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Abstract

Computer-based diagnostic decision support systems (DSS) will play an increasingly impor-
tant role in health care. Due to the inherent probabilistic nature of medical diagnosis, a DSS
should preferably be based on a probabilistic model. In particular Bayesian networks provide
a powerful and conceptually transparent formalism for probabilistic modeling. A drawback is
that Bayesian networks become intractable for exact computation if a large medical domain
would be modeled in detail. This has obstructed the development of a useful system for in-
ternal medicine. Advances in approximation techniques, e.g. using variational methods with
tractable structures, have opened new possibilities to deal with the computational problem.
However, the only way to assess the usefulness of these methods for a DSS in practice is by
actually building such a system and evaluating it by users. In the coming years, we aim to
build a DSS for anaemia based on a detailed probabilistic model, and equipped with approxi-
mate methods to study the practical feasibility and the usefulness of this approach in medical
practice.

In this paper, we will sketch how variational techniques with tractable structures can be
used in a typical model for medical diagnosis. We provide numerical results on artificial
problems. In addition, we describe our approach to develop the Bayesian network for the
DSS, and show some preliminary results.
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1 Introduction

Health care will change profoundly with the introduction of clinical diagnostic decision support
systems (DSSs), preferably integrated with electronic patient data and together with on-line com-
puter communication [1]. However, such systems have not yet entered daily clinical practice for
a variety of reasons [2]. Some of the reasons are the lack of adequate computer infrastructure in
hospitals, the lack of standardization of terminology and the poor performance of current medical
diagnostic systems. In this paper we focus on this last issue.

Diagnostic reasoning in the medical domain is a typical example of reasoning with uncertainty.
This uncertainty has different sources: missing patient information, uncertainty in medical tests
results or observations, and the uncertainty about the physiological processes involved. A model
on which a DSS is based should be able to deal with these uncertainties. The different systems
that have been developed so far use a variety of modeling approaches which can be roughly divided
into two categories: The large systems, that attempt to cover the whole of internal medicine use
a rule-based approach with some rather heuristic method to quantify uncertainty. These methods
perform poorly in practice [3, 4]. The main reasons are that the modeling of the relations between
diseases and findings is at a very course level. Therefore, the diagnoses suggested by these systems
are too superficial for clinical use. Secondly, the diagnostic process requires reasoning from causes



to effects (diseases — finding) and vise versa at the same time. The rule based approach, together
with the heuristics for uncertainty, is not well suited for such bidirectional reasoning.

For smaller systems, the probabilistic approach is typically used. The probabilistic approach
has the important advantage of mathematical consistency and correctness. In particular Bayesian
networks (see e.g. [5, 6, 7]) provide a powerful and conceptual transparent formalism for proba-
bilistic modeling. In addition, they allow for easy integration of domain knowledge and learning
from data. Systems that are based on detailed modeling have been restricted to a relatively small
domain [8, 9]. The reason for this restriction is that Bayesian networks will become intractable
for exact computation if a large medical domain would be modeled in detail.

To proceed one has to rely on approzimate computations. Recently, variational methods for
approximation are becoming increasingly popular [10, 11, 12]. An advantage of variational methods
techniques is that they provide bounds on the quantity of interest in contrast to stochastic sampling
methods which may yield unreliable results due to finite sampling times. Until now, variational
approximations have been less widely applied than Monte Carlo methods, arguably since their
use is not so straightforward. We argue that variational methods are indeed applicable to large,
detailed Bayesian networks for medical diagnosis constructed by human experts.

Although the formalism of Bayesian networks is very powerful, the construction of networks for
medical diagnosis is not straightforward. A learning approach depends crucially on the availability
of high quality patient data. In particular, rare disorders should be well covered. In general,
unfortunately, this is rather exception than rule [13]. Therefore, to reach a successful diagnostic
DSS requires explicit modeling effort by human experts. The existing medical literature is not
sufficient to define the probabilistic model. Not all probabilistic relations between variables have
been documented. But it provides a useful starting point for model design. Once a minimal
performance is thus obtained, the model can be improved by learning from patient data.

