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Abstract

Bayesian networks are widely accepted as
tools for probabilistic modeling in the medi-
cal domain. In modeling Bayesian networks
in collaboration with domain experts, the
definition of the network structure is rela-
tively easy. The assessment of the condi-
tional probability tables (CPT) is often a
much more difficult task, even though there
is a lot of statistical information available
in the medical literature. The problem is
twofold. In the first place it is usually not
possible to use this information directly to
fill in the CPTs. In the second place, the in-
formation is usually insufficient for a unique
definition of the CPTs. A standard approach
to define a probabilistic model on the basis of
insufficient statistical information is to apply
the Maximum Entropy Method (MaxEnt).
MaxEnt searches for the unique model that
maximizes the entropy under the constraints
that it satisfies the given statistical informa-
tion. In standard applications of MaxEnt
for models defined by one joint probability
table, these constraints are linear in the ta-
ble entries. However, if MaxEnt is applied
to a Bayesian network, i.e. the joint distri-
bution is factorized into a product of CPTs,
these constraints are typically nonlinear in
the CPTs. In this paper we show how these
nonlinear constraints can be dealt with, and
we describe an algorithm that (locally) max-
imizes entropy under constraints in Bayesian
networks. The method is illustrated by an
example.

1 Introduction

Computer-based diagnostic decision support systems
will play an increasingly important role in health care.
They may improve the quality of the diagnostic pro-
cess in accuracy and efficiency, while costs and bur-
den of patients may be reduced. In addition, they can
play an invaluable role in medical education. Poten-

tial users include general internists, super specialists,
residents in internal medicine, and medical students.

The modern view is that decision support systems
should be based on a probabilistic model. This ap-
proach has the advantage that it can deal with un-
certainty in a consistent and mathematically correct
way. In particular Bayesian networks[5; 3] provide a
powerful and conceptually transparent formalism for
probabilistic modeling.

Modeling of a Bayesian network consists of two
parts, a qualitative and a quantitative part. The qual-
itative part is the determination of the structure of the
network. If the network is build in collaboration with
domain experts, the determination of the structure is
often considered as a relatively easy task, since this
task usually fits well with knowledge that medical ex-
perts often have about causal relationships between
variables. The quantitative part consists of quantify-
ing the conditional probability tables (CPTs) in the
network. This part is often considered by medical ex-
perts as a much harder or even impossible task [2].
The reason is that medical domain experts themselves
often have no idea about these probabilities. In most
medical domains some statistical information Z is pro-
vided in the literature. In such a case, one may try
to choose the CPTs in the network such that network
fits with Z. Unfortunately, Z often does not trans-
late directly into network CPTs, that is to say, it is
often not clear to the experts how Z should be trans-
lated into quantitative CP'Ts in the Bayesian network.
Typically, Z consists of conditional probabilities in the
‘wrong direction’, from ‘effect’ to ‘cause’. In addi-
tion, these 'reversed’ CPTs are often insufficient to
uniquely define the desired CPTs in the network. The
toy problem in the last section in the paper is an ex-
ample where 7 has wrong direction and is insufficient
for unique determination of the model. Often Z can
be formulated as linear probabilistic constraints, i.e.,
constraints of the form } ., p(z)fa(z) = 0, and/or
> (s P(@)gp(z) < 0, where p(z) is the (joint) proba-
bility distribution and f,(z) and gg(z) are functions
of the state space {z} = {z1,... ,z,}. A typical ex-
ample is a constraint on the conditional probability
p(z1 = a|lza = b) = ¢ which can be expressed as



> e P(%) (62100256 —Czyp) = 0, where we used the Kro-
necker delta (0,y = 1if z =y and 6,y =0 if  # y).

In this paper, it is assumed that 7 is consistent, i.e.
that there is at least one parameter setting of the dis-
tribution that satisfies the constraints. However, since
7 is in general insufficient for a unique determination
of the model p, a whole set of distributions will satisfy
the constraints. A standard way to proceed is to select
a representative of this set of distributions by applying
the Maximum Entropy Method (MaxEnt) [4]. Max-
Ent searches the distribution that maximizes entropy
under the given constraints. Roughly spoken, it se-
lects the distribution p that satisfies the constraints
without introducing any additional information.

