Stochastic Dynamics of On-Line Learning

in Neural Networks

Stochastic Dynamics of On-Line Learning

in Neural Networks

een wetenschappelijke proeve op het gebied van

de Natuurwetenschappen

Proefschrift

ter verkrijging van de graad van doctor
aan de Katholieke Universiteit Nijmegen,
volgens besluit van College van Decanen
in het openbaar te verdedigen
op vrijdag 26 januari 1996

des namiddags te 1.30 uur precies

door

Wilhelmus Adrianus Joseph Johannes Wiegerinck

geboren op 5 maart 1963 te Amsterdam

Promotor: Prof. Dr. C.C.A.M. Gielen

This work was supported by the Dutch Foundation for Neural Networks (SNN).

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Wiegerinck, Wilhelmus Adrianus Joseph Johannes

Stochastic dynamics of on-line learning in neural networks
/ Wilhelmus Adrianus Joseph Johannes Wiegerinck. - [S.1.
s s - Tl

Proefschrift Katholieke Universiteit Nijmegen. - Met lit.
opg. - Met samenvatting in het Nederlands.

ISBN 90-9009004-5

Trefw.: neurale netwerken / leerproces.

Aan alle geinteresseerden.

Contents

Introduction

1.1 General introduction to neural networks
1.2 Learning from examples
1.3 Current theories on learning Lo
1.4 Outline of this thesis
1.5 Discussion and directions for further research

On-Line Learning with Time-Correlated Patterns

2.1 Introduction e e e e e
2.2 Perturbation theory e
2.3 Van Kampen’s expansion
2.4 Simulations e e
2.5 DISCUSSION . . . v v v e e e e e e e e e e

The Effect of Correlations on the Learning Process

3.1 Introduction L
3.2 The Framework e
3.3 ODE Approximation and Beyond o 0oL
3.4 Representation Error and Prediction Error o000
3.5 Plateaus
3.6 Summary and Discussion L

On-Line Learning with a Momentum Term

4.1 Introduction L e e e e e e e
4.1.1 Backgroundo
4.1.2 Framework
4.1.3 Outline e

4.2 Equal timescales e e e e
4.2.1 Van Kampen’s expansion
4.2.2 Scaling properties

4.3 Different time scales e
4.3.1 Perturbation theory
4.3.2 Van Kampen’s expansion

4.4 Simulations L e e e e e e e

4.5 Discussion L e e e e

4 Appendix . ..o e
4.A Elimination of fast variables

O OO e NN =

11
12
12
14
14
15

17
18
19
20
24
26
30

5 The Connections of Large Perceptrons

5.1 Introduction L
5.2 The Perceptron Fixed-Point Equation
5.3 Homogenous Distributions L o o
5.3.1 Unbiased Homogeneous Distribution
5.3.2 Biased Homogeneous Distribution: The Gaussian Approach
5.3.3 Numerical Results
5.4 Inhomogeneous Distributions: Patterns.
5.4.1 Training with Noise
5.4.2 The Limit of Zero Training Noise
5.4.3 Numerical Results
5.5 DISCUSSION o Lo e e e e e e e e
5 Appendix . ..o Lo e
5.A The Distribution P(z) 0 o

5.B Validity of the Gaussian Assumption
Bibliography

Samenvatting

47
48
48
50
50
51
53
53
53
56
57
57
59
59
60

61

67

Chapter 1

Introduction

Abstract

One of the most important features of neural networks is their ability to adjust to their
environment by “learning”. How neural networks learn is the subject of this thesis. The
introduction of this thesis is organized as follows. First a general introduction to neural
networks is given. This includes some ideas about the human brain — on which neural
networks are inspired, a summary of what neural networks are about, and a short discussion
why neural networks are interesting for application purposes. Subsequently, we discuss some
aspects of neural network learning and we give a short review on current theories on neural
network learning which served as the starting points of this thesis. Finally we will give an
outline of the contents of the other chapters in this thesis, a general discussion of the main
results and some suggestions for further research.

2 Introduction

1.1 General introduction to neural networks

The brain

The human brain is a tremendously powerful information processing system, much more power-
ful than the largest and fastest digital computer. In particular, the brain is good in processing
complex information which is needed to interact with its environment. For example, in a poten-
tial hostile environment the recognition of her mothers face within milliseconds is essential for
a young child. On the other hand, being good in arithmetics — like digital computers are — will
most probably not help her to survive. Another important aspect of the brain is that it is able
to learn complex relations between various signals and symbols in its environment by “trial-and-
error”. As an example we mention the control of arm movements. The arm movements of a
baby are rather erroneous at the beginning, but they increase in precision on the basis of very
many trials as the child grows up. The child’s growth poses an additional problem, since the
growing of the limbs requires continuously adjustment of the control. However, by its continual
adaptation the brain is excellently suited for such a task.

Although the brain is yet much too complex for a precise understanding, the commonly
accepted explanation of the brain’s powerful information processing capabilities is roughly as
follows [11]. The human brain consists of about 10" nerve cells or neurons, each of it connected
by synapses to on average about 10® other neurons. It is nowadays commonly assumed that
the neurons are the basic information processing elements of the brain, whereas the information
transfer between the neurons is regulated by the synapses. Thus the synapses determine to a
large extent how the neurons cooperate and consequently how the brain operates. The strength
of the synaptic connections is not fixed; through modification of synapses, the brain adapts its
functioning to its environment. In this way, the brain is continually learning and building up
experience.

The huge number of in principle parallel processing neurons and the enormous amount of
interconnectivity accounts for the tremendous information processing capabilities of the brain.
The adaptive capabilities of the brain through synaptic modification on the basis of interaction
with its environment accounts for the efficient information processing needed in relation to its
environment.

Neural networks

Artificial neural networks — or simply, neural networks — are information processing systems
which are based on the above described ideas about the brain. As such, the paradigm of com-
putation by a neural network is completely different from the usual one based on a programmed
instruction sequence which is used in conventional digital computers.

Most neural networks have two basic ingredients.

e A neural network consists of a number of units interconnected according to a certain
architecture. The units or neurons are simple nonlinear processors, i.e. the output of a
unit is a simple, but nonlinear function of its total input. The connections between the
units allow the units to communicate and to exchange information. The strengths of the
connections, or weights, are the parameters of the network. They determine how the
network operates.

e The neural network can learn from examples — patterns from its environment. During
learning, the weights of the neural network are adjusted to improve the network’s perfor-
mance in its environment.

1.1 General introduction to neural networks 3

DDLLOODD

0
'NQ
oD
9

D

Figure 1.1 Multi-layered perceptron with 5 input units, three hid-

<
4 cUov+Hco

den units and two output units. The arrows symbolize the feedforward

information flow. Note that this network has only one hidden layer.

With these two ingredients, artificial neural networks already show some brain-like behavior. The
parallel architecture of neural networks — even if they are simulated in software on conventional
computers — in combination with the nonlinearity in the neurons, makes neural networks robust
and fault-tolerant. The adaptivity of the weights, in combination with the nonlinearity in the
neurons, allows the neural network to learn complex relations just by examples. Excellent
overviews of neural networks can be found in [27, 25].

An example of a neural network is the multi-layered perceptron [68]. The multi-layered
perceptron consists of several layers of units. Each unit is in a feedforward manner connected
to all the units in the next layer (see fig 1.1). The information flow is as follows. An input
pattern is received by the network and its values are clamped on the input units. These values
are subsequently passed to the units in the first hidden layer, after that they are multiplied by
the weights between the input and hidden units in question. In other words, the input of each
unit in the first hidden layer is a weighted sum of the values clamped on the input units. Next,
the input of a hidden unit is processed by means of a so-called transfer function to form the
output of this unit. In their turn, the outputs of the hidden units are fed into the next layer of
hidden units, etc. Finally, the processed signals will reach the output units where they can be
read off.

However, without learning the network’s weights are not adapted to the problem at hand,
and hence the network will respond to an input pattern with a completely erroneous output
pattern. To find good weights, learning is needed. Most multi-layered perceptrons learn in a
so-called supervised way. Input patterns in combination with the corresponding desired output
patterns are presented (by a hypothetical supervisor) as examples (or ‘training patterns’) to the
network. The adaptation of the weights is simply such that if the same input patterns would be
presented the next time, the network would respond with output patterns more similar to the
desired ones. In this way, the network learns the input-output relation by examples rather than
that it is precisely programmed like conventional computer programs by an expert with explicit
knowledge of this input-output relation.

Neural network research can be divided into two groups. One group of researchers studies
neural networks as models for parts of the brain in order to understand neurobiological or
psychological observations. The other group of researchers considers neural networks merely
as alternative computing paradigms. Biological modeling is not a goal in itself, but rather is
neurobiology useful as a source of inspiration for new powerful computing paradigms. In this
context, neural networks can be compared with other nature-inspired algorithms, like genetic

4 Introduction

algorithms [21] and simulated annealing [41]. The previously mentioned brain-like behavior of
neural networks — in particular the ability to learn complex, nonlinear relations by examples
if a mathematical formulation of these relations is not available — can be useful to have on a
computer. Neural networks are already applied in many real world applications; examples can be
found in hydrological forecasting, chemical process industry, oil industry, agriculture, marketing,
financial forecasting and many others [14, 13, 37]. This second type of research includes the work
presented in this thesis.

1.2 Learning from examples

One of the main features of neural networks is their ability to learn from examples. A large
part of this thesis is focussed on a popular learning strategy called on-line learning. In on-line
learning, examples (combinations of input and desired output patterns in the above described
supervised learning) from the environment are continually presented to the network at distinct
time steps. At each time step a small adjustment of the network’s weights is made on the basis
of the pattern which is presented at that time step. This procedure is iterated as long as the
network learns. The idea is that on a larger time scale the small adjustments sum up to a
continuous adaptation of the network to the whole environment.

On-line versus batch-mode

On-line learning is opposed to batch-mode learning, where at each step the weights are adapted
on the basis of all the patterns. Batch-mode learning is only an alternative if a finite set of
examples (a so-called training set) is available. In fact, batch-mode learning is in most cases
merely a classical optimization procedure, which can be found in any numerical analysis text
book [62]. Most batch-mode learning rules try to minimize a cost function. The lower the cost,
the better the performance of the neural network. In many supervised learning applications,
for instance, the cost is the sum of the squared differences between the outputs produced by
the network and the desired outputs of all training examples. A cost function can be viewed
as a landscape: by varying the weights of the network the output responses of the network
on the training set will be varied as well; as a result the cost will be increased or decreased.
The aim is to minimize the costs, i.e. to find the lowest point in the landscape. A common
technique, which includes the well-known backpropagation algorithm in batch-mode [68], is
gradient descent. Gradient descent changes the weights at each learning step a little bit into
the down-hill direction. The step size is regulated by the so-called learning parameter. The
learning parameter plays an important role in the learning process, in particular in the more
complex applications where the cost function often has deep valleys, flat plateaus, and many
local minima. In deep, narrow valleys, the gradient descent has to be steered very carefully to
remain nicely within the valley. With a too optimistic, large learning parameter, a step aimed to
the down-hill direction may jump over the valley and may result in an undesired escape out of it.
On flat plateaus, the down-hill direction is very unclear, and the gradient descent algorithm will
get stuck. In particular, with a small learning parameter — necessary in relation with possible
steep valleys — this effect can be severe. With local minima, the down-hill algorithm has a chance
to direct to the wrong, non-optimal minimum.

With on-line learning, where minimization is not based on the whole training set but on
individual examples, an additional problem concerns the conflicts between examples. With too
large steps, the network will specialize too much on the example which happens to be presented
at that learning step and will forget previously stored information. So with on-line learning,
this is an additional reason to have small step sizes. In combination with the conflicts between

1.3 Current theories on learning 5

the examples this makes on-line learning unfavorably slow. Nevertheless, on-line learning can be
advantageous. The conflicts between the patterns can cause fluctuations in the learning process,
which may just be beneficial to escape from plateaus or local minima. In particular with large
redundant data-sets and complex, nonlinear problems on-line learning is often advised instead
of batch-mode learning [6].

