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Abstract

Bayesian networks are widely accepted as tools for probabilistic modeling.
In building Bayesian networks in collaboration with domain experts, the
definition of the graphical structure is usually relatively easy. The assessment
of the conditional probability tables (CPT) is often a much more difficult
task, even when there is a lot of statistical information available as domain
knowledge. The problem is that in many cases it is not possible to fill this
information directly into the CPTs. In this paper we propose a method to
fit the CPTs such that the model reproduces the available information as
accurate as possible. We will discuss some criteria to do this and we illustrate
the methods in an example.

1. Introduction Probabilistic graphical models, and in particular Bayesian
networks, are nowadays well established as a modeling tool for expert systems in
domains with uncertainty [1, 2, 3, 4]. The reason is that graphical models provide a
powerful and conceptual transparent representation for probabilistic models. Their
graphical structure, showing the conditional independencies between variables, al-
lows for an easy interpretation. On the other hand, since a graphical model uniquely
defines a joint probability model, the mathematical consistency and correctness are
guaranteed. In other words, there are no assumptions made in the methodology. All
assumptions in the model are contained in the definition of variables, the graphical
structure of the model, and the parameters in the model.

The construction of a Bayesian network consists of two parts, a qualitative and
a quantitative part. The qualitative part is the determination of the structure of
the network. It is common practice that structure of the network is determined by
hand, especially when the network is built in collaboration with domain experts.
Luckily, the determination of this structure is often a relatively straightforward
task, since it usually fits well with knowledge that the domain expert has about
causal relationships between variables. The quantitative part consists of specifying
the conditional probability tables (CPTs) in the network. When there is insufficient
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data to fully determine the CPTs, these CPTs need also be set by, or in collaboration
with, the domain experts [5]. This is considered a much harder or even impossible
task [6, 7], especially since the domain experts very often have no intuition about
these probabilities. Luckily, in many cases statistical information Z is available, e.g.
from the literature. In such a case, one can try to choose the CPTs in the network
such that the probability model induced by the CPTs complies with this information
7. Unfortunately, Z often does not translate directly into network CPTs, that is to
say, it is often not clear to the experts how Z should be translated into quantitative
CPTs in the Bayesian network. This is, for example, the case when conditional
probabilities are given in the ‘wrong direction’, from ‘effect’ to ‘cause’.

The availability of additional statistical information has been noted before. In [7]
the authors propose to exploit this information by expressing them as constraints
on models. Next, they sample the models that satisfy these constraints. In this
paper, we propose an alternative method to translate Z to the CPTs. Our method
is different in the sense that it yields a single ‘best’ model instead of a number of
reasonable models. In many applications, we expect a single model to be much more
convenient to work with, while still being sufficiently accurate given the available
information. Another difference is that, in our approach, the constraints need not
be exactly satisfied. In case of constraint violation, our method yields a model that
minimizes the ‘violation amount’.

In this paper, we will assume that Z can be formulated as conditional probabil-
ities of the form Pr(Uy|ve) = Qa(Uqlvy)- A typical example is the sensitivity of
a medical test. This is the the probability of a positive test result U, given that
the patient has disease v,. An obvious requirement for the model P is to reproduce
these probabilities ), as accurate as possible. To measure ‘violation amount’ or
inaccuracy, we need an error or distance function between the given conditional
probabilities @), and the conditional probability according to the graphical model
P. A natural distance between a model distribution and a target distribution is the
Kullback-Leibler divergence. Minimizing this distance, however, is in general not
sufficient for a unique determination of the model P. A whole manifold of models
with the same distance to Z may exist. A standard way to proceed is to select a rep-
resentative of this manifold of distributions through the Maximum Entropy method
(MaxEnt) [8]. MaxEnt searches for the distribution that maximizes entropy under
the given constraints. Roughly speaking, it selects the distribution P that satisfies
the constraints without introducing any additional information. An alternative is
to assume a prior distribution Py and to try to use the freedom in the parameters
of the model to stay as close as possible to Fy.