In this paper, we apply MaxEnt to a Bayesian net-
work with a given structure p(z) = [], p(z;i|m;) to
quantify its CPTs. The difference with MaxEnt ap-
plied to a general model p(x) is that MaxEnt applied
to a Bayesian network has to deal with a set of con-
straints and a set of independency statements. One
approach could be to try to formulate the indepen-
dency statements as as additional constraints to a
general model p(z) and apply standard MaxEnt to
p. The way we proceed is, however, to keep the fac-
torization into CPTs, and try to find the CPTs that
maximizes the entropy of the joint distribution. As
a consequence, a technical difference with standard
MaxEnt is that the constraints, which are linear in
the joint probability p(z), are non-linear in the CPTs
p(zi|m;). This causes some complications in the opti-
mization scheme of MaxEnt. However, one can effec-
tively deal with these complications.

This workshop paper is organized as follows. In
section 2 standard MaxEnt is shortly reviewed. In
section 3, we show how the method applies to Bayesian
networks. In section 4, the method is applied to a toy
problem. We end the paper with a short discussion in
section 5.

2 Maximum Entropy (MaxEnt)

In this section, we shortly review the standard Max-
imum Entropy (MaxEnt) method with linear proba-
bilistic constraints [4]. We consider probability dis-
tributions p(z) on a set of discrete variables z =

Z1,...,%, with a finite domain, z; € {1,... ,n;}. If a
set of linear constraints on p,
Zfa(w)p(a:):O a=1...k (1)
{=}
Zfa(x)p(a:)>0 a=k+1l...m (2
{=}

is given, MaxEnt tries to find the probability distri-
bution p(z) that maximizes the entropy

==Y p(z)logp(x (3)
(=}

under these constraints.

Introducing Lagrange multipliers A = {\,}, and a
Lagrange multiplier v to ensure normalization of p,
we can formulate the optimization problem by La-

grangian
=HP)+Y_ > Aafal@)p(z)

L(p, A,7)
o {z}
7O pE)-1) (4)
{z}

which should be maximized with respect to p and
minimized with respect to the Lagrange multipliers
A (within the domain A, < 0 for @ > k) and ~. Tak-
ing the gradient of L with respect to p(z), setting it to
zero, and eliminating -y, we can solve p as explicitely
as a function of A. The solution p* has the well known
exponential form

P(@) = Zep Y Aafale) (5)

where Z is a proper normalization constant resulting
from elimination of v. Now we substitute the solu-
tion p* into the Lagrangian L, which now becomes a
function of A only,

FQ)=H®)+ YY) Xafal@)p*(®)  (6)

o {z}
which has to be optimized numerically , leading to
the solution A*. According to the theory of Lagrange

multipliers, the constrained optimization problem is
now solved by the distribution p* at A*.

3 MaxEnt in Bayesian networks

In this section, we show how the MaxEnt method
under linear probabilistic constraints operates for a
Bayesian network

T) = Hp(xi|77i) (7)

Again we want the maximize the entropy

= - p(z)logp(x ®)
{z}
under a set of linear constraints in p

> fal@a)p(@) =0 a=1...k 9)
{=}
> fala)p(x) > 0 a=k+1...m (10)
{2}

In which f,(z4) is a function that depends on a subset
of variables z,. Introducing Lagrange multipliers A,
for these constraints, and ~y; for normalization of the
CPTs we can can formulate the optimization problem
with the Lagrangian

L({pi}a A, '7) = H(p) + Z Z )‘afa(ma)p(x)
a {z}
+ () (O pilwilm) — 1) (11)
{z}



which should be maximized with respect to the CPTs
{p;} and minimized with respect to the Lagrange mul-
tipliers. Now we cannot solve {p;} directly by taking
the gradient of (11) with respect to all parameters,
since this would only lead to a set of coupled non-
linear equations for the CPTs.

What we can do, however, is taking the gradient
of L with respect to a single CPT p;(x;|m;), for fixed
A and remaining CPTs{p;} ji- Setting the gradient
to zero, and eliminating ~;(7;), we again get an ex-
plicit solution of p;(x;|m;), as a function of A and the
remaining CPTs {p;},_;:

p; (z4|m;) =

Zi(lﬁi) €Xp Z Aafa(Ta) — Z Ingj(leﬂ'j)>

€C; JED;

Ti, T4

(12)
The average (...),, .. is taken with respect to the con-
ditional distribution p(x|z;, ;) (which only depend on
the CPTs {p; }#i). In (12), C; is the subset of the con-
straints « such that the distribution of z, depends
on the state of x;. In other words, a ¢ C; implies
p(zal|zi) = p(z4). In a similar way, D; is the subset
of the nodes j # 4, such that the child-parent combi-
nations {z;,7;} depends on the state of z;. Again, in
other words, j ¢ D; implies p(z;,7;|z;) = p(z;,7;).
Finally, Z;(m;) are normalization constants for the
CPTs.

