variational approximations have been less widely applied than Monte
Carlo methods, arguably since their use is not so straightforward.

The paper is organised as follows. In section 2 we present a varia-
tional framework for approximate inference in intractable Bayesian networks
using (simpler) approximating Bayesian networks. An iterative algorithm is
presented to optimise the parameters of the approximating networks such that
the Kullback-Leibler (KT.) divergence is minimised. In section 3 we address the
problem how to choose the structure of the approximating model. We show
that redundant structures can be pruned in advance. In section 4, we consider
extremely dense connected networks. For these networks, the optimisation of
the approximating network by KI. minimisation is intractable. A way out is to
minimise an approximation of KL instead. In section 5, we present simulation
results on Lauritzen’s chest clinic (ASTA) model and a random intractable net-
work to illustrate the method. We conclude with a discussion and future plans

in section 6.

§2 Approximating Bayesian networks

Basically, the problem of inference in a Bayesian network P is to find
the conditional probability distribution P(S;|E) of each of the nodes i given

the evidence E. If P is intractable, one has to approximate these conditional
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probabilities. In the variational method ® ®, the intractable probability distri-
bution P(S|E) = Pg(S) is approximated by a tractable distribution Q(S) (on
the non-evidential nodes). Then @ is used to compute the node probabilities
Q(S;). In the standard (mean field) approach, @ is assumed to be completely
factorised Q(S) = [[; @(Si). We take the more general approach '™ * | with @
being a tractable, but otherwise fully unconstrained Bayesian network. There-
fore, to construct @ we first have to define a suitable tractable structure for
Q: Q(S) =1L Q(Si|7}), where 7} denote the parents of node i in graphical
structure ). The next step 1s to optimise the parameters of @) such that the
Kullback-Leibler (KL) divergence between @ and Pg,

QS _ Q(5)
D(Q, Pg) = ) Q(S)log = (log (1)
{ZS; Pr(S) < Pr(S) >Q

is minimised. The KL-divergence is related to the difference of the marginals of

@ and Pg,
max| P(Si[F) — Q(1)| < \/3D(Q. Pr) 2

(see V). The KL-divergence satisfies D(Q, Pg) > 0, and D(Q,Pr) = 0& Q =
Pg. Using P(S|E) = P(S, E)/P(F) and substituting the graphical structures

for P and @), we can rewrite D as

D(Q, Pr) = <Z]og Q(Si|7}) — Z]og P(Si|7rf)> + constant. (3)
i i Q
Parent sets 7} and 7" are understood with respect to the probability distribution
@) and P, respectively and are in principle different. As a consequence of the
factorisation of P(S, E) into conditionals, the average (log P(S, E))q reduces to
the sum of local averages 3, (log(P(S;|7!)),, which facilitates the tractability
of D.

QJ

D(Q, Pg) depends on the numerical values of the conditional probability
tables @(S;|7}). One way to optimise the tables is minimising the KL-divergence
by a gradient based method. Another approach is to set the gradient of D with

respect to these parameters equal to zero, yielding the equations

ki

Q(Si|mH = %exp <ZlogP(Sk|7r£) — ZlogQ(Sk|7rZ)> . (4)
' k Q-
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in which the average ...} q. is taken with respect to the conditional probability
distribution Q¢ = Q(S|S;7}), in which node i and its parents are clamped to
the states S; and 7, respectively. Z; is a normalisation factor. Eqs. 4 are a
coupled set of non-linear equations that must be solved for Q(S;|7}). For each
i, the right hand side of Egs. 4 does not depend on the parameters Q(s;|7?).
This means that asynchronous iteration of Egs. 4 is guaranteed to converge to
a local minimum of the KL-divergence.

The quality of the approximation depends strongly on the structure of @.
The simplest approach is the so called mean-field approach, in which the graph
of @ is completely disconnected, i.e. Q(S) =[], @(S;). Then Egs. 4 reduces to

the standard mean field equations

Q(s) = 5 exp <Zlog P(sk|frz)>
k Qe

The other extreme is to factorise ) according to a triangulated graph **
of P. In this case, iteration of Egs. 4 leads to the solution ) = Pg and D = 0.
This solution is only theoretically of interest, since the computational complexity
of @ in this case is equal to the original inference problem. However, it indicates
that the variational approach using structure interpolates between the standard
mean field theory and the exact solution. In general one must choose a structure

for ) that is a good compromise between approximation error and complexity.