This paper is organized as follows. In section 2, we propose our procedure and
we discuss the various choices that can be made. In section 3, the method is applied
on a toy problem. We end the paper with a short discussion in section 4.

2. Parameter fitting Our starting point is a parameterized probabilistic
model P(X|#) with parameters 6 on a set of discrete variables X = Xy,...,X,
in a finite domain, X; € {1,...,n;}. In a standard Bayesian network, P(X) =
[I; P(X;|m;), the parameters 6 are the probability tables, 8 = {0x; », = P(X;|m)}.
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Now we want to find parameters 8* such that the probabilistic model reproduces
a given set Z of conditional probabilities

Pr(Uq|ve) = Qa(Ualva) a=1...m (1)

as accurate as possible. Here, v, is a setting of states of variables V,, for which the
conditional probability of the variables U, is given in the table @,. For example
v = (Xo = true, X¢ = false), vo = (Xo = true, X¢ = false) etc. If Uy = (X3, X4),
then the conditional distribution Q;(Xs, X4|X2 = true, X = false) is given, etc.
We do not assume that the different distributions in set Z are mutually consistent.
So obviously, there need not to be a parameter setting 6* such that P(U,|va,0) =
Qo (Uq|vy) for all a. The best one can do is to fit P to {Q}, using some distance
or error function between probability distributions.

A natural choice for a distance function between the model P and a target @,
is the Kullback-Leibler divergence,

Q(ualva)

P(Unlva, )’ 2

KL(Qa(Ualva)[|P(Ualva, 0)) = Z Q(ualva) log
{ua}

where the sum over {u,} stands for the sum over all states of U,. The Kullback-
Leibler divergence has the nice properties that it is nonnegative and equal to zero
if and only if P(Uy|vg,8) = Qa(Uqlve). To fit all conditional probabilities, we
propose to minimize the cost function

F() = ZpaKL(Qa(Ua|Ua)||P(Ua|Ua:0)) ) (3)

where one might want to consider non-equal weights p, > 0 if one considers some
conditional distributions more important than other ones. One particular and quite
natural choice for p, follows by choosing a probability distribution R(z) and setting

F(9) = ZR("E) Z b2va KL(Qa (Ua|va)||[P(Ualva,0)) , (4)
{=} o

in which d,, = 1 if the states z and v, are compatible, and d,,, = 0 otherwise.
Minimizing F'(f) does not provide a unique set of parameters. To see this con-
sider the factorized model of two variables P(z1,22) = P(z1)P(z2). If the given
set Z consists of one distribution Q(z1), then all parameters such that P(z|f) =
Q(z1)P(z2|0) are minimizers of F(#). For a practical solution, a single represen-
tative would be desirable. For this we need an additional cost function G(8). This
additional cost function is only needed to get rid of the freedom in # that still

remains after minimizing F'. In other words, the optimal parameters are given by

6" = argmin lim [F(6) + 266 5)

Several choices can be made for G(0). We will discuss two of them. The first one
is the maximum entropy choice (relative to some distribution Py, e.g. the constant
distribution),

G anir (0) = KL(P(2|0)|| Po()) - (6)
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This choice is motivated by the maximum entropy (MaxEnt) principle. This prin-
ciple states that, under the constraints that  is a minimizer of G(6), the model
P(z|0) should contain no additional information [relative to Py(z)]. The second
choice interprets Py(x) as a prior guess for the model. Here the idea is that the
solution should ‘fit’ Py(x) under the constraints that 6 is a minimizer of F'(6). This
leads to

G prior (6) = KL(Po(2)||P(x]0)) - (7)

Which G to choose is, in our opinion, mainly a matter of taste: the results in
practice will be roughly the same (see also below). In both interpretations, taking
the same reference distributions for weighing the constraints [R(z)] and minimizing
the remaining degrees of freedom [Py (z)], seems a reasonable standard choice.