Since the solution (12) is unique, it corresponds to
the global maximum of L given that the other CPTs
(and the Lagrange multipliers) are fixed. This means
that in a sequence where at each step different CPTs
are selected and updated (while keeping A fixed) ,
the Lagrangian increases at each step (or remain con-
stant). Since the Lagrangian is bounded for fixed A we
conclude that this iteration over all clusters of CPTs
leads to a local maximum of L.

To find saddle points of L we propose the following
two-step gradient descent procedure.

Initialization

e Initialize with random A and random CPTs
{pi}.

e Fix A and iterate (12) sequentially until a
local maximum of {p;} is obtained.

A - step Fix the CPTs and take a A step into the
direction of the negative gradient of the La-
grangian (some components, related to inequality
constraints, will be set equal to zero if this step
would push them outside their domain).

p -step Fix A\ and iterate (12) sequentially, with
CPTs initialized at their previous values, until
convergence is reached.

In this way, we minimize with respect to A in its do-
main, while remaining on a ridge 0L/0p;(z;|m;) = 0.
If we converge, we obtain a local maximum of the en-
tropy under the required constraints.

Figure 1: Structure of the network for coronary heart
disease with four variables: age (a), sex (s), heart-
disease (d), and chest-pain (c)

sex age | asympt non-AP atyp-AP typ-AP
m  30-39 1.9 5.2 21.8 67.7
m  40-49 5.5 14.1 46.1 87.3
m  50-59 9.7 21.5 58.9 92.0
m  60-69 12.3 28.1 67.1 94.3
f  30-39 0.3 0.8 4.2 25.8
f  40-49 1.0 2.8 13.3 55.2
f  50-59 3.2 8.4 32.4 79.4
f  60-69 7.5 18.6 54.4 90.6

Table 1: Conditional probabilities (percentages) of
heart disease given age, sex and type of chest-pain
(asymptomatic, non-AP pain, atypical AP-pain, typi-
cal AP-pain). This table is taken from literature and
served as a constraint for the probability model in fig-
ure 1

4 An example: coronary heart disease

We illustrate the method by example involving the
diagnosis of coronary heart disease, taken from [1].
In this example, we have four variables: age (a), sex
(s), heart-disease (d), and chest-pain (¢) . Following
the example, age has four states (30-39, 40-49, 50-
59, 60-69), sex has two states (male, female), heart-
disease has two states (true, false), and chest-pain has
four states (asymptomatic, non-AP pain, atypical AP-
pain, typical AP-pain). We build a graphical structure
according to figure 1.

The information that we have is a probability table
q(d|a, s, c¢) with conditional probabilities for all states
of d, a, s, ¢, tabulated in table 1. Furthermore, there is
no information, but we assume that we have the ad-
ditional information that s and a are homogeneously
distributed. The constraints p(d|a, s, c) = ¢(d|a, s, c),
p(a) = 0.25, p(s) = 0.5 are insufficient to uniquely
specify the CPTs p(d|a, s) and p(c|d). We have ap-
plied MaxEnt to this problem. The CPTs that we
obtained in this way are given in tables 2 and 3.

5 Conclusion and future work

If direct quantitative assessment of CPTs is to difficult
for domain experts, and if other statistical informa-
tion about the domain is available, but in the ‘wrong



age | male female
30-39 19 4
40-49 42 12
50-59 55 29
60-69 64 51

Table 2: Conditional probabilities (percentages) of
heart disease (d = true) conditioned on age and sex.
These CPTs are obtained by MaxEnt.

d | asympt. non AP  atypical AP typical AP
true 3 7 35 55
false 31 33 30 6

Table 3: Conditional probabilities (percentages) of
having a certain state of chest pain (asymptomatic,
non-AP pain, atypical AP-pain, typical AP-pain),
given the state of heart disease (true or false). This
CPTs is obtained by MaxEnt.

direction’ and insufficient to uniquely define the de-
sired CPTs in the network, then MaxEnt for Bayesian
networks may provide a useful method for assessment
of the quantitative CPTs. MaxEnt is not the only
method for quantitative assessment of CPTs. Other
methods have been proposed previously [2]. One of
the features of MaxEnt for Bayesian networks is that
the optimization procedure requires only local compu-
tations (if the constraints are local, i.e. involve only a
few variables). This feature is crucial for application
to large scale models.

Currently we collaborate with domain experts to
study the feasibility of the construction of large scale
Bayesian networks for medical diagnosis. Typically
these networks will consists of several hunderds of
nodes. One of the bottlenecks is the quantitative as-
sessment of CPTs in these network, for reasons de-
scribed in this paper. Our future work will include
the study of the practical usefulness of the MaxEnt
method for quantitative assessment of CPTs in such
models.
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