§3 Pruning the approximating model

An important question is how to choose the structure of @) to get the
best out of the approximation. In principle, the number of possible structures
grows exponentially with the number of nodes. A sensible heuristic is to try
making the graphical overlap between @ and Pg as large as computationally

10, 9)

possible . The following lemma indeed shows that graphical structures in @

which do not appear in P are redundant if they satisfy the following lemma.

Lemma 3.1

Let P be an Bayesian network, let Q be an approximating Bayesian network
and let Q(S;|S,7.) be the conditional probability table of node i. (i.e. node
i conditionally depends on node p and some other parents {.) If each family
set (i.e., the set of a node and its parents) FAM from the graph of P and from
the graph of @ except for the family set of ¢ in @), satisfies at least one of the
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Fig. 1 Example of network pruning. (a): Graph of exact model P(4)P(B|A)P(C|A). (b):
Left: graphs of original approximating model Q(A)Q(B)Q(C|B). Right: graph of pruned
model Q(A4)Q(B)Q(C). In (b), arrows indicate the graphical structure of the approximating
model. Dashed lines indicate the underlying family sets { A, B} and {4, C'} in the exact model.
Since there is no family set with both B and C' as a member, the link is removed. Note, however,

that in the exact model B and C' are marginally dependent (via A).

following two independency relations:

Q(FAMIS;Spm.) = Q(FAM|Symi,)
then the table Q(S;|S,n}.) reduces to Q(S;|x}.) by iteration of (4).

Proof Let {k'} be the nodes for which the family sets in P satisfy Q(Sgs, 7%,|S; Spmi,) =
Q(Skr, 7L,|Siml ), and let {I'} be nodes other than i for which the family sets in
Q satisfy Q(Sy, n}|SiSpml) = Q(Sy, 7}|Siwl), By assumption, only for these
nodes the averages (log P(Sk’|7r£’.)>Q(5|515,,n§r) and <logQ(Sl’|W?’)>Q(5|Slspn§r’)
depend on the clamped state S;. As a consequence, equation (4) can be re-

duces to
1
QSIS,78) = - exp <zlogp(sk,|,rp,) Yo Q(Sulw;%>> )
' k! I Qe
(with S;Spmf. clamped), since the contributions of nodes other than &' and I’
can be absorbed in Z;. By construction, the family sets of &' in P and I’ in @ are

conditionally independent of S, given S;x] . A direct consequence is that ex-
pression (5) does not depend on the state of of S, i.e. Q(S;|Sp7}) = Q(S;|=i ) O

In fig. 1 a simple illustration of the lemma is given.

§4 Approximated minimisation
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The complexity of the variational method is at least exponential in the
parent size of the exact model P, since it requires the computation of averages of
the form (log P(Si|7rf)>Q. This means that computational advantage can only
be obtained if the parent size is much smaller than the clique size of P '>?,
Since the storage space of probability tables is exponential in the parent size,
in practical applications probability tables with large number of parents will

1

be parametrised. Popular parametrisations are noisy-OR gates " and weighted
sigmoid functions '. For these parametrisations (log P(Si|7rf)>Q can be approx-
imated by a tractable quantity £(Q,&) (which may be defined using additional
variational parameters £). As an example, consider tables parametrised as sig-

moid functions,
P(S;i =11{Sx}) = (14 exp(z))~? (6)

where z; is the weighted input of the node, z; = Zk w;p Sk + h;. In this case,
the averaged log probability is intractable for large parent sets. To proceed we

can use the approximation proposed in
(log(1+ %)) g < & (=1) + log (6% 4 0= = £(Q.) M

which is tractable if @) is tractable. Numerical optimisationof £(Q, &) = £(Q,&)—
<log(Q)>Q with respect to @) and ¢ leads to local minimum of an upper bound of
the KIL-divergence. Note however, that iteration of fixed point equations derived
from £(Q,§) does not necessarily lead to convergence, due to the nonlinearity
of £ with respect to Q.