In our experience, the best way to minimize [F(0) + LG gn¢, (9)] for a large value
of ¢, is through an ‘annealing’ procedure. Starting from a random 6, we minimize
the cost function for ¢ = ¢;, with ¢; a small value, yielding an optimum 67 . In
the next step, we minimize the error for a larger ¢ = c2 > ¢;, starting from the
previous optimum @} . This procedure is iterated for ¢ = (c1 < 2 < ... < ¢y)
until the optimum at the final ¢ = ¢, value is obtained. This ‘annealing’ process
of ‘cooling down’ % to zero is crucial in order to find a minimum of G() in the
manifold of parameters that minimizes F'(6). This annealing technique is often used
in constraint optimization using a penalty function [9)].

3. An example: coronary heart disease = We illustrate our method by an
example involving the diagnosis of coronary heart disease, taken from [10]. It is well
known that the prior probability of a patient having coronary heart disease depends
on sex and age of the patient. Older men have a much higher probability of having
the disease than young women. A typical symptom of this disease is Angina Pectoris
(chest pain). We will construct a model P on the basis of information given in [10],
which is a biannual publication by the Dutch national health insurances, and which
is distributed among all Dutch physicians.

In this example, we have four variables: age (a), sex (s), heart-disease (d), and
chest-pain (c) . In the example, age has four states (30-39, 40-49, 50-59, 60-69),
sex has two states (male, female), heart-disease has two states (true, false), and
chest-pain has four states, (asymptomatic, non-AP pain, atypical AP-pain, typical
AP-pain). Assuming that sex and age are independent, and that the type of chest-
pain is independent of sex and age given that we know the state of heart-disease,
we build a graphical structure according to figure 1.

In [10] the conditional probabilities (d|a, s,c) are tabulated (see table 1). Fur-
thermore we assume that s and a are homogeneously distributed (although this is
not stated in [10]). For simplicity, we put this assumption in the tables P(a) = 0.25,
P(s) = 0.5 and keep them fixed throughout the optimization process.

In the first model [referred to as model (1)], we assume no other information
except Q(d|a, s,c). Therefore we choose the maximum entropy approach, in which
both R(z) and Py(z) are a flat distribution. We minimized [F(6) + LG gnir(6)] for
¢ =1 to ¢ = 105, where at each iteration we increased ¢ with a factor 10. With
slower annealing we obtained the same results, but without annealing we did not



FiGc. 1. Structure of the network for coronary heart disease with four variables: age (a), sex
(s), heart-disease (d), and chest-pain (c)

manage to achieve comparable performance. The CPTs P(d|a,s) and P(c|d) that
follow from this MaxEnt approach are given in tables 2 and 3 in the rows labeled
with model (1). With these CPTs, the model reproduces the desired conditional
probabilities with a maximal absolute difference of max|Q(d|a, s, c)— P(d|a, s, c)| =
0.007 and a maximal relative difference of
Q(d|a: S, C) — P(d|a: S C)
max Q(da,s.0) =0.07.

The summed Kullback-Leibler divergence for model (1) is F(f) = 5.4 x 10~

In the second model [model (2)], we minimized [F(6) + £G ppior(6)] with the
same parameter settings as above. We obtain about the same errors relative to Q.
The resulting CPTs P(d|a,s) and P(c|d) are given in tables 2 and 3 in the rows
labeled with model (2). The marginal distributions that are obtained in this way
are slightly closer than to the (flat) marginals of the prior P (z) than for model (1).
This is in particular the case for P(c), see table 5.

In both models, the CPTs P(d|a, s) indicate a quite high (and worrying) a priori
probability of having the heart disease: 35 percent. Furthermore, the model sug-
gests that about 70 percent of all healthy people have some complaints of chest
pain (non-AP pain, atypical AP pain, typical AP pain), and that 6 percent of
the healthy people have even typical AP pain. In other words, the likelihood ra-
tio P(c|d)/P(c|~d) of chest pain is quite low for severe pain (see table 4). If we
consider the whole population, the model suggests that all states of chest pain are
about equally probable.