1.3 Current theories on learning

Neural network research, in particular the type of research which studies neural networks for
applications, tends to be an area where many claims are made. For example, regular participants
of major neural network conferences such as ICANN will probably have noticed a continual
stream of propositions for new learning rules [1, 38, 50]. Most of them are adaptations of
standard algorithms. The authors tested them on a single problem, for which the learning
rule had been designed, and concluded that their rule gives an improvement with respect to
some (usually not optimal) algorithm. For many of those new learning rules, a solid theoretical
foundation or a general proof on the performance for particular types of problems is lacking.

Theoretical research on learning in neural networks is aimed to fill these gaps. This thesis
focuses on two aspects of the theory. The one is on-line learning for general neural networks
with nonlinear learning rules. The other is on-line learning for a particular network architecture,
the single-layered perceptron, equipped with the perceptron learning rule.

On-line learning with nonlinear learning rules

In many theoretical approaches of on-line learning [2, 82, 29, 24, 17], it is assumed that the weight
changes are a function of the current weights of the network and a randomly drawn example
only. Under this assumption, on-line learning satisfies the so-called Markov property, since the
probability for a certain weight change depends only on the weights before the learning step. The
underlying Markov process, which describes the time evolution of the probability of the weights,
is in general too difficult to solve. However, since the learning parameter is assumed to be small
— to prevent overspecialization on single examples — an expansion can be made in the learning
parameter [28]. This expansion (by Van Kampen [77]) results in equations which describe
the evolution of the weights by a deterministic trajectory with small superimposed Gaussian
fluctuations (cf. fig 1.2). This can be understood in the following way. With a small learning
parameter, the evolution of the weights is so slow that the network sees the whole training set
before its weights are significantly changed. This removes in lowest order the stochastic aspect
of the learning process: the weights will follow a smooth deterministic (batch-mode) trajectory.
In fact, in the lowest order approximation on-line learning is equivalent to batch-mode learning
where a weight change is by definition made on the basis of the whole training set. Only by
looking through a magnifying glass, the deterministic trajectory of on-line learning will show
the small fluctuations due to the individual patterns which are randomly presented at each time
step. Computer simulations of learning neural networks show that the equations resulting from
Van Kampen’s expansion provide an accurate description of the learning process [29].
Although the theory of on-line learning is very general, many on-line weight update rules
do not satisfy the Markov property. A counterexample (see Chapter 2 and 3) is learning with
correlated patterns where the pattern presented at a certain time step depends also on the
previously presented patterns. In this case the probability for a certain weight change depends
not only on the weights before the learning step, but also on the previously presented patterns.
Another counterexample is learning with a so-called momentum term (see Chapter 4). In all
these cases, the standard procedure of Van Kampen’s system size expansion can no longer be

6 Introduction

0 50 100 150 200 0 500 1000 1500 2000
t t

Figure 1.2 Typical weight evolutions in on-line learning (solid lines).
In the right panel the learning parameter is 10 times smaller than in
the left panel. Note that the time axis is scaled by a factor 10 in the
right panel. In both panels, the dashed line represents the deterministic
(batch-mode) approximation of the learning process. A smaller learning
parameter reduces the fluctuations around the deterministic trajectory,

but also the learning speed.

applied in a straightforward manner.

The perceptron

The above described theory on on-line learning is not related to a specific neural network ar-
chitecture, or learning rule. In the last chapter, however, we concentrate on a particular type
of neural network, the (single layered) perceptron. The perceptron is one of the classicals in
the neural network history [65, 51]. It consists of an array of input units, directly connected to
a binary output unit. If the total input of the output unit exceeds a certain threshold value,
the output unit will be active. In the sixties, the perceptron has been successfully implemented
by Rosenblatt e.a. to discriminate digits, among other things. Rosenblatt invented an on-line
learning rule for the perceptron. For this rule he proved convergence; this means that if a
solution exists, the network will find it in a finite number of steps.

The perceptron is one of the simplest, non-trivial neural networks. This made the perceptron
a rewarding subject of many theoretical studies. Most of these studies concentrated on the
statistical properties of a learned perceptron such as storage capacity of random patterns [19],
and generalization as function of the number of examples provided by a teacher perceptron [70].
These studies considered the phase space of weights and used tools from statistical physics. We
approached the perceptron from another side; using the dynamics of the weights, we tried to
calculate properties of the weights directly.

1.4 Outline of this thesis

Chapter 2: On-line learning with time-correlated patterns

The goal of this chapter is to derive for small learning parameters the first and second order ap-
proximations of the stochastic dynamics of the weights in on-line learning with time-correlated

1.4 Outline of this thesis 7

patterns. Starting point of this chapter is the description of on-line learning with correlated
patterns in terms of an evolution equation for the joint probability distribution of the network’s
weights and the presented pattern. To derive an evolution equation for the probability distri-
bution of the weights only, we make use of perturbation theory — well known from quantum
mechanics. First we put the learning parameter exactly equal to zero. This is viewed as the
unperturbed system. In this system the probability distribution of the weights does not evolve
at all (since the network does not learn with a learning parameter equal to zero!). Next we
perturb the system, i.e. we give the learning parameter a small but nonzero value. Now, from a
standard result of the so-called second-order perturbation theory with degenerate eigenvalues,
we can immediately read off how the dynamics of the probability distribution of the weights is
affected by the perturbation. To solve the perturbed dynamics is a hopeless task. However, Van
Kampen’s expansion can be applied straightforwardly and consequently the first and second
order approximations of the stochastic weight dynamics are immediately found. The result of
this chapter is that only the fluctuations are affected by the correlations between subsequent
patterns. The batch-mode equation is unaffected, and appears in the same form as in the un-
correlated case.

This result can be understood within the same heuristic framework as presented in the
previous section. With a small learning parameter, the evolution of the weights is so slow that
the network sees the whole training set before its weights are significantly changed. This removes
in lowest order the stochastic aspect of the learning process, including the correlations between
the patterns since these correlations are merely of importance on a short time scale, and again
leads to the batch-mode equation. However the fluctuations in the weights are affected by the
pattern correlations, since the fluctuations are due to the individual patterns which are randomly
— but correlated — presented at each time step.

Chapter 3: The effect of correlations on the learning process

The fact that the results of the previous chapter have been so easy to interpret with the above
described heuristics has motivated us to continue the study of on-line learning with correlated
patterns, but now in a way which is more related to these heuristics. This approach simplifies
the calculations considerably. For instance, it allows us to calculate asymptotic quantities like
the representation error and the prediction error. The representation error is the expected av-
erage error of the network with respect to the whole environment. It measures how well the
environment is represented by the network after learning. The prediction error is the network’s
expected average error with respect to the next presented pattern. A remarkable relation be-
tween these two errors is that if one compares learning with and without correlations between
the patterns, the gain in the predictability of the next pattern cancels in lowest order exactly
the loss in representation of the whole environment and vice versa.

Until now we found that correlations had only a higher order effect on the learning process. In
regular situations the learning process is dominated by the batch-mode force whereas correlations
are only of a marginal importance. However, in the literature dramatic global differences have
been reported between on-learning with correlated and uncorrelated patterns [52, 33]. The
explanation is the following. In neural network learning one indeed often encounters situations
where the batch-mode equation vanishes, namely on plateaus. In the absence of the batch-mode
term, higher order terms will play an important role, since they may drive the weights away
from the plateau. In this chapter we showed that with correlations between patterns, such
higher order terms are much more likely to exist than in the absence of correlations. This is
illustrated by an example of a multi-layered perceptron learning the symmetric tent map with

8 Introduction

6 6
w g wogt
4 4t
3 3t
2 27
0 160 260 300 0 160 260 300
t t

Figure 1.3 Typical weight evolution in on-line learning with momen-
tum (left) and on-line learning without momentum (right). The initial
conditions and the presentation of patterns were taken identical in both
simulations. Note that although the trajectory in learning with mo-
mentum is more smooth, there is no gain in speed or reduction of the
large-scale fluctuations. (The “ideal” asymptotic weight would be w = 2

in these simulations)

correlated and uncorrelated patterns. Exactly as quantitatively predicted by the theory of this
chapter, the network with uncorrelated patterns gets stuck at the plateau, whereas the network
with correlated patterns can escape and reaches the global minimum.

Chapter 4: On-line learning with a momentum term

On-line learning is a slow and noisy process. In an attempt to speed up the learning process
while reducing fluctuations due to the randomness in the presentation of patterns, a so-called
momentum term is sometimes added [68]. In this chapter, on-line learning with a momentum
term is studied. On-line learning with a momentum term is not covered by the standard theory
on on-line learning, since the weight changes do not only depend on the weights of the network
and the presented pattern, but also on the weight-changes at the previous learning step. The
dynamical structure of the learning process depends on the ratio between the learning parameter
and the momentum parameter. We studied the two interesting regimes. In the one regime the
process is a second order process with one time scale. This regime can be dealt with the usual
Van Kampen expansion. In the other regime the process is of second order with two time scales.
The changes in the weights are small, but the changes in the weight-changes are relatively large.
Similarly to chapter 2 we first had to eliminate the fast variables (using perturbation theory)
before we could apply Van Kampen’s expansion. The main result of this chapter is that in both
regimes the benefit of a momentum term in on-line learning is at least questionable (cf. fig 1.3).

Chapter 5: The connections of large perceptrons

Unlike the other chapters, this chapter restricts itself to a specific network architecture, namely
the perceptron. The question of this chapter is: given a linearly separable task (i.e. the desired
input/output relation is feasible by a perceptron) and given a training set of input vectors for

1.5 Discussion and directions for further research 9

the perceptron, can we calculate the weights for a perceptron that faithfully perform the task
on this training set. To calculate the weights, one should in principle solve a set of coupled
inequalities: for each input vector, the dot product of the weight vector and the input vector
should be either positive or negative, in accordance with the desired output.

In this chapter we tried to solve this problem with another approach. We used the guaranteed
convergence of the perceptron learning rule, implying that the asymptotic training result with
the perceptron learning rule is a solution to the problem. It is indeed shown that solutions of
the fixed point equations of the lowest order, deterministic batch-mode approximation of the
(stochastic) perceptron learning rule indeed are solutions to the full problem. The difference is
that these fixed points equations are easier to handle analytically, in particular for large networks
(i.e. with many input units and connections).

We considered two cases. In the simplest case, the training set consists of all possible input
vectors. For this case, we are able to calculate the weights as a series expansion in the system
size. The leading term in this expansion turns out to be either the Hebb rule [26, 34] or the
biased Hebb rule [3], depending on whether the presentation of the input vectors to the network
during learning is assumed to be unbiased or biased.

As a more realistic case we considered a training set consisting of an extensive number of
prototype patterns. These patterns are trained with noise. We find that the weights satisfy a
self-consistent physically transparent set of non-linear equations . In the limit of small training
noise the solution of these equations is shown to correspond exactly to the weights of maximal
stability in the Gardner sense [19, 39].

1.5 Discussion and directions for further research

In this thesis we studied on-line learning in neural networks. In the chapters 2, 3 and 4 we viewed
on-line learning as a process with two time scales. During learning, the weights of the neural
network adapt slowly. However, this is always the result of interaction with much faster changing
variables, e.g. patterns which might be completely different at each learning step. Separation of
time scales and elimination of the fast variables made it possible to study the learning process in
the case where the fast variables are correlated in time. This includes learning with correlated
patterns and learning with a momentum term. In the latter case the fast variables are the
changes in the weights, and subsequent weight changes are correlated.