§5 Numerical results

We illustrate the theory by two toy problems. The first one is infer-
ence in Lauritzen’s chest clinic model (ASIA), defined on 8 binary variables
{a,t,s,l,b,e,z,d} (see '? for more details about the model). We compared ex-
act marginals with approximate marginals using the approximating models in
figure 2. From the results, we can conclude that adding structure to the approx-
imating network decreases the error in the approximation. However, we also
can see from the simulation results that even the fully disconnected mean field
approximation is qualitatively correct (maximum error between marginals P(S;)
and Q(S;) is about 0.2).

In the second toy problem we simulated approximate inference in a struc-
ture that has both tractable substructures and sigmoidal nodes with large parent

sets. We generated models with graphical structure as in figure 3. The upper
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Fig. 2 Chest clinic model (ASTA). (a): Exact model with marginal probabilities. (b-c): Ap-
proximating models with approximated marginal probabilities. Arrows indicate the graphical
structure of the exact and approximating models. Dashed lines indicate the underlying links
in the exact model. KL is the KI.-divergence D(Q, P) between the approximating model @Q

and the true model P.

node is a mixture node with m mixture components. The next layer consists
of n + 1 binary nodes. The third layer consists of n binary nodes S;. Each of
these nodes has two parents in the preceding layer. Up to this layer the net-
work is tractable. We refer to this part of the network as A7. This part of the
network represents some underlying causal structure in the model, e.g. a causal
structure of diseases and pathophysiological mechanisms in a model for medical
diagnosis, and may have been designed using expert knowledge. Finally, there
is a layer of n, observables S,. These are parametrised by sigmoid functions,
receiving weighted inputs from all the nodes of the preceding layer. The goal is
to find marginal probabilities of the nodes in the third layer given evidence on
the observable nodes. Exact computation of these probabilities is intractable for
large n.

We choose m = 10, n, = 50 and varied n = 8,...,15. Networks of
this size are still tractable for exact computation. The values in the probability
tables of Ay are drawn uniformly. The weights in the sigmoidal functions are
drawn from the Gaussian distribution with zero mean and standard deviation
1/y/n. We computed exact and approximated marginals for the third layer
Si. As approximating models we used a factorised model and a model with
the tractable structure N7 (fig. 3). In figure 4 we plotted the maximal error
maxq |Q(S;) — P(S;|Sy)| as a function of the network size. We also plotted the
required computer time for exact and approximate inference as a function of the

network size. In the optimisation of the approximating model with structure, we
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Fig. 3 (a): Graphical structure of artificially generated probability distribution P. Non-

evidential nodes are black. Evidential nodes are white. (b) and (c): Graphical structure on

the non-evidential nodes of the approximating distributions Q.
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Fig. 4 Left: The maximal error as a function of the network size. Right: CPU-time (arbitrary

units) for exact and approximate inference as a function of the network size

used the optimised factorised model as initialisation. Thus, the computation of
the structured model can be seen as post-processing step after the optimisation
of the factorised model. This is reflected in the plotted CPU-times.

We conclude that variational methods using structure significantly im-
proves the quality of approximation, within feasible computer time. In a network
with tractable substructures, as can be expected in many practical applications
such as medical diagnosis, these substructures provide a useful starting point for

the approximating model.

§6 Discussion and future plans

Finding accurate approximations of Bayesian networks is crucial if their
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application to large scale problems is to be realised. We have presented a scheme
to use (simpler) approximating Bayesian networks, tuned via minimisation of the
Kullback-Leibler divergence. We have addressed the question of selecting the
structure of the approximating model, and showed that redundant structures
can be pruned in advance. Parametrised models with large parent sets can be
dealt with by minimising an approximation of the KL divergence between true
and approximating model.

Numerical results reported here, as well as results on the Asia problem
with evidence (not reported here) show that the factorised variational approxi-
mation is qualitatively correct in the sense that it correctly estimates whether
probabilities are high or low. However, the numerical errors can be rather large.
The results of approximations using structure gives a significant improvement.
Our results seem to indicate that this improvement is independent of the problem
size.

One of the current research items is to further investigate the optimal
structure for ). In addition, we intent to build a package of C++ routines for
(automated) model selection, model optimisation and approximate inference.
These routines are to be contributed to an RWCP library. Currently we are also
involved in a joint project with Utrecht University Hospital to build a large and
detailed system for diagnosis in internal medicine. This system will be based on
a Bayesian network with many tractable substructures. Our aim is to use our

approximate routines for this system as a RWCP demonstration project.
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