The paper is organised as follows. In section 2 we discuss the modular structure of a broad
and detailed probabilistic model for medical diagnosis constructed by human experts. In section 3
we show how variational methods can provide approximations for the conditional probabilities in
these networks. This is illustrated by results on the Lauritzen’s chest clinic model and a random
intractable network. In section 4 we describe our approach to model medical diagnosis, and we
give a short description of our system for megaloblastic anaemia, called Promedas. We conclude
with a discussion in section 5.

2 Probabilistic modeling in the medical domain

We here outline what the structure of a broad and detailed Bayesian network will typically look
like. This is based on an extrapolation of our current modeling experiences. Details of the medical
domain are beyond the scope of this paper and are discussed elsewhere [14].

The variables to consider in the network are of different types. There are diseases variables,
which are typically of the binary type, signalling whether a disease is present or not. The findings
encode the results from laboratory measurements, physical examination etc. As a simplification,
these variables are discretized, with medically relevant cut-off points. In practice, such discreti-
sation does not lead to significant loss of information. In addition, there are prior variables that
describe the patient, such as sex and age.

In constructing the graph for the Bayesian network, human experts mostly use “causal” re-
lationships between variables as a guideline (the arrows in fig. 1). Often, the expert can relate
(large numbers of) variables via additional hidden variables. These hidden variables may represent
pathophysiological variables that are known to have certain relations to the observable variables,
but are themselves not accessible during clinical investigation. Often, the use of hidden variables
results in a simplified and more transparent network.

The majority of probabilistic relations between the variables involve only a small number of
parents. Consequently, modeling using explicit probability tables is feasible. These are estimated
on the basis of data in the literature or on “educated guesses” based on local statistics/experience
if no data from the literature are available.
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Figure 1: Modular and graphical network structure. Left: modular structure of the network. A, B, C ...
represent (overlapping) sub-domains. Each sub-domain is modeled by a number of nodes (cf. right figure)
representing variables that are relevant in that domain. The upper nodes, e.g. ‘sex’ and ‘age’ represent
common ancestors of nodes in several sub-domains. The lower nodes, e.g. ‘Hb’ represent common children
of nodes in several sub-domains (e.g. related to anaemia). Right: underlying bipartite graphical structure
of same network. Filled circles: nodes in sub-domains and their common ancestors. Open circles: common
children

Medical experts tend to divide knowledge concerning a medical domain into sub-domains with a
relatively small overlap. Therefore, the network will typically have a modular structure (cf. fig. 1).
Each module represents a disease with its relevant findings. In practice, the modules are rather
small, containing between 20-50 variables. Different modules are connected via shared variables
(e.g. pathophysiological variables that are relevant in different modules), common prior nodes,
and/ or common findings nodes. The computational complexity of the network N consisting of
the modules and their parents (black nodes in fig. 1) can be assumed to be tractable.

The probabilistic relations for the findings require somewhat more care. For example, ‘hemoglobin
level’ (Hb) is a variable whose value is affected by many diseases. Such nodes may have parents in
many sub-domains. This makes the use of a conditional probability table not feasible, as the size
of the table grows exponentially in the number of parents. Fortunately, this is neither necessary,
since medical experts are likely to agree with a ’sum of univariate relations’ between this finding
and its parents. This can be modeled by a noisy-OR gate [6]. Assuming binary variables for
convenience, the noisy-OR gate for finding f = 0,1 given its parents S, =0,1,k=1,... ,nj is

P(f=0[S1,...,5n,) = exp(—zy) )

where zp = Z:f 07k Sk + 050, with parameters satisfying 0 < 87, < co. The total model on all
variables is given as P(S1,...,Sn) = [1, P(Sk|mx), where the conditional probability distributions
are either tables or noisy-ORs. 7, denotes the state of the parent nodes of node k. Thus, if node
k has nj parents, m; can take on 2™* values.

Even though the findings are modeled in a compact way, instantiated findings are likely to
cause computational problems in inference. Let {f} _} denote the subset of instantiated positive
and negative findings, respectively. The marginal probability of the findings is

Z P(Su,Sgpy=1,5;.y=0) = Z HP(Sk|7rk)H(1 —expzf+)]:[exp zp_ (2)

{Su} {Su} k I+ f-

where Sy are the states of the remaining nodes in N;. As a result of the linearity of z¢ in S,
exp zy_ factorizes as a product over parent states. Thus, the negative findings can be absorbed
in N; via the transformation P — R, where R(Sk|my) = exp(—01,Sk)P(Sk|mx) (k € N1). These
terms can be summed efficiently in linear time. This is not possible with positive findings. There-
fore the computational costs will grow exponentially in the number of positive findings fy [11, 15],
and the total network will be intractable.



3 Variational Approximations

In general, the problem of inference is to find the conditional probability distribution P(S;|F) of
each of the nodes ¢ given the evidence E. If P is intractable, one has to approximate these
conditional probabilities. In the variational method, the intractable probability distribution
P(S|E) = Pg(S) is approximated by a tractable distribution Q(S) (on the non-evidential nodes).
Then @ is used to compute the node probabilities Q(S;). To construct ), one first has to define
a tractable graphical structure for Q: Q(S) = [[, Q(Sy[my), [16, 17, 12]. The next step is to
optimize the parameters of @) such that the Kullback-Leibler (KL) divergence between @ and Pg,

Q(5)

D(Q. Pr) =) Q(S)log 5o

{5}

()

is minimized. The KL-divergence is related to the difference of the marginals of @) and Pg,

max | P(Si|F) = Q(S:)| < \/ 5 D(@, P) ()

(see [18]). The KL-divergence satisfies D(Q@, Pg) > 0, and D(Q,Pg) = 0 & @Q = Pg. Using
P(S|E) = P(S, E)/P(F) and substituting the graphical structures for P and @, we can rewrite
D as

D(Q, Pp) = ZQ (ZlogQ Sylmy) — ZlogP (Si|ms) ) + constant. (5)

{5}

Parent sets 7, and m; are understood with respect to the probability distribution in which they
appear and are in principle different. As a consequence of the factorization of P(S, F) into condi-
tionals, the average (log P(S, F))q reduces to the sum of local averages > (log(P(Si|mi))g, which
facilitates the tractability of D.

D(@Q, Pg) depends on the numerical values of the conditional probability tables Q(S;|m;). Set-
ting the gradient of D with respect to these parameters equal to zero, yields the equations

QSilm) = exp(log P(S, £) 108 Q(S))gisis, )

- 7 exp<21°gp(5’“'“k> - ZlogQ(Swlm)> ' ()

Q(Slslvﬂ-l)

(- > Q(s]5:,m) denotes the average with respect to @@ with node 7 and its parents clamped to S; and
5, reqpe(‘tlvely Z; 18 a normalisation factor. Egs. 6 are a coupled set of non-linear equations that
must be solved for Q(S;|m;). For each i, the right hand side of Eqs. 6 does not depend on the
parameters Q(s;|m;). This means that asynchronous iteration of Eqgs. 6 is guaranteed to converge
to a local minimum of the KL-divergence.

The quality of the approximation depends strongly on the structure of ). The simplest ap-
proach is the so called mean-field approach, in which the graph of @) is completely disconnected,
ie. Q(S) =[I; @(S;). Then Egs. 6 reduces to the standard mean field equations

Q(S:) = %exp<zlog P<sk|m>

The other extreme is to factorize @) according to a triangulated graph [5, 7] of P. In this case,
iteration of Egs. 6 leads to the solution ) = Pr and D = 0. This solution is only theoretically of
interest, since its computational complexity is equal to the original inference problem. However,
it indicates that the variational approach using structure interpolates between the standard mean
field theory and the exact solution. In general one must choose a structure for @) that is a good
compromise between approximation error and complexity.

Q(S518:)
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Figure 2: Chest clinic model. Arrows: links in the exact model (a): exact model with marginal prob-
abilities. (b-c): approximating models with approximated marginal probabilities. Arrows indicate the
graphical structure of the exact and approximating models. Dashed lines indicate the underlying links
in the exact model. KL is the KL-divergence D(Q, P) between the approximating model @ and the true
model P.

The complexity of the variational method is at least exponential in the parent size of the
original model P, since it requires the computation of averages of the form (log P(Sk|m)}q. This
is also true for noisy-OR gates. This means that computational advantage is obtained if the
parent size is much smaller than the clique [5, 7] size of P. For large parent sets, one can use
additional approximations. For instance, for the noisy-OR gates with positive findings, we can use
the approximation proposed in [15]

(log(1 — exp(—27)))q & = Y log({1 + exp(=2"z))) (7)

k=0

which is tractable if @) is tractable.

3.1 Simulation results

We illustrate the theory by two toy problems. The first one is inference in the chest clinic model (see
[5] for more details). The model is defined on binary variables {a,t,s,1,b, e, 2, d}, with conditional
probability tables given in table 1.

We compared exact marginals with approximate marginals using the approximating models in
figure 2. jFrom the results, we can conclude that adding structure to the approximating network
decreases the error in the approximation. However, we also can see from the simulation results
that even the fully disconnected mean field approximation is qualitatively correct (maximum error
between marginals P(S;) and Q(S;) is about 0.2).

In the second toy problem we simulated inference in networks with a structure that is similar
to the structure we encounter in medical diagnosis, as discussed in section 2. We generated
models with graphical structure as in figure 3. The upper node is a mixture node with m mixture
components. The next layer consists of ng + 1 binary nodes. These two layers represent prior
probabilities and hidden pathophysiological mechanisms. The third layer of ny binary nodes sy
represent the diseases. Each of these nodes has two parents in the preceding layer. Up to this

p(a) = .01 p(lls) = .10 plell,t) = 1 p(dle,b) = 0.90
p(lls) = .01 plell,t) = 1 p(dle,b) = 0.70
p(tla) = 05 ety = 1 plden = o080
p(tla) = .01 p(bls) = .60 p(ell,7) = 0 p(dle,b) = 0.10
p(bls) = .30
p(s) = .50 p(z|e) = .98
p(z|€) = .05

Table 1: Conditional probability table for chest clinic model (Asia problem).

()]



O 6 6 0 ©°
(b) (c)

Figure 3: (a): Graphical structure of artificially generated probability distribution P. Non-evidential
nodes are black. White nodes are positive findings. (b) and (c): Graphical structure on the non-evidential
nodes of the approximating distributions Q.

layer the network is tractable. We refer to this part of the network as A;. Finally, there is a layer
of n; findings s;. These are modeled as noisy-OR gates, receiving inputs from all the nodes of the
preceding disease layer. In the simulations, the findings are all clamped on positive values sy = 1.
This makes the network intractable for large ng and ny. We choose m = 10, ny = nq and varied
ng = 7,...,13. Networks of this size are still tractable for exact computation. The values in
the probability tables of N7 are drawn uniformly. The parameters 74 in the noisy-OR gates are
drawn from the exponential distribution and are normalised by a factor \/ng. We computed exact
and approximated marginals for the diseases sq. As approximating models we used the model
with structure A and a factorized model (fig 3).

In figure 4 we plotted the maximal error maxg |@Q(sq¢) — P(sq|sy)| as a function of the network
size. We also plotted the required computer time for exact and approximate inference as a function
of the network size.

We conclude that variational methods using structure significantly improves the quality of
approximation, within feasible computer time. In a network with tractable substructures, as
can be expected in medical diagnosis, these substructures provide a useful starting point for the
approximating model.

4 Promedas, a demonstration DSS

Promedas (PRObabilistic MEdical Diagnostic Advisory System)! is a DSS that we are developing
for the problem of anaemia. The aim is to use Promedas to assess the usefulness of approximate
methods for a DSS in practice. The problem domain anaemia is chosen because we expect that
the computational problems described in the previous sections will be encountered in this domain.
For instance, anaemia can be subdivided in a large number of sub-domains, each of which share
a large number of findings. Furthermore, anaemia is a common medical problem. This facilitates
evaluation in practice. To cover the domain completely, we expect that approximately 1000 nodes
are needed.

L A demonstration version of Promedas is available on CD-ROM. See www.mbfys.kun.nl/snn/Research/promedas
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Figure 4: Left: The maximal error as a function of the network size. Right: CPU-time in Matlab seconds
for exact and approximate inference as a function of the network size

To develop Promedas, we use our internally developed software environment, called Bayes-
Builder. BayesBuilder has graphical tools for network construction, evaluation, and maintenance.
So far, Promedas covers megaloblastic anaemia. Tt is currently based on a network of 91 variables,
and is still tractable for exact algorithms.

Promedas consists of a graphical user interface (GUI) to enter patient data and for diagnostic
consultation. It provides a differential diagnosis, i.e. the probabilities of potentially relevant diag-
noses and the probabilities of potentially involved underlying mechanisms (e.g. pathophysiology)
as percentages (ranked in descending order). These probabilities are computed on the basis of
the available findings entered in the system. In addition, Promedas computes which additional
tests it expects to be most informative to decide about a diagnosis, specified by the user. This
information is computed given the values of the variables previously entered and is defined as
I(D,T) = ZD’T P(D,T)In(P(D,T)/P(D)P(T)) with P(D,T) the joint probability of diagnosis
and test result, and P (D), P(T) the marginal probabilities of diagnoses and tests, respectively.
These probabilities are computed by marginalizing over all the missing variables in the network.
The information is normalised between 0 and 100, and displayed in descending order (see Table 2).
In addition, Promedas provides help information, medical background information and pointers
to the literature.

In Table 2, we illustrate the capability of the system to guide the medical decision-making
process.

5 Discussion

The development of a DSS for comprehensive medical diagnosis in internal medicine represents a
great challenge for AT. A broad and detailed probabilistic network is intractable for exact inference
in this context. It is currently unknown, whether variational or other approximate methods are
sufficiently powerful to provide a practical solution. The “quality of approximation” is to a large
extent a user defined (medical) issue, since (1) comparison with exact inference is not possible
due to the size of the networks and (2) errors in the approximation will be judged as acceptable
not just on their numerical values but more importantly on their medical implications. The only
way to assess the usefulness of approximate methods for modeling medical domains is by actually
building such a system and evaluating it by users. The Promedas model must be extended to
several 100 variables in order to be able to address this issue properly.

Our results on the Asia problem with evidence (not reported here), as well as the results
reported here, show that the factorized variational approximation is qualitatively correct in the
sense that it correctly estimates whether probabilities are high or low. However, the numerical
errors can be rather large. The results of variational approximations using structure gives a
significant improvement. Qur results seem to indicate that this improvment is independent of the
problem size. The choice of optimal structure for @) 1s a topic for further investigation.

-~



Visit 1

Test

Diagnosis

36 % Cobalamin deficiency, no cause established
25 % Pernicious Anemia
2 % Cobalamin def. due to total gastrectomy
2 % Cobalamin def. or abnormal intrinsic factor (IF)
2 % Cobalamin def. due to Bilroth I or II gastrectomy
2 % Cobalamin def. due to caustic ingestion
Selected test: Anti-parietal cell antibodies Result: Yes

30  Anti-parietal cell antibodies

26 Anti-intrinsic factor antibodies

17  Pentagastine test

14  Serum gastrin level

10 Schilling test with ovalbumin vit B12
1 Caustic ingestion in the past

1 Total gastrectomy in the past

Visit 2
Diagnosis Test
60 % Pernicious Anemia 26  Anti-intrinsic factor antibodies
19 % Cobalamin deficiency, no cause established 24  Pentagastine test
1 % Cobalamin def. due to Bilroth I or IT gastrectomy 19  Serum gastrin level
1 % Cobalamin def. due to total gastrectomy 15  Schilling test with ovalbumin vit B12
1 % Cobalamin def. due to caustic ingestion 1 Caustic ingestion in the past
1 %  Cobalamin def. due or abnormal intrinsic factor (IF) 1 Total gastrectomy in the past
1 Bilroth T or IT gastrectomy in the past
Selected test: Anti-intrinsic factor antibodies Result: Yes
Visit 3
Diagnosis Test
97 % Pernicious Anemia 3  Pentagastine test
2 % Cobalamin deficiency, no cause established 2 Serum gastrin level
1 Schilling test with ovalbumin vit B12
Selected test: Pentagastine test — Result: Yes
Visit 4
Diagnosis Test
98 % Pernicious Anemia all tests < 1
1 % Cobalamin deficiency, no cause established i

Table 2: Results of the decision support of Promedas. At visit 1, a small number of patient findings are
entered in the system (not shown). Promedas displays the most likely diagnoses. After selecting Pernicious

Anemia, Promedas computes the expected information for all unknown tests. We select the test ’Anti-
parietal cel antibodies’, whose subsequent measurement yields 'Yes’. Ranking of hidden mechanisms are

not shown. For subsequent visits of the patient we see how the additional test results change the likelihood

of the diagnoses.
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