This unappealing behavior is most easily explained when we interpret Py(x) as
our prior. This prior states that the a priori probability (i.e. prevalence) of having a
disease is 50 percent, and that the a priori distribution of the state of chest pain is
a homogeneous distribution over all states of pain. In the next model [model (3)] we
assume that we still do not know the prevalence, but we guess that it is 2 percent, so
we state Pp(d) = 0.02. Since this is a prior, we prefer the method with G pyjor-. The
results are tabulated in tables 2 and 3 in the rows labeled with model (3). The errors
relative to ) in this model are, again, not significantly different from the previous
models. But now the prevalence of the disease is reduced to the more reassuring
value of 13 percent. The probability of an individual to have chest pain is much




sex age | asympt non-AP atyp-AP typ-AP
m  30-39 0.019 0.052 0.218 0.677
m  40-49 0.055 0.141 0.461 0.873
m  50-59 0.097 0.215 0.589 0.92
m  60-69 0.123 0.281 0.671 0.943
f 30-39 0.003 0.008 0.042 0.258
f 40-49 0.01 0.028 0.133 0.552
f 50-59 0.032 0.084 0.324 0.794
f 60-69 0.075 0.186 0.544 0.906

TABLE 1
Conditional probabilities of heart disease given age, sex and type of chest-pain (asymptomatic,
non-AP pain, atypical AP-pain, typical AP-pain). This table is taken from the literature and
serves as a constraint for the probability model in figure 1.

more skewed towards asymptomatic (no complaints), see table 5. Furthermore, the
probability that a healthy person has considerable chest pain is now reduced to
about 6 percent, and even less than one percent for severe chest pain (see table 3).

Next, in model (4), we treat the knowledge that among the Dutch patients the
prevalence for this disease is 2 percent [10] as a fact, rather than as an assumption.
That is, in the optimization we enforce both Q(d|a, s, c) from table 1 and Q(d) =
0.02. We take the weightings p, proportional to the inverse of the number of parent
states in @, so p, = 1/32 for Q(d|a, s,c) and p, =1 for Q(d) = 0.02.

Apart from these target distributions, we have no further information. Therefore
we choose the MaxEnt cost function G gy (). The results are tabulated in tables 2
and 3 in rows labeled with model (4). Since this model tries to approximate two
(conditional) distributions [Q(d|a, s, ¢) and (Q(d)], it is not surprising that the error
is larger than in the previous models. The maximal error is max|Q(d|a,s,c) —
P(d|a, s,c)| = 0.065 and the maximal relative difference is

max Q(d|a7 S, C) - P(d|a7 S, C) —=0.6.
Q(d|a, s, c)

The summed Kullback-Leibler divergence with respect to Q(d|a, s, c) is 0.1. This
model predicts a prevalence P(d) = 0.027, which is in reasonable agreement with
the target. The probability of an individual having any type of chest pain is now
reduced to a mere 3 percent (see table 5). The probability that a healthy person
has no chest pain at all is 97 percent, and the probability that a healthy person
has considerable chest pain is now reduced to less than 0.1 percent: in this model
it is exceptional that a healthy person has severe chest pain typical for this disease
(see 3). The worrying number in this model is p(c = asympt|d) = 0.83, which means
that if you have a heart disease, you will probably not notice it. For that reason,
we would prefer model (3), that treats the information in table 1 about Q(d|a, s, ¢)
as ‘hard evidence’, yet the statement Q(d) = 0.02 as ‘soft evidence’.

4. Conclusion It is still common practice to do the qualitative and quan-
titative construction of Bayesian networks in collaboration with domain experts.