The analysis in these chapters has led us to two conclusions. The first is that correlations
in the pattern presentation can be very helpful in on-line learning. This has been observed
previously by simulations by others [52, 33, 5], but it was never properly understood. The
other one is that the benefits of a momentum term in on-line learning is doubtful. Although a
momentum term is sometimes still recommended in on-line learning [27], this result has been
known for linear learning rules [71, 72, 59]. Our analysis has extended this result for on-line
learning with general nonlinear learning rules. Note that our analysis does not deal with a
momentum term for batch-mode. In batch-mode, a momentum term is indeed beneficial [72] ,
but other techniques, like the conjugent gradient algorithm [62], are far more efficient [75].

There are many possible directions to extend on this framework in future studies. In chapter
3 we found that on the one hand, correlations can help to avoid plateaus, and on the other
hand, correlations affect the asymptotic learning result. These effects may be utilized to devise
time-dependent pattern selection techniques. For instance, one can think of a scheme starting
with correlations designed to avoid plateaus and continuing in a later stage with correlations
designed for the fine tuning around minima. Perhaps such schemes will relate to common sense,

10 Introduction

like the pedagogical idea that the presentation of patterns should start simple and gradually
increase its complexity [54, 10, 49].

Another direction could be the study of recurrent neural networks. In recurrent networks,
the state of the neurons at a certain moment in time does not only depend on the external
stimulus at that moment but also on the state of the neurons at previous times. This can cause
a behavior of the network that is richer than for example of a feedforward network, like the
multi-layered perceptron. The framework described in this thesis might well be applied to study
on-line learning in recurrent networks, with its bidirectional interaction between the rapidly
changing neuron states and the slowly changing weights [61].

In Chapter 5 we focussed on the result of learning in the single-layered perceptron. Some of
the results of this chapter — the Hebb rule gives a good representation of the weights of large
perceptrons (with the complete training set) and some statistical properties of the weights (in the
case of an extensive number of prototype patterns) — were in fact known in the literature [74, 56].
A difference is that in chapter 5 the Hebb rule emerged as a natural expression for the weight.
In [74], the Hebb rule was taken as the starting point for the analysis which yielded the results.
Another difference is that in chapter 5 these results have been derived using the dynamics of
the perceptron, rather than statistical mechanical tools.

We restricted our study of the perceptron to continuously valued weights. An interesting
class of perceptrons, however are the ones with binary ({—1,1}) or ternary ({—1,0,1}) weights.
For instance, such weights are much easier to store or to implement in hardware. For these
classes of weights the fixed-point theorem described in chapter 5 still holds. One could wonder
if the fixed-point theorem could help to find the optimal weights in such cases.

Chapter 2

On-Line Learning with
Time-Correlated Patterns

Abstract

Many of current theories on on-line learning in neural networks are based on the unrealis-
tic assumption that subsequent patterns are uncorrelated. In this paper we study on-line
learning with time-correlated patterns. For small learning parameters we derive a Fokker-
Planck equation describing the evolution of the average network state and the fluctuations
around this average. Correlations between subsequent patterns contribute to the diffusion
term in this Fokker-Planck equation and thus affect the fluctuations in the learning process.
Our results are valid for a general class of learning rules, including backpropagation and the
Kohonen learning rule. Simulations with Qja’s rule illustrate the theoretical results.

Adapted from: W. Wiegerinck and T'. Heskes. On-line learning with time-correlated patterns, Europhysics
Letters, 28: 451-455, 1994.

12 On-Line Learning with Time-Correlated Patterns

2.1 Introduction

On-line learning is a learning process for neural networks where the weights of the network are
updated each time a training pattern 7 is presented to the network. For many learning processes
this weight change can be written in the general form

Aw(n) = wn+1) —w(n) = n f(w(n),), (2.1)

with w(n) the network state at iteration step m, n the learning parameter, and f(-,-) the
learning rule. Examples can be found in supervised learning, e.g. backpropagation for multilayer
perceptrons [68], where # stands for an input and desired output pair, as well as in unsupervised
learning, e.g. Kohonen’s self-organizing rule for topological feature maps [42], where ¥ stands
for the input vector.

If the patterns & are drawn at random from the training set, on-line learning (2.1) can be
described by a first order Markov process, since the new network state w(n + 1) is solely a
function of the old state w(n) and the randomly drawn pattern #. An evolution equation for
the probability P(w,n) that at step n the network is in state w follows directly from (2.1). In
recent years, theoretical studies of this evolution equation for small learning parameters n have
provided a better understanding of on-line learning processes with uncorrelated patterns [64, 29,
63, 24, 28].

However, in biological learning as well as in real world applications subsequent patterns are
correlated. Clearly, the above described theory based on random presentation of patterns is not
valid in such cases. In this paper, we therefore study on-line learning (2.1) with time-correlated
patterns, and we show that for small learning parameters the behavior of P(w,n) can still be
analyzed. For the moment, we assume that the probability that a pattern & is presented to
the network depends on its predecessor &’ through a transition probability p(#]Z"), i.e. that the
patterns follow a first order Markov process. Later we will show that the final results hold for
stationary Markov processes of any finite order.

With time-correlated patterns the dynamics in weight space is no longer Markovian, which
makes it much less straightforward to derive an evolution equation for P(w,n). However, the
joint probability P(w, #,n) that at step n the network is in state w and the presented pattern
is 7 does follow a Markov process:

AP(w,) = [dw! d p(EI) S — w0’ — nf ', 7)) P!, 7,
— P(w,Z,n). (2.2)

The time scale for the dynamics of the weights w is inversely proportional to 7, whereas the time
scale for the dynamics the patterns & is completely independent of . For n — 0 this separation
of time scales makes it possible to eliminate the fast variable # [76] and to derive a systematic
expansion of the evolution equation for P(w, n) = [dZ P(w, %, n). In chapter 4 we use a similar
method to analyze learning with momentum.

2.2 Perturbation theory

To write (2.2) in a form which is more convenient for algebraic manipulations, we introduce the
left and right eigenfunctions ¥;(Z) and @;(Z) of the transition probability p(Z#|Z") with corre-
sponding eigenvalues A;:

/df!l/i(f)p(ﬂf’) — () /df’ p(FF) Bi(F) = N i(7) |

2.2 Perturbation theory 13

and /dw O;(%) = 8 Yijo -

For convenience, we assume that the stationary distribution @ (Z) of the patterns is unique,
i.e. we have A\g = 1, Re A; < 1 for i > 1 and normalisation ¥,(%) = 1. The probability
distribution P(w, Z,n) can be decomposed in right eigenfunctions:
P(w,#,n) ZQ w,n) (%) .
>0

Substitution of this decomposition into (2.2), multiplication with ¥;(Z), and integration over ¥
yields a set of equations for @Q;(w, n) [which are treated as components of the vector Q(w, n)].
Performing a Kramers-Moyal expansion [18] with respect to w, this set of equations can be
written

AQ(w,n) = ['HQ} ZT} { } (w,n), (2.3)

in which the components of the matrices #(*) are defined by the differential operators

7‘[(0) = —(1 — Ai)&j ,

ij

Il

o -1)° T 7 o
) = C0 [dz | (@)@

Z aw 8 fh() fza('w LE) s fOI‘OzZl.

217 ﬂ'a

Since the operator # is a series in the small parameter 7, it is possible to analyze (2.3) using
perturbation theory. Let us first consider the unperturbed (7 = 0) system

AQ(w,n) = [’H(O)Q)} (w,n) with solution @Q;(w,n) = \'Q;(w,0).

The components (); with ¢ > 1 will rapidly relax to zero. For large n, only the component (g
will remain. The eigenvalues of the perturbed system are equal to the eigenvalues —(1 — A;)
of the unperturbed system plus terms of order 7. So, if 7 < min;>1(1 — Re A;), we can still
dlstlngulsh the invariant subspace in which Q rapidly relaxes to zero from the invariant subspace
in which Q slowly evolves. To describe the evolution of @, defined as the projection of Q on
the slow subspace, we can immediately use a standard result from second-order perturbation
theory with degenerate eigenvalues [20],

o HOHD
MH oo +7727'l00 22 1)\J + 0| Q%(w,n) .

>0

AQ*(w,n) =

For large n, when the projection of Cj on the fast subspace has vanished, Q* equals Q¢ + O(n?).
Substitution of #™, #?) and Qo(w,n) = P(w,n) then leads to

AP(w,n) = — nv}[/dmo(f) Flw, #) Plw, n) +
+ —TrV A\ /dm@o) f(w, %) f(w,Z) P(w,n) +
- . / AF 7 [0:(F) 0 (7) b ()

x VI f(w, 2V f(w,7) Plw,n)| + O(). (2.4)

14 On-Line Learning with Time-Correlated Patterns

2.3 Van Kampen’s expansion

To study this evolution equation in the limit — 0, we apply Van Kampen’s expansion [77, 28].
We start with the Ansatz

w=(t) + ¢,

with rescaled time ¢ = nn. This Ansatz says that the state of the network w can be described
by a deterministic part ¢(f) plus a term of order /7 containing the fluctuations. The function
I1(&,t) = P(p(t) + /&, t/n) is the probability in terms of the new variable £. From Van

Kampen’s expansion it immediately follows that the deterministic part ¢(t) has to satisfy the

do(t) _ .
— (f(o(1), 7))z (2.5)

where the average (...) is over the pattern space. The evolution of I7(&,t) is governed by the
Fokker-Planck equation

equation

S8 — e [w@)Ve[er men]] + yre[Domvevingn], @0

with the usual Hessian H(w) = V,, <fT(w, .T_/')>_‘, but with the (new) effective difussion matrix
xr

o0

D(w) = Colw) +lim 3 [Crnlw) + ()] ", (2.7)

where the auto-correlation matrices €, read

Cm(w)

dOAP / dZ dF &; (%) U; (&) Do(7') f(w, T) f1(w, ")
i>1

= (flw,3(m) £ (w,#0))) ~ (Fw,2) (" (w, D) . (2.8)
In deriving (2.7) and (2.8) from (2.4), we used A;/(1—X;) = lim.1 Y vy A7'¢™, which is correct
even if A\; # 1 lies on the complex unit circle. Equations (2.7) and (2.8) constitute the main
result. They explain how correlations in the training data affect, through the effective diffusion
D, the fluctuations in the learning process. For uncorrelated patterns, i.e. if p(Z|@) = p(%), all
auto-correlation matrices Cy, (w) = 0 for m > 1 and the effective diffusion matrix reduces to
the usual diffusion matrix Cy(w) for on-line learning with random pattern presentation [28]. To
generalize our results to higher order Markov processes, we view a k-th order Markov process as a
first order Markov process in the space of extended patterns {#(m)} = {Z(m),...,Z(m—-k+1)}.
However, since f(w,{#(m)}) = f(w,Z(m)), i.e. the weight update does only depend on the last
pattern, the auto-correlation matrices in the pattern space are equal to the auto-correlation
matrices in the original pattern space. Therefore the results are valid for stationary Markov
processes of any finite order.

2.4 Simulations

To illustrate the theory, we simulate the nonlinear Oja learning rule [55]

2.5 Discussion 15

Figure 2.1 Rescaled asymptotic variance o2 as a function of flip cor-
relation 6. Theoretical prediction (full curve) can be compared with the
simulations for n = 0.01 (“0”) and n = 0.1 (“4”). Standard error bars
would be smaller than the size of the symbols.

in two dimensions, which searches for the principal component of the input correlation matrix
(F&T)z. The absolute value |z;| is, independent of previous patterns, homogeneously distributed
between 0 and [;, with [y = 2 and [y = 1. The sign of z; has a probability ¢; to flip after each
presentation, i.e. # follows a first order Markov process. The Fokker-Planck equation (2.6)
predicts the asymptotic (rescaled) variance

ot = (=)0~ @), = (€€ = 5 T

with “flip correlation” # = (1 — 2¢1)(1 — 2¢2). Simulations are performed with an ensemble of
10 000 independently learning networks, initialized at w(0) = (1,0)7. In figure 2.1 can be seen
that the agreement between theory and simulations is better for smaller learning parameters
and less correlations, as could be expected. Flip correlation § < 0 leads to a better sampling
of the input space and thus to a smaller asymptotic variance than random pattern presentation

0 =0).

2.5 Discussion

In this chapter we studied on-line learning in networks with time-correlated patterns. Starting
point in our analysis was the evolution of the joint probability distribution of weights and
patterns. Using perturbation theory — with the learning parameter as perturbation parameter —
we eliminated the patterns from this evolution equation. By applying Van Kampen’s expansion
(again valid for a small learning parameter) we derived a deterministic equation and a Fokker-
Planck equation which together describe the evolution of the average network state and the
fluctuations around this average. The results show that correlations between subsequent patterns
affect the fluctuations in the learning process. Our approach is certainly not unique: in the

16 On-Line Learning with Time-Correlated Patterns

context of stochastic approximation theory equivalent results have been obtained [8, 44]. In
the next chapter, we will study other aspects of learning with time-correlated patterns. One of
these is related to learning of (chaotic) time series, which is claimed to be easier if the patterns
are presented in their natural order of appearance instead of completely random [52, 33]. This
phenomenon will be explained.

Acknowledgements

We thank one of the referees for a useful suggestion.

Chapter 3

The Effect of Correlations on the
Learning Process

Abstract

We study the dynamics of on-line learning for a large class of neural networks and learning
rules, including backpropagation for multilayer perceptrons. In this paper, we focus on
the case where successive examples are dependent, and we analyze how these dependencies
affect the learning process. We define the representation error and the prediction error. The
representation error measures how well the environment is represented by the network after
learning. The prediction error is the average error which a continually learning network
makes on the next example. In the neighborhood of a local minimum of the error surface,
we calculate these errors. We find that the more predictable the example presentation, the
higher the representation error, i.e. the less accurate the asymptotic representation of the
whole environment. Furthermore we study the learning process in the presence of a plateau.
Plateaus are flat spots on the error surface, which can severely slow down the learning process.
In particular, they are notorious in applications with multilayer perceptrons. Our results,
which are confirmed by simulations of a multilayer perceptron learning a chaotic time series
using backpropagation, explain how dependencies between examples can help the learning
process to escape from a plateau.

Adapted from: W. Wiegerinck and T'. Heskes. How dependencies between successive examples affect on-line

learning. Submitted to Neural Computation.

18 The Effect of Correlations on the Learning Process

3.1 Introduction

The ability to learn from examples is an essential feature in many neural network applications [27,
25]. Learning from examples enables the network to adapt its parameters or weights to its
environment without the need for explicit knowledge of that environment. This paper focusses
on a popular learning procedure called on-line learning. In this learning procedure examples
from the environment are continually presented to the network at distinct time steps. At each
time step a small adjustment of the network’s weights is made on the basis of the currently
presented example. This procedure is iterated as long as the network learns. The idea is that
on a larger time scale the small adjustments sum up to a continuous adaptation of the network
to the whole environment.

In many applications the network has to be trained with a training set consisting of a
finite number of examples. In these applications a strategy is often used where at each step a
randomly selected example from the training set is presented. In particular with large training
sets and complex environments successful results have been obtained with this strategy [9, 6].
Characteristic of this kind of learning is that successive examples are independent, i.e. that the
probability to select an example at a certain time step is independent of its predecessors. Of
course, successive examples in on-line learning do not need to be independent. For example,
one can think of an application where the examples are obtained by on-line measurements of
an environment. If these examples are directly fed into the neural network, it is likely that
successive examples are correlated with each other.

A related example is the use of neural networks for time-series prediction [46, 80, 83, 79, 35].
Essentially, the task of these networks is, given the last k£ data points of the time series, to
predict the next data point of the time series. Each example consists of a data point and its
k predecessors. There are two obvious ways to train a network “on-line” with these examples.
In what we call “randomized learning”, successively presented examples are drawn from the
time series on arbitrary, randomly chosen times. This makes successively presented examples
independent. In the other type of learning, which we call “natural learning”, the examples are
presented in their natural order, keeping their natural dependencies. In [52, 33] both types of
example presentation are compared for the learning of a one-dimensional chaotic mapping. In
their simulations natural learning performs significantly better than randomized learning. This
phenomenon, and, more generally, how the presentation order of examples affects the process of
on-line learning are the subject of this paper. Understanding these issues is not only interesting
from a theoretical point of view, but it may also help to devise better learning strategies.

In this paper we study the dynamics of on-line learning with dependent examples from a
general point of view. In section 3.2, we define the class of learning rules and the types of
stochastic, yet dependent, example presentation which are analyzed in the rest of the paper.
Because of the stochasticity in the presentation of examples, on-line learning is a stochastic
process. However, since the weight changes at each time step are assumed to be small — in this
paper the weight changes scale linearly with a small constant 7, the so-called learning parameter
— it is possible to give approximate deterministic descriptions of the learning process on a larger
time scale. In lowest order, the learning process can be described by an ordinary differential
equation (ODE). The fluctuations, i.e. the differences between the stochastic trajectory of the
weights and the ODE are of order /7. These fluctuations are described by a covariance matrix.
Besides an heuristic (re)derivation of the ODE and the equation for the fluctuations !, section 3.3
also derives in the same heuristic framework an equation for a systematic bias. This bias, which

these results already have been derived in Chapter 2. The ODE is given by the deterministic equation (2.5).
The fluctuations are described by the Fokker-Planck equation (2.6). Other rigorous derivations — in the context
of stochastic approximation theory — can be found in [8, 44]

3.2 The Framework 19

is of order 7, describes the lowest order difference between the mean value of the weights and their
ODE trajectory. One could interpret the bias as a first order correction to the ODE. With these
equations, we will study the effect of dependencies in the examples on the learning process. In
section 3.4 we use these results to calculate how the presentation of examples affects asymptotic
performances like the representation error and the prediction error. The representation error
measures how well the environment is represented by the network after learning. The prediction
error is the average error which a continually learning network makes on the next example. In
section 3.5 we use the results of section 3.3 to study the effect of dependencies when the learning
process is stuck on a so-called plateau in the error surface. Plateaus are frequently present in
the error surface of multilayer perceptrons [36]. Using the results in this section the remarkable
difference between randomized learning and natural learning, which has been mentioned in the
previous paragraph, is explained. The last section gives a brief summary and discussion.

3.2 The Framework

In many on-line learning processes the weight change at learning step n can be written in the
general form

Aw(n) = w(n+1) — wln) = nf(wln),#n)), (3.1)

with w(n) the network weights and #(n) the presented example at iteration step n. 7 is the
learning parameter, which is assumed to be constant in this paper, and f(-,-) the learning
rule. Examples satisfying (3.1) can be found in supervised learning such as backpropagation
for multilayer perceptrons [81, 67], where the examples #(n) are combinations of input vectors
(z1(n),...,z5(n)) and desired output vectors (yi(n), ...,y (n)), as well as in unsupervised learn-
ing such as Kohonen’s self-organizing rule for topological feature maps [42], where #(n) stands
for the input vector (z1(n),...,2zg(n)). On-line learning in the general form (3.1) has been stud-
ied extensively [2, 64, 82, 29, 48, 58, 24, 63, 17]. Most papers on this subject restrict themselves
to independent presentation of examples, i.e. the probability p(Z,n) to present an example ¥ at
iteration step n is given by a probability distribution p(Z), independent of its predecessor. In
this paper — similar to Chapter 2 — we incorporate dependencies between examples by assuming
that the probability to present an example Z depends on its predecessor #’ through a transition
probability 7(Z]Z"), i.e. that p(Z, n) follow a first-order stationary Markov process

p(Fn41) = / d&'r (7 7)p(&, n). (3.2)

Learning with independent examples is a special case with 7(Z|Z") = p(Z). As we have argued
in Chapter 2, the limitation to first-order Markov processes is not as severe as it might seem at
first sight, since stationary Markov processes of any finite order k£ can be incorporated in the
formalism by redefining the vectors ¥ to include the last £ examples. The Markov process is
assumed to have a unique asymptotic or stationary distribution p(Z), i.e., we assume that we
can take limits like

in which ¢(Z) is some function of the patterns. So p(Z) describes the (asymptotic) relative
frequency of patterns. A randomized learning strategy therefore will select its independent
examples from this stationary distribution. In this paper we will denote these long time averages
with brackets (-),,

20 The Effect of Correlations on the Learning Process

and sometimes we use capitals, i.e. we define quantities like & = (¢(Z)),,.
Many neural network algorithms, including backpropagation, perform gradient descent on a
b

“local” cost or error function e(w, %)

flaw(n), #(n) = - Ve(w(n), &(n)). (3.3)

The idea of this learning rule is that with a small learning parameter, the stochastic gradi-
ent descent [(3.1) and (3.3)] approximates deterministic gradient descent on the “global” error

potential
1 N-1
E(w) =]\}I_Ifloo N nz:% e(w,Z(n)) (3.4)

We restrict ourselves to learning with a cost function in order to compare performances between
several types of pattern presentation (with equal stationary distributions), in particular in sec-
tion 3.4 and 3.5. However, most derivations and results in this paper can be easily generalized
to the general rule (3.1).

3.3 ODE Approximation and Beyond

The update rule for the weights (3.1) and the Markov process governing the presentation of
examples (3.2) can be combined into one evolution equation for the joint probability P(w, Z,n)
that at step n example & is presented to the network with weight vector w. This probability
obeys the Markov process

Plw,Z,n+1) = /dw' A7’ (77 §(w — w' — nf(w', &) P(w', 7, n). (3.5)

We are interested in the learning process, i.e. in the evolution of the probability distribution of
weights

P(w,n) = /dfp('w,f, n).

With dependent examples, it is not possible to derive a self-supporting equation for the evolution
of P(w,n) by direct integration over # in (3.5). However, in Chapter 2 we have shown that the
evolution equation of P(w,n) can be expanded systematically in the small learning parameter
1. The basic assumption for this expansion is that the dynamics of the weights, with typical
time scale 1/7, is much slower than the typical time scale of the examples.

In the following, we present a slightly different approach to approximate the evolution of the
probability distribution of weights. This approach, based on [77], assumes that the distribution
of weights, with initial form P(w,0) = é(w — w(0)), remains sharply peaked as n increases.
We follow the heuristic treatment in [8] and average the learning rule over a “mesoscopic”
time scale [24] which is much larger than the typical time scale of the example dynamics yet
much smaller than the time scale on which the weights can change significantly. With the
averaged learning rule we can directly calculate approximate equations for the mean @w(n) and
the covariance matrix 3?(n), which describe the position and the width of the peak P(w,n)
respectively.

We iterate the learning step (3.1) M times, where M is a mesoscopic time scale, i.e. 1 <
M < 1/n, and obtain

wn+ M) —-w(n) =7 Z fw(n+m),Z(n+m)). (3.6)

3.3 ODE Approximation and Beyond 21

For the average w(n) = (w(n)) [brackets (...) stand for averaging over the combined pro-
cess (3.5)], we have the exact identity

M—
w(n+ M) - Z_: w(n+m),Z(n+m))) . (3.7)

On the one hand, the mesoscopic time scale is much smaller than the time scale on which the
probability distribution P(w,n) can change appreciably. Therefore, if the probability distribu-
tion P(w,n) is very sharply peaked, we can expand (3.7) around the mean w(n)

w(n+ M) —w nz F(n+m)))+...

On the other hand, the mesoscopic time scale is much larger than the typical time scale of the
Markov process governing the presentation of examples. Therefore we can approximate the sum

M . ' 1N) B
Mmzo (f(@(n),Z(n+m))) ~ A}l_f}ﬂ()oﬁgo (f(@(n),Z(n+m))) = F(w(n)). (3.8)

Thus, in lowest order, the stochastic equation (3.7) can be approximated by the deterministic
difference equation

w(n+ M) —w(n) = nMF(w(n)) .

For small nM, the difference equation for the position of the peak turns into an ordinary dif-
ferential equation (ODE). In terms of the rescaled continuous time ¢, with ¢, = nn [we will
use both notations w(n) and w(t)], we obtain that the learning process is approximated by the
ODE

dw(t)

dt

In this equation F(w) is the global error potential defined in (3.4). In lowest order the weights do
indeed follow the gradient of the global error potential. Dependencies in successively presented

= F@@(t) = —VE@(t)) . (3.9)

examples have no influence on the ODE (3.9): this equation only depends on the stationary
distribution p(Z) of the examples. Corrections to the ODE arise when we expand (3.6)

w(n+ M) - w an w(n + m), F(n 4 m))
M-1
= 0 % fw(n), &(a+m)
y Z h(a(n), #(n + m)) (w(n + m) — w(n)) +
- nz: £ (w(n), #(n + m))
" M-1 m—1
—nQZh(w(Z(n+m) Zf F(n+1) + .
m=0 =0

(3.10)

with the “local Hessian” h(w,#) = V,, V1 e(w, #) . Averaging, expanding functions of the form

—

(¢(w(n),Z(n'))) around the mean w(n), and transformation to continuous time ¢, yields us a

22 The Effect of Correlations on the Learning Process

first approximation beyond the ODE (3.9)

dw(t) !

= F(@(1) - 5Q(@(1) :22(1) — nB(®@(1)) (3.11)
in which
21 = ([w(t) - w®)[w(t) - w(1)]") (3.12.0)
Qupn(w) = G2 (3.12.h)
(Q:¥Y), = %@am% (3.12.0)

X
&
1l
=
M
L
—
|
2|
T
=
&
St
2
|
T
&

x [f (w, Z(0)) —F(U’)]> : (3.12.d)

1 N-1
Hw) = A}l_r)noo N z_: (h(w, Z(n))), - (3.12.¢)

The first-order corrected evolution equation (3.11) for the mean w(t) is influenced by the
covariance matrix 3?(¢). The covariance matrix obeys

S2(n+ M) =52 (n) = ([w(n+ M) — w(n)]w(n) —w(n)]")
+ ([w(n) - w(n)|[w(n+ M) — w(n)]")
+ ([w(n+ M) — w(m)|[(w(n+ M) - w(n)]")
— [@(n+ M) - w(n)][@(n + M) — w(n)]" .

Substitution of expansion (3.10), expansion of functions of the form (¢(w(n), Z(n'))) around the
mean w(n), and transformation to continuous time ¢, leads in lowest order to the approximation

D)~ H(am(e)) (1)~ S2()H(w(e) + nD(aw () (3.13)

with the “diffusion” matrix

N—ooo N

n=0 m=0

—1N-1
D(w) = < lim — Z Z — F(w)][f(w,Z(m)) — F('w)]T> . (3.14)

From (3.13), we can see that ?(¢) remains bounded if H is positive definite. In this case
¥%(t) = O (n), which makes (3.13) with (3.11) a valid approximation [77]. In other words, since
n is small, this justifies a posteriori the assumption that P(w,n) is sharply peaked. In other
cases where the fluctuations do not remain bounded, the approximation is only applicable during
a short period.

The diffusion D(w) can be expressed as the sum of an independent and a dependent part:

D(w) = Cof lim Z [1— —] (w) + CT(w)} = Co(w) + Cy(w) (3.15)

N—)oo
n=

3.3 ODE Approximation and Beyond 23

where we have defined the auto-correlation matrices

Colw) = ([f(w, #(n)) — F(w)][f(,70)) - Fw)]") . (3.16)

xr

For on-line learning with random sampling, there are no dependencies between subsequent weight
changes, so C;(w) = 0 and consequently the diffusion D(w) reduces to Cy(w) [see e.g. [28]].

The set of equations (3.11) and (3.13) for @ and 2 forms a self-supporting first approx-
imation beyond the ODE approximation (3.9). It is not necessary to solve (3.11) and (3.13)
simultaneously. Since the covariance ¥? appears in (3.11) as a correction it suffices to compute
3?2 from (3.13) using the ODE approximation for @. Following [77] we set W = wop + w, and
solve

dwODE(t)
i = Flwons() (3.17.a)
dzdt(t) = —H(wons (1))22(t) — L2 (t)H(wops (1)) + nD(wops(t)) (3.17.b)
dl;—it) = _H(WODE(t))’LL(t)—%Q(wODE(t)):ZZ(t)—nB(wODE(t))_ (3.17.c)

The first two equations (3.17.a) and (3.17.b) are equivalent to the results derived in Chapter 2,
or in the literature [8, 44]. The ODE (3.17.a) approximates in lowest order the dynamics of the
weights. The covariance matrix ¥?(¢) which obeys (3.17.b), describes the stochastic deviations
w(n) — wopg(t,) between the weights and the ODE approximation. These fluctuations are
typically of order /7. (Their “square” ¥2(t) is of order 5). In Chapter 2, these fluctuations
are described by the Fokker-Planck equation (2.6). In [8, 44] a Wiener process is derived to
describe these fluctuations. In the next section we will study how these fluctuations affects some
asymptotic error measures.

The last equation (3.17.c) describes a bias w between the mean w and the ODE approx-
imation wope. The dynamics of the bias consists of two driving terms. The first one is the
interaction between the nonlinearity of the learning rule Q and the fluctuations described by X2
This term can be understood in the following way: if a random fluctuation into one direction
in weight space does not result in the same restoring effect as a random fluctuation into the
opposite direction, then random fluctuations will obviously result in a netto bias effect. The
other driving term in (3.17.c) is B [see (3.12.d)]. This term is only due to the dependencies of
the examples. Since the two driving terms are typically of order n, the bias term is also typically
of order 7, and is therefore neglected in regular situations. However in section 3.5 it will be
shown (and this will be supported by simulations) that there are situations where this bias term
is of crucial importance.

As an approximation, the set of coupled equations (3.17.a,b,c) is equally valid as the coupled
set (3.11) and (3.13). However, in (3.17.a,b,c) the hierarchical structure of the approximations
(ODE approximation, fluctuations, bias...) is more clear.

The influence of the example presentation on the evolution of the weight distribution is
twofold. On the one side, dependencies between examples affect the covariance %2 through
the diffusion term D [see (3.14)]. On the other side, they affect the mean value through the
vector B, and indirectly through the covariance 2. For independent examples, D reduces to
Co [see (3.16)] and B = 0 exactly.

Finally we want to stress that the essential assumption for the validity of (3.17) is that the
weights can be described by their average value with small superimposed fluctuations. In other
words, the approximation (3.17) is locally valid. This is the case if the Hessian H is positively
definite. In other cases the approximation is only valid for short times [77]. In the analysis of
the next two sections we tacitly assume this local validity.

24 The Effect of Correlations on the Learning Process

3.4 Representation Error and Prediction Error

In this section we show how dependencies between successive examples influence the asymptotic
performance of the network. In the asymptotic situation, the weights are assumed to remain
concentrated around a minimum w* of the global error F(w). We consider two measures of
network performance: the “representation error” FK,.p and the “prediction error” Fpreq. The
meaning of this terminology slightly differs from its usual meaning in most neural network
literature. The representation error

Frope = Tim_({e(uw(n), 2)),) = lim (B(w(n))) (3.15)
is the expectation of the asymptotic global error F(w(o0)) [cf. (3.4)] made by the network. It is a
useful measure to compare different example presentation techniques if the goal is minimization
of the local cost function e(w,) in an environment given by a probability distribution p(Z). In
the context of time series Epepr measures how well the asymptotic network state is expected to
represent the whole time series. The prediction error

FEpred = nh_)rréo (e(w(n), Z(n))) (3.19)

is the error that the network in its final stage of learning is expected to make on the next
example of the time-series. Fpeq measures the error locally in time, in contrast to the more
global measure Fqp,.
The weights are assumed to be concentrated around a minimum w™ of the global error £ (w).
This implies
VE(w") = 0.
The fluctuations >? and the bias uw = (w(co)) — w* satisfy in lowest order the fixed point

equations of (3.17.b) and (3.17.c)
H(w")¥* + Y*H(w") = nD(w”)
Hw e = —5Q(w’):x? - g B(w")
With the techniques used in the previous section we calculate the two error measures up to

O (n). To obtain the representation error (3.18) we expand F(w) around its minimum w*,

n—oo

Frpe = lim (E(w(n))) = E(w") + %Tr [Hw"?] + ...
= E(w") + gTr D(w)] +

To calculate the prediction error (3.19), we apply a time-averaging procedure similar to the one
used in Section 3.3. Given weight vector w(n) before the first learning step, the local error over
the next M examples is

1 M-1

3.4 Representation Error and Prediction Error 25

For randomized learning, the prediction error and representation error are equal: Fpreq = Erepr =
Fran. Using D(w*) = Cy(w*), we obtain

Fran = E(w®) + ng~ [Co(w™)] + ...

If we compare the representation and prediction error with dependent examples to the error
with independent examples (assuming that the weight distribution is concentrated around the
same minimum w™), we see that, up to order 7, the profit in prediction exactly cancels the loss
in representation and vice versa:

Epred + Erepr
2

In the context of strategies to select examples, this implies that a strategy that yields a larger

= Fran +

prediction error will most likely lead to a smaller representation error. Depending on whether
successive weight changes are, roughly speaking, positively or negatively correlated, the predic-
tion error is smaller or larger than the representation error, respectively. This is nicely illustrated
by the following simple example.

We consider a process where the examples can take two values * = 41 with transition
probability

T(£U|I,) = (1 - Q)(sa:,a:’ + (153:,—3:”
i.e. there is a probability 0 < ¢ < 1 to flip the sign of the input. The stationary distribution
p(z) is given by
p(z) = %(535,_1 + 0pa) - (3.20)

A one-dimensional “weight” w tries to minimize the squared distance between the presented
example and the weight, i.e. the local error is

e(w,z) = %(w —z)? (3.21)
and the corresponding update rule [cf. (3.1) and (3.3)] is
Aw = n(z —w).
The global error F(w) [cf. (3.4)] is obtained by averaging (3.21) over the stationary distribu-
tion (3.20),
E(w) = %(] —111)2 + %(—1 —?1))2 = % + %?112,

and has a minimum F(w*) = 1/2 for w* = 0. To compute the performance measures (3.18)
and (3.19) for our simple unsupervised example as a function of the flip probability ¢, we first
calculate the auto-correlations C,, (w*) [cf. (3.16)] in the minimum w* = 0:

1-2
Cn(0) = (z(m)z(0)), = (1 -2¢)™ and thus Cp = 1 and Cy = 7
Up to O (n) we obtain

1 3¢-1 1
Fpred = = d Erepr = —
pred = 5 Ty M ANG B = 5

For flip probability ¢ < 1/2 we have better prediction than representation, for ¢ > 1/2 better

1—4¢q

representation than prediction (¢ = 1/2 corresponds to randomized learning). This is what we
could expect: the larger the flip probability, the better the overall sampling of the input space
for the problem at hand (finding the average input) and thus the better the representation.
However, the larger the flip probability, the more difficult to predict the next example for the
network that has just been adapted to the current example.

26 The Effect of Correlations on the Learning Process

3.5 Plateaus

In comparing the asymptotic performance of networks trained with dependent and independent
examples in the previous section, we assumed that with small 5, both types of learning lead to
the same (local) minimum of the global error F(w) [see (3.4)]. This is not unreasonable if the
learning process is initiated in the neighborhood of this minimum. A minimum is a stable equi-
librium point of the ODE dynamics (3.9), i.e. the eigenvalues of the Hessian H(w) [see (3.12.¢)]
are strictly positive. In the neighborhood of a minimum, the ODE force F(w) [see (3.8)] is
the dominating factor in the dynamics. Perturbations due to the higher order corrections are
immediately restored by the ODE force.

In this section, however, we will consider so-called “plateaus”. Plateaus are flat spots on
the global-error surface. They are often the cause of the extreme long learning times and/or
the bad convergence results in multilayer perceptron applications with the backpropagation
algorithm [36]. On a plateau, the gradient of F is negligible and H has some positive eigenvalues
but also some zero eigenvalues. Plateaus can be viewed as indifferent equilibrium points of the
ODE dynamics. Even with small n, the higher order terms can make the weight vector move
around in the subspace of eigenvectors of H with zero eigenvalue without being restored by F'.
In other words, in these directions the higher order terms may give a larger contribution to
the dynamics than the ODE term. Since the higher order terms are related to dependencies
between the examples, on plateaus the presentation order of examples might significantly affect
the learning process.

The effect of different example presentations in learning on a plateau will be illustrated by
the following example. We consider the tent map

y(m):?[%—m—%q, 0<2<1,

which we view as a dynamical system producing a chaotic time series z(n + 1) = y(z(n)) [69].
To model this system we use a two-layered perceptron with one input unit, two hidden units
and a linear output,

2
z(w;z) = vo+ Z vgtanh(wgiz + wgo) .
B=1
We train the network with input-output pairs ¥ = {2, y(z)} by on-line backpropagation [67]

Aw = —nVye(w, 7)

with the usual squared error cost function

We compare two types of example presentation. With natural learning, examples are pre-
sented according to the sequence generated by the tent map, i.e.

with z(n + 1) = y(z(n)) (and z(0) randomly drawn from the interval [0,1]). With randomized
learning, at each iteration step an input z is drawn according to the stationary distribution
p(z), i.e. homogeneously from the interval [0, 1], the corresponding output y(z) is computed,
and the pair {z,y(z)} is presented to the network. In both cases we initialize with the same

3.5 Plateaus 27

0.15f

0.1

0.05

n x 10

Figure 3.1 Typical global error E of natural learning (full curve) and of
randomized learning (dashed curve). Simulation performed with a single
network. Learning parameter n = 0.1. Weights initialization: ¢ = 107%.

Data points are plotted every 10* iterations.

small weights, —e < v, wg, < €. Small random weights are often recommended to prevent early
saturation of the weights [47].

As reported earlier [33], simulations show a dramatic difference between the two learning
strategies in their performance learning the tent map (cf. fig 3.1 and fig 3.2). To understand
this difference, we will study the weight dynamics by local linearizations. In the neighborhood
of a point w* in weight space the ODE (3.9) can be approximated by

= F(w*) - H(w")[®(t) — w*]. (3.22)

The weights are initialized at w(0) = O (¢), with ¢ = 0. The linearization (3.22) around

w* = w(® = 0 yields an approximation of the weight dynamics during the initial stage of
learning,
o ! 1 0 0 0 o
_ 1 1 _
o I I I B e B (3.23)
dt W R0 0 0 -3 0 0 w0
Wﬁ] 0 0 —]g 0 0 Wﬁ]

with 8 = 1,2. From (3.23), we see that Ty quickly converges to Ty = 1/2 on a time scale where the
other weights hardly change (cf. fig 3.3). In other words, during this stage the network just learns
the average value of the target function. This is a well-known phenomenon: backpropagation
tends to select the gross structures of its environment first.

After the initial stage, (3.23) does not provide a good approximation any more. The lin-
earization (3.22) of the ODE around the new point w* = w(!) = (’U(()l) =1/2, vél) =0, w/gg =0),

28 The Effect of Correlations on the Learning Process

output

0 0.2 0.4 0.6 0.8 1
input

Figure 3.2 Typical network result after 10% iteration steps of natural

learning (full curve) and randomized learning (dashed curve). The target

function is the tent map (dotted curve). For simulation details, see
caption of fig 3.1.

(with & = 0,1 and § = 1,2), describes the dynamics of the weights during the next stage,

To 1000 Ty — 1
d Wﬁ B 0 0 0O ﬁﬁ
dt | Wgo |~ | 0 0 0 0 W0
wWe1 0 0 0 O Wp1

with 8 = 1,2. At this stage, F = 0, while the Hessian H has one positive eigenvalue (A = 1)
and further only zero eigenvalues. In other words, at w(!) the weights are stuck on a plateau.

To find out whether the weights can escape the plateau, we have to consider the contributions
of the higher n corrections to the weight dynamics (3.11) and (3.13). Linearization of this set
of equations around w() yields

0~ Hw)fw() - w)

- 5 {Q@™) + va@)@ - w2

—n{B(w") + VB(w")[w@(t) - w]} (3.24)
dE;t(t) - _ H(’w(l))22(t) _ 22(t)H(w(1)) + nD(w(l))) (3.25)

At w| the (vo,vo) component is the only nonzero component for both the Hessian H and
the diffusion D (for randomized learning as well as for natural learning). From (3.25), it thus
follows that EZO’UO is the only nonzero component of the covariance matrix. So only in in this
direction there will be fluctuations. However these the fluctuations will be restored, due to the

3.5 Plateaus 29

positive (vg,vy) component of the Hessian. Moreover, since Q(w"))y uow [see (3.12.b)] and
its derivatives vanish for all w, the covariance matrix %% does not couple with the (linearized)
weight dynamics, and (3.24) reduces to the autonomous equation

T~ Haw)a(r) — w] —p {Bao) + VB) fa(r) —]}
With natural learning, straightforward calculations yield B(w®) = 0 and

V B(wM) = 0, except for the components

1

Vb’u;g’ug = ﬁ? vagwgl

Vb

= _87 waivg — Ea
1 1

wa/glwr@o - ma wa[ﬂwm - m

with 3 = 1,2. Concentrating on the dynamics of Tg, and Wg;, we thus obtain the linear system

d T 1 12 T
dt W 216 \ 12 1 Wa

with 8 = 1,2. This system has one negative eigenvalue A_ and one positive eigenvalue A = n%.

Along the direction of the eigenvector (1,—1) corresponding to the positive eigenvalue, the
weights will move away from w(!) (cf. fig 3.3). Thus, natural learning escapes from the plateau,
and reaches the global minimum (cf. fig 3.1 and fig 3.2). On the other hand, for randomized
learning B = 0 identically. This means that the weights of a randomized learning network are
not helped by the higher 5 corrections and therefore cannot escape the plateau (cf. fig 3.1 and
fig 3.2).

Figure 3.3 shows that the predictions computed with the theory agree well with the simula-
tions of the neural network learning the tent map, and therefore we conclude that the difference
in performance of the two learning strategies is well explained by the theory.

The analysis of this section - supported by the simulations - shows that if the learning process
suffers from a plateau, then dependencies can help learning by a nonzero B term (3.12.d) with
some positive eigenvalues. Of course, the magnitude of these eigenvalues and the direction of
the corresponding eigenvectors depends strongly on the problem at hand, i.e. B is probably not
for every problem directed towards a global minimum. But the fact remains that a nonzero B
term can make the weights move away from the plateau, which facilitates an escape, resulting
in a lower error. On the other hand, if a nonzero B does not make the weights wander away,
or if it does not lead to an escape, the performance of dependent learning is probably still not
worse than the performance of randomized learning, which also would get stuck on the plateau.

Another situation occurs if randomized learning does escape from the plateau, e.g. as a result
of the fluctuations. In such a case dependent pattern presentation probably does not harm either
- gince similar fluctuations would also enhance escaping from the plateau with dependent patterns
- unless the presentation order reduces the fluctuations too much! For instance, in the example
of section 3.4 the fluctuations are reduced if the examples are negatively correlated (¢ > 1/2).
As a more realistic example consider a problem with a fixed training set of P examples. A
commonly used incremental learning strategy presents in each epoch of P learning steps each
example only once [25]. In other words, the patterns are arranged in a randomly ordered sequence
[Z(1),...,Z(P)]. Itis obvious that this sequence-based or cyclic learning introduces dependencies
between the examples. Moreover, the subsequent examples are negatively correlated. This
follows from the fact that the probability to find identical subsequent examples is on average at

30 The Effect of Correlations on the Learning Process

Vo
0.15
60 0.5 M 61
0.1
0f 1 0.05
0
-0.5
-0.05
0 5000 n 10000 0 5000 10000
n
0.15
Wi
0.1
0.05
oF
-0.05 0.1
0 5000 10000 0 5000 10000
n n

Figure 3.3 Weights obtained by simulations for natural learning (solid
curves) and randomized learning (dashed curves) as functions of the
number of iterations. Averaged over 100 iterations and an ensemble
of 20 networks. The theoretical predictions computed with (3.26) are
plotted as dotted curves.

least order P smaller in cyclic learning than in randomized learning. Indeed, it can be shown
analytically that the leading term of the fluctuations completely vanishes in cyclic learning [32].
As a consequence randomized learning has a much larger chance to escape from a plateau than
cyclic learning.

In conclusion, we recommend natural learning (with positive correlations) if the problem at
hand suffers from a plateau. However, artificial dependencies introduced to reduce fluctuations
are in such a case not advisable.

3.6 Summary and Discussion

This paper presents a quantitative analysis for on-line learning with dependent examples in a
very general form. The analysis is based on two essential ingredients. One is the separation
between the time scales of the example presentation and the weight dynamics. On the time
scale needed for a representative sampling of the environment the weight changes must be
negligible. A separation of time scales, which can be achieved using a small learning parameter, is
essential in on-line learning to prevent over-specialization on single examples. The other essential
ingredient is the assumption that the weights can be described by their average value with small
superimposed fluctuations. In other words, the theory is locally valid, and may therefore not
be suited for quantitative computations of global properties of the learning process, such as the

3.6 Summary and Discussion 31

stationary distribution of weights or the escape time out of a local minimum. However, even
a local theory can be useful to understand some aspects of global properties [17]. Our study
of learning on plateaus is an example of a local analysis of on-line learning which accounts for
huge, non-local effects (section 3.5).

In section 3.3 we heuristically derived the first terms in a hierarchy of deterministic differential
equations approximating the stochastic learning process. The leading term, the ODE term, only
contains information of the stationary distribution of the examples. Dependencies between
successive examples do not enter until the first correction to the ODE term. This implies that in
general, when the ODE term is dominant, learning with dependent examples and learning with
randomized examples are alike. The dependencies between examples merely act as corrections
on the learning process, both in the fluctuations and in the bias. A rigorous derivation of the
leading term, the ODE term, and of the Wiener process describing the fluctuations, can be found
in [8, 44]. To our knowledge, a rigorous derivation of higher order terms, such as the bias term
in (3.17.c) has not been studied before.

In section 3.4 we focussed on the asymptotic convergence of the learning process in terms of
representation error and prediction error. The representation error is the expected average error
of the network with respect to the whole environment. It measures how well the environment
is represented by the network after learning. The prediction error is the network’s expected
average error with respect to the next presented example. It can be viewed as a measure for
the irregularity of the example presentation. A remarkable relation between representation and
prediction error is that the more predictable the examples, the larger the representation error.

In section 3.5 we studied on-line learning with a plateau. Plateaus are flat spots on the
error surface which can severely slow down the learning process. In particular, backpropagation
for multilayer perceptrons often suffers from plateaus. On a plateau the ODE contribution
vanishes. The higher order terms, which contain the dependencies, therefore dominate the
learning process. Simulations of a multilayer perceptron with backpropagation learning the
tent map demonstrate that dependencies between successive examples can dramatically improve
the final learning result. This phenomenon is explained by our analysis, which evidences that
randomized learning gets stuck on a plateau, whereas the dependencies in natural learning
cause the escape from the plateau. Predictions computed with the theory agree well with the
simulations. At the end of this section we motivated our conjecture that if backpropagation
suffers from plateaus then dependencies (with positive correlations) in example presentation can
be helpful, and at least will not do any harm.

For convenience, the paper has been restricted to learning with a constant learning parameter
in a stationary environment, i.e. the transition probability 7(Z|Z’') between successive examples
is independent of time. The theory can be extended straightforwardly to learning with time-
dependent learning parameters n(t) in a changing environment [8, 30], i.e. with a time-dependent
transition probability 7(Z|2";t), as long as the time scales of the learning parameter and the
changing environment are large compared to the time scale of the learning process, and as long
as this last time scale remains large compared to the time scale of the example presentation. As
a consequence, time-dependent example selection techniques [54, 10, 49], possibly combined with
a time-dependent learning parameter, may be devised and evaluated analytically. For instance,
one can think of a scheme starting with dependencies designed to avoid plateaus and continuing
in a later stage with dependencies designed for the fine tuning around minima. Perhaps such
schemes will relate to common sense, like the pedagogical idea that the presentation of examples
should start simple and gradually increase its complexity.

In fact, as long as the three previously mentioned time scales remain separated, the theory
may also include weight-dependent transition probabilities 7(Z|Z";w,t) [8]. The vector & does
not neccessarily represent an example. It may have components describing other fast variables.

32 The Effect of Correlations on the Learning Process

For instance, in the next chapter we use fast variables to study learning with momentum,
where the adaptation rule does not satisfy (3.1). Other obvious candidates for fast variables in
neural network theory may be rapidly changing neuron states in recurrent networks. T'hus, our
framework may be applied to the analysis of the joint dynamics of neurons and weights [61].
In conclusion, the techniques for the local approximation of stochastic processes with separate
time scales prove to be powerful tools for the analysis of on-line learning in neural networks.

Acknowledgments

We thank the referees for their useful suggestions.

Chapter 4

On-Line Learning with a Momentum
Term

Abstract

We study on-line learning with momentum term for nonlinear learning rules. Through in-
troduction of auxiliary variables, we show that the learning process can be described by a
Markov process.

For small learning parameters 7 and momentum parameters « close to 1, such that v = n/(1—
@)? is finite, the time scales for the evolution of the weights and the auxiliary variables are
the same. In this case Van Kampen’s expansion can be applied in a straightforward manner.
We obtain evolution equations for the average network state and the fluctuations around this
average. These evolution equations depend (after rescaling of time and fluctuations) only on
7v: all combinations (1, a) with the same value of v give rise to similar behavior.

The case a constant and 5 small requires a completely different analysis. There are two
different time scales: a fast time scale on which the auxiliary variables equilibrate and a
slow time scale for the change of the weights. By projection on the space of slow variables
the fast variables can be eliminated. We find that for small learning parameters n and
finite momentum parameters a learning with momentum is equivalent to learning without
momentum term with rescaled learning parameter 7 = n/(1 — «).

Simulations with the nonlinear Oja learning rule confirm the theoretical results.

Adapted from: W. Wiegerinck, A. Komoda and T. Heskes. Stochastic dynamics of learning with momentum
in neural networks, Journal of Physics A, 27: 4425-4437, 1994.

34 On-Line Learning with a Momentum Term

4.1 Introduction

4.1.1 Background

On-line learning stands for learning in artificial neural networks where a weight change takes
place each time a training pattern z is drawn at random from the total training set and is
presented to the network. This weight change can be written in the general form

Aw(n) = win+1) —w(n) = 1 flw(n),), (1.1)

with w(n) the network state at iteration step n, 5 the so-called learning parameter, and f(-,-) the
learning rule. Because of the random presentation of patterns z, on-line learning as described
by (4.1) is a stochastic process. The probability to be in a certain network state w can be shown
to obey a master equation. In recent years, theoretical studies of this master equation have
provided a better understanding of on-line learning processes [64, 29, 63, 24, 31, 28].

When the last weight change is added to the learning rule (4.1), the weight change takes the
form

Aw(n) = n f(w(n),z) + a« Aw(n-1), (4.2)

with « the so-called momentum parameter. Equation (4.2) describes on-line learning with
momentum term. The incorporation of this momentum term is frequently applied to backprop-
agation [68] with the intention to speed up learning with essentially no increase in computational
complexity (see e.g. [27] for references). The backpropagation learning rule, like most learning
rules in neural network literature, is nonlinear in the weights w. Theoretical studies, however,
have been mainly focussing on the linear LMS algorithm with momentum updating [71, 72]. In
this paper we will consider the effect of the momentum term on general nonlinear learning rules
and ask ourselves whether incorporation of the momentum term leads to an improvement of the
performance of on-line learning rules.

4.1.2 Framework

Equation (4.2) describes a second-order process. It can be turned into a (first order) Markov
process through the introduction of the auxiliary variable p(n) = Aw(n — 1):

{ Au() = 7 f(w(m),) + au)
Apl) = 0 f(w(n),2) + (a—1) pla)
With definitions ¢ = (1 — @)u/n, e =1 — «, and v = /(1 — @)?, we can rewrite this to

{Aw — Ye[(1=q + < f(w,2)]
Ag = c[f(wa) - q.

We are interested in the evolution of the probability P(w,q,t) for the system to be in state
(w, q) at time t. With Poisson-distributed time intervals between succeeding learning steps, this
probability P(w,q,t) obeys the master equation [7, 29]

(4.3)

W = /dw' dq' [T(w,q|w',¢") P(w',¢,t) — T(w' ¢ |w,q) P(w,q,t)], (4.4)

with transition probability
T(w.qlw,q) = (S(w—w' —y(1-q+ e [(w,2)])
x 8(g—q —[f(w',a) = q1))

4.2 Equal time scales 35

where (-), denotes an average over the set © of training patterns. Averages with respect to the
probability density P(w,m,t) will be indicated by (-)z or, more explicitly, by (-)E(t). The master
equation (4.4) is the starting point of the theoretical analysis presented in this paper. For nota-
tional convenience we treat the weight vector w as a one-dimensional variable. Generalization

to higher dimensions is straightforward and has no influence on the basic ideas presented in this
paper.

4.1.3 Outline

In section 2 we will study the system (4.3) for finite v in the limit of very small ¢, i.e., for
small learning parameters 7 and momentum parameters « close to 1. In this case the time
scales of the equations for the weight w and the auxiliary variable ¢ are of the same order. We
can immediately apply Van Kampen’s expansion [77] to the master equation (4.4) and obtain
evolution equations for the average weight w and the fluctuations around this average.

The situation e finite and v small, which corresponds to finite momentum parameters a (not
close to 1) and (again) small learning parameters 5, will be considered in section 3. Now the
evolution of the auxiliary variable ¢ takes place on a much faster time scale than the evolution of
the weight w. Through projection of the master equation (4.4) on the “slow” space of the weight
w, the fast variable ¢ can be eliminated, resulting again in (approximate) evolution equations
for the weight w.

In section 4 we check our theoretical results with simulations of the nonlinear Oja learning
rule [55]. The main results are summarised and discussed in section 5.

4.2 Equal time scales

4.2.1 Van Kampen’s expansion

In this section we will study the two-dimensional system (4.3) for small values of ¢ and finite
values of v, i.e., in the limits — 0 and @ — 1 with a constant ratio ¥ = /(1 —«)?. The master
equation (4.4) can be approximated for small parameters ¢ using Van Kampen’s expansion.
Basically (see [77, 31, 28] for a more detailed description of Van Kampen’s expansion), this
expansion is based on the assumption that the stochastic process (4.3) can be viewed as a
deterministic trajectory with (small) superimposed fluctuations of order /€. Starting from the
Ansétze
w=¢+ V& and ¢ =9+ Vex,

Van Kampen’s expansion yields evolution equations for the deterministic variables ¢ and %, and
for the average and (co)variance of the noise terms & and y.

After rescaling time with ye (we define a new time 7 = vet), we obtain the deterministic
equations

¢ = 9
7¢ = f1(¢)_¢a

with drift fi(¢), the first moment of the learning rule f(¢,z). For later purposes we give the
general definition of the k-th jump moment:

fe(@) = (FH (@) - (4.6)

The evolution of the averages of the noise terms follows

_i<%>:_4 «%)
VW(m: AN o2)

(4.5)

36 On-Line Learning with a Momentum Term

with

A¢) = (’ _7) : (4.7)
~fi(¢) 1

where the prime denotes differentiation of the function with respect to its argument. All learning
networks are initialized at the same weight configuration, i.e., w(0) = ¢(0) for all networks in
the ensemble =Z. This immediately implies (§)z) = (X)z(;y = 0 for all later times ¢. From (4.5)
we then derive that the average network state (w)z = ¢ obeys the second-order differential
equation

vé+ b — fi(¢) = 0.
The evolution of the covariance matrix

52 — (<§2>E <§X>
€)=)
YN = SA(9)X YA + D(o,v), (18)

[1]

[1]
[1]

is governed by

with diffusion matrix
v v [Hi(8) — ¢)
YA — ¢ fo(d) — 290 fi(d) + ¥7)

The a priori Ansatz in Van Kampen’s expansion is that the noise terms & and y are of order 1.
From (4.7) and (4.8), we see that this is valid for short times ¢ and in regions of weight space
where the real parts of the eigenvalues of the matrix A(¢) are positive, i.e., where f](¢) < 0.
The same conditions hold for the validity of Van Kampen’s expansion of the plain learning
process (4.1) [31, 28].

D(¢,¢) = (

4.2.2 Scaling properties

Let us take a closer look at the evolution equations for the average network state and the
fluctuations around this average. With definitions

I e _ 1 — /.2
01 = ;<€ >E’ 02 = ;<€X>E) and o3 = <X >E’
the evolution equations (4.5) and (4.8) can be rewritten to
$-¢ =0
fig) =9 = v¢
6y — 20y — P° = 0 (4.9)

fil@)or = o2 + 05 + P [fi(d) — Y] = 72

=205 + f2(¢) = 29 fi(¢) + ¥* = vd3 — 27 fi(d) o2
In this set of coupled differential equations, v is the only remaining parameter. Suppose we know,
through calculations or simulations, ¢(7) and oy(7) for a particular value of v = n/(1 — a)*.

Then for all combinations (7, &) with this particular v, the average weight and fluctuations at
time ¢ follow from (recall our definitions of time 7 and variance o)

(W)z = #(it) and (w'=(w)?)_ = qja(@n), (4.10)

4.3 Different time scales 37

with “rescaled learning parameter” 77 = n/(1 —). This rescaled learning parameter regulates
the trade-off between speed and accuracy: a twice as large rescaled learning parameter leads to
a twice as fast time scale, but also doubles the fluctuations in the weights. In section 4 we will
describe simulations with the nonlinear Qja learning rule to check these scaling properties.

For small 4 we can further simplify the set of equations (4.9). There are two different time
scales: a slow time scale for the evolution of ¢ and o1 and a fast time scale for the evolution of
¥, o9 and o3. If we neglect all terms of order v, we can eliminate the fast variables v, o5 and

o3 and obtain .
{ $ = hi(9) @11)

o1 = 2fi(9)or + fa(d).
The same set of equations is obtained if Van Kampen’s expansion is applied to the plain learning
rule (4.1) with rescaled learning parameter 77 = /(1 — @) (see e.g. [31, 28]). Similar results have
been reported in earlier studies on linear learning rules [71, 72, 59]. In the next section we
will generalize these results to nonlinear learning rules for any finite value of the momentum
parameter «, i.e., not close to 1. There we will go the other way around: first we will have to
eliminate the fast variable ¢ and only then we can apply Van Kampen’s expansion.

4.3 Different time scales

4.3.1 Perturbation theory

In this section we will study the master equation (4.4) for small values of v and finite values
of ¢, i.e., for small learning parameters 7 and momentum parameters « not close to 1. In
these limits, we cannot approximate the master equation by Van Kampen’s expansion as in
section 2. However, as the results for v < 1 obtained in the previous section suggest, there
are two different time scales in the master equation. In the long time limit, we can try to
eliminate the fast variable ¢ and then obtain (a series expansion of) an evolution equation for
P(w,t) = [dq P(w,q,t). Our approach is very loosely based on the “adiabatic elimination of
fast variables” in the theory of stochastic processes [23, 18].
Our starting point is the Kramers-Moyal expansion with respect to w’

aP(wa%t) _ {i (_’)/6)71
!

ot n ;j:n /dq' <(ef(w,a;) + (1=)"

n=0

x 6 (q—{ef(w,2)+(1- e)q’})>Q P(w,q’,t)} — P(w,q,1), (4.12)

which is a completely equivalent representation of the master equation (4.4) (see e.g. [77, 18]).
From this Kramers-Moyal expansion we will derive evolution equations for the moments

Qk(w,t)z/dqqu(w,q,t), k=0,..., 00.
Note that the moment vector Q(w, t) is just a different representation of the probability distri-
bution P(w,q,t) and that Qo(w,t) = P(w,t). Multiplying (4.12) by ¢* and integrating over ¢
yields (recall our definitions e =1 — o and 7 = /(1 — «)).

ot

w O (_ipm gn n+k n .
oy Ly (M) - 0 i ol

n=0 =0

—Qr(w,1), (4.13)

38 On-Line Learning with a Momentum Term

with the jump moments fi(w) defined in (4.6). We can write equation (4.13) as a formal
evolution equation (for notational convenience we suppress the w and ¢ dependence):

0 -~

—Q =HQ 4.14
26 -na (4.14)

with -
"= i"H", (4.15)

n=0

in which the matrices #(") are defined component wise by the operators
(1) om T _ A A
Hz(;) = ! dw” ZZ: / (1 - a)n-H lfn-l-i—lalolj - 571002']'7 (416)
=0

for 1,7 =0,1,...,00. The fact that the operator # can be written as a series in the small pa-

rameter 7j [equation (4.15)] gives us the possibility to treat the system (4.14) using perturbation
theory.
Let us first consider the unperturbed (7 = 0) system

0 - -
~0=HO
8tQ HYQ . (4.17)
From the triangular form of H(©), we immediately find its degenerate eigenvalues

)\,(io):—(l—oz“), k=0,1,...00.
(0) (0)

We define ‘/,.50) as the subspaces of eigenvectors with eigenvalue Ay, and Ps "’ as the orthogonal
projectors (i.e., P,(;O)P;(LO) = 5HMP£O)) on the subspaces VH(O). These projectors commute with
HO) e,

PO O = 3OpO) = _(1 —)P (4.18)

The projection [PEO)Q‘](w,t) is called a “mode.” From (4.18) it follows that the evolution of a
mode is governed by

B . . .
5 [PAQ) = HOPIQ] = — (1 — o) [PL].

Since the modes are independent, the solution of the unperturbed system (4.17) is the sum of
the solution of the modes:

Glw,1) = 3 0= 1POG) (w,0)
x=0

The modes with x # 0 will rapidly relax to equilibrium. We call these modes the fast modes.
For large £, only the slow mode, i.e., the one with & = 0, will remain. We write P(©) as the
projector on the slow mode, i.e., P(0) = 77,50:)0. Consequently, the projector on the fast modes is

1 — P, So, for large ¢ the fast modes will be equilibrated,
[1 _ 7)(0)} d=0, (4.19)

and only the dynamics on the slow mode remains:

%pm)@ — HOPOG (4.20)

4.3 Different time scales 39

It is illustrative to see how we can arrive at an evolution equation for P(w,t) from equa-
tion (4.20) using properties of the projector P(°)(w) and the operator #(w). Tn the appendix it
is shown that the projector P(O)(w) has components

P (w) = vi(w)do;
where the vector #i(w) obeys H(®) (w)#(w) = 0 and vo(w) = 1. Using the constraint (4.19), we
can express all components Qr(w,t) in terms of the zeroth component Qo(w,t): Qr(w,t) =
vi(w)Qo(w,t). This corresponds to elimination of the fast variable ¢ and can be compared with
the elimination of the variables 9, o4, and o3 in equation (4.9). Equation (4.20) now reduces to
an equation for Qo(w,t) = P(w,t) only:

%P(w,t) =0.

This equation makes the rather trivial statement that in the unperturbed system (7 = 0) no
learning takes place.

For the perturbed system (4.14) we follow the same line of reasoning as for the unperturbed
system (4.17). The starting point of perturbation theory is the assumption that the eigenvalues
and eigenvectors of the perturbed system can be written as an expansion in the perturbation
parameter 7. We define V,, as the subspaces spanned by the eigenvectors corresponding to
eigenvalues of which the unperturbed value is)\,(.;0), and P, as the orthogonal projectors on these
subspaces V. Asin the unperturbed case, we decompose the perturbed system into modes.

The eigenvalues with K = 0 are of order 7, whereas the eigenvalues with x # 0 are equal to
—(1 — ") plus terms of order 7. So, if 7 € 1 — «, the eigenvalues with x = 0 are much smaller
in absolute value than the eigenvalues with £ # 0, and we can still distinguish the slow mode
from the fast modes. Again, we use the abbreviation P = P,— for the projector on the slow
mode. For large ¢, the fast modes will be equilibrated, i.e.,

1-Pg=0, (4.21)

and only the dynamics on the slow mode remains:

QPQ = HPQ . (4.22)
ot
Due to the constraint (4.21), all the components @y of Cj are determined once (g is known.
In other words, we can use the constraint (4.21) to derive a dynamical equation for Qo(w,t) =
P(w,t) from equation (4.22). In this way, the fast variable ¢ is eliminated from the master
equation.

Since the operator is only known in the form of a series expansion, the best we can achieve
is a series expansion of the evolution equation for ()¢ in powers of 7. In order to obtain this series
expansion we only have to consider one of the components of (4.22). The zeroth component

9 - -
5 (PQ)o = (HPQ)s

is the most obvious choice. The unknown quantities in this equation are both Cj and the projector
P. Writing P as a series

P=3 Pt (4.23)
n=0

40 On-Line Learning with a Momentum Term

we can subtract the desired components of P(") from the properties P? = P and HP = PH.
Using (4.21) and (4.23) we can then express the components Q5 with & # 0 in terms of the
zeroth component)y and derive an evolution equation for (o = P to arbitrary order in 7. In
appendix 4.A it is shown that this expansion yields

2 Plwyt) = i Fow) P14+ 0) P,
8t w,t) = naw 1w w,l 2 8'11]2 2l W w,t
o | 02 13} J N
7 | 5 1 (0) P, 1) = = fi () 7=y (w) Plw,)| 4+ O(F)

(4.24)

4.3.2 Van Kampen’s expansion

To study (4.24) in the limit 7 — 0, we apply Van Kampen’s expansion [77]. We start with the
Ansatz

w = 6(r) + VK, (4.25)

where 7 = 7t and ¢(7) is a function to be determined (compare with section 2.1). Note that the
constraint (4.21) and thus the evolution equation (4.24) are valid for times t = O(1/7), i.e., for
7 = (O(1). The function I1(¢,) is the probability P in terms of the new variable (:

(¢, m) = P(é(r) + V¢, 7/i) -

From Van Kampen’s expansion it immediately follows that the deterministic part ¢(7) has to
satisfy the equation

d
0 fel) (4.26)
and that the evolution of IT((, 7) is governed by the Fokker-Planck equation
o1 (¢, , 0 1 0?
DT — 1 (6(m) S G T) 4 560 g 161 7) (127

The solution of the Fokker-Planck equation (4.27) is a Gaussian, so it suffices to determine
the first and the second moments of (:

L=~ fom) -

Uz api(or) (), + £(6(r) 4.28)

From these equations, we see that the fluctuations ¢ are bounded if
fi(é(7)) < 0. If f satisfies this condition, the Ansatz (4.25) is a posteriori justified. On the
other hand, in case of non-negative fj(¢(7)), the fluctuations grow in time and the expansion
need not to be valid. As in section 2.1, this condition on f does not depend on «. Note further
that (¢*)z = oy, the variance defined in section 2.2: the equations (4.26) and (4.28) are exactly
equal to the set (4.11) which we derived in the limits a — 1 and v = /(1 — @)* = 0.

Direct application of Van Kampen’s expansion to learning equations without momentum [31,
28] leads to the equations (4.26) and (4.27) with 7 = 5 substituted. In the first place, this result
is a verification of our analysis, since learning without momentum is learning with o = 0 and
77 = 1. In the second place, the result shows that for learning parameters n < (1 — a)?, from the
point of view of the Fokker-Planck approximation, learning with momentum term is equivalent
to learning without momentum term with rescaled learning parameter 7.

4.4 Simulations 41

4.4 Simulations

To illustrate the analytical results of the previous sections, we simulate the process of on-line
learning with a momentum term for the nonlinear learning rule of Oja [55] in two dimensions

Aw(n) = 5 (z"wn)) [z — (z"w(n)) w(n)] + cAw(n —1).

Oja’s rule searches for the principal component of the input correlation matrix (2 27)q. Inputs
x are drawn at random from a rectangle centered at the origin, with sides of length 2 and 1
along the x1- and zq-axis, respectively. Simulations are performed with an ensemble of 100 000
independently learning networks. The networks in the ensemble are asynchronously updated.
This means that at each step only one, randomly chosen network in the ensemble is updated.
Hence, for a single network in the ensemble, the time intervals between updates are binomially
distributed. For a large ensemble this distribution approaches a Poisson distribution [15]. The
time scale ¢ is such that there is on the average one learning step per unit of time for each network
in the ensemble. All networks are initialized at the weight configuration w(0) = (0.3,0.3)7.
Since the principal component of the input correlation matrix lies along the longest side of the
rectangle, the weights wy and wy tend to 1 and 0, respectively. In figures 4.1 and 4.2 we plot
the evolutions of the average weights <w>5(t) and of the trace of the covariance matrix

2

(1) = 3 ((wi = (wi)z()?)

=1

E(?)

for various values of « and 7.

In section 4.2 we derived that, for small learning parameters n and momentum parameters
« close to 1, all combinations (7,) with the same value of v = n/(1 — «)? give rise to similar
behavior. We verify this scaling property in figure 4.1. In each graph we keep vy constant
(y = 0.1, 1, and 5 for figure 4.1(a), (b), and (c), respectively) and present curves for different
values of o (v = 0.9, 0.8, and 0.6 for solid, dashed, and dash-dotted lines, respectively). Time
and variance are rescaled with 7, i.e., we plot

¢(r) = (w)g(ryzy and oi(r) = o*(r/)/7

as functions of the rescaled time 7 [compare with equation (4.10)]. Curves with equal v are
almost overlapping, except for the quite extreme values @ = 0.6 and 7 = 0.8 [dash-dotted lines
in figure 4.1(c)]: the simulation results are in perfect agreement with the scaling properties
derived in section 4.2.

In section 4.3 we considered the case n < (1—«)?, i.e., ¥ < 1, and showed that combinations
(n,) are equivalent to combinations (7, 0). This claim is verified in figure 4.2. In figures 4.2(a)
and (b) the rescaled learning parameter 7 is kept constant (7 = 0.01 and 0.1, respectively), thus
there is no need to rescale time and variance. Each graph shows curves with different values of «
(v =0, 0.5, and 0.9 for solid, dashed, and dash-dotted lines, respectively), i.e., different values of
~v. Curves inside each graph are almost overlapping, even when the values of v differ by a factor
10 in magnitude [solid and dash-dotted line in figure 4.2(a)]. The exception is the dashed-dotted
line in figure 4.2(b) where v = 1 is not small enough for our analysis to be valid. We conclude
that these simulation results agree very well with the analytical results of section 4.3.

4.5 Discussion

In this paper we studied nonlinear on-line learning rules with momentum term for small learn-
ing parameters 1. We considered two cases: momentum parameters « close to 1, and finite

42 On-Line Learning with a Momentum Term

é | 0101
0.5 (a)
0.05
0
0
0 5 10 15 20 0 5 10 15 20
T T
/=N
/)
/f
0 5 10 15 20 0 5 10 15 20
T T
01 0.1 -
(©
0.05
7
7
oles
0 5 10 15 20 0 5 10 15 20
T T

Figure 4.1 QOja learning with momentum updating. Means ¢ and
rescaled sum of variances o as a function of rescaled time 7. All 100000
networks start from w = (0.3,0.3)7. Momentum parameter a = 0.9