Model | m/f | 30-39 40-49 50-59 60-69

(1) | male | 019 043 056 064
(1) | female | 0.04 012 030 051
(2) male 0.19 0.42 0.55 0.64
(2) female | 0.04 0.12 0.29 0.50
(3) male 0.05 0.15 0.24 0.30
(
(
(

3) female | 0.01 0.03 0.09 0.20
4) male 0.01 0.03 0.05 0.07
4) female | 0.001 0.005 0.02 0.04

TABLE 2
Conditional probabilities (percentages) of heart disease (d = true) conditioned on age and both
sezes. These CPTs are obtained by optimizations in various models. See the text for a description
of the models.

Model d asympt. non AP atypical AP typical AP
(1) true 0.03 0.07 0.33 0.57
(1) false 0.31 0.33 0.30 0.06
(2) true 0.03 0.07 0.27 0.63
(2) false 0.37 0.33 0.23 0.07
(3) true 0.22 0.25 0.26 0.27
(3) false 0.66 0.27 0.056 0.007
(4) true 0.84 0.13 0.022 0.007
(4) false 0.97 0.02 0.0008 0.00003

TABLE 3

Conditional probabilities (percentages) of having a certain state of chest pain (asymptomatic,
non-AP pain, atypical AP-pain, typical AP-pain), given the state of heart disease (true or false).
These CPTs are obtained by optimizations in various models. See the text for a description of
the models.

Model | asympt. non AP atypical AP typical AP
(1) 0.08 0.22 1.1 9.0
(2) 0.08 0.22 1.2 9.3
(3) 0.33 0.90 4.7 38
(4) 0.86 5.3 29 231
TABLE 4

Likelihood ratio P(c|d)/P(c|—d) of the probability to have a certain state of chest pain (asymp-
tomatic, non-AP pain, atypical AP-pain, typical AP-pain), given the state of having heart disease
divided by the probability of having the same pain, given that there is no heart disease. The ratio
is tabulated for different models. See the text for a description of the models.



Model | asympt. mnon AP atypical AP typical AP
(1) 0.21 0.24 0.31 0.24
(2) 0.26 0.24 0.24 0.26
(3) 0.60 0.27 0.08 0.04
(4) 0.97 0.03 0.001 0.0002

TABLE 5

Probability P(c) to have a certain state of chest pain (asymptomatic, non-AP pain, atypical
AP-pain, typical AP-pain), averaged over the whole population. The probability is tabulated for
different models. See the text for a description of the models.

The qualitative part, which is the construction of the graph of the model, is usu-
ally relatively straightforward. The quantitative part, which is the determination of
the conditional probability tables, is often much more difficult for domain experts.
However, if other statistical information about the domain is available, in particu-
lar if this information is available in terms of a set of conditional probabilities that
cannot directly be used as parameters of the model, then fitting this information
might be a useful and practical method for setting the parameters of the model.
In this paper we proposed a cost function, which consists of two terms. The first,
most important one, is used to minimize the distance between the model and the
available information, given as ‘hard evidence’. The second one is used to select a
representative of models that are at equal distance from this information. In this
second term one might include a prior guess for the model, i.e., more ‘soft evidence’.
If one is reluctant to give any information, one can choose the maximum entropy
term, which tries to exclude any bias in the model.

Another method for the quantitative assessment of CPTs has been proposed
in [7]. An advantage of this method is that it can also handle inequality statements
between conditional probabilities. In any case, however, the method assumes that
the model can exactly satisfy all statistical information. This, unfortunately, might
not the case in practice, due to a too simple model, or even due to inconsistencies
in the given information. Another advantage of our method is that it is based on
the minimization of a cost function, rather than on a type of rejection sampling.
Cost function methods are usually much faster than sampling methods. One of our
objectives is therefore to test our method on larger problem domains. Challenges
range from the derivation of (approximate) algorithms for efficient minimization to
the design of software for automatic incorporation of all kinds of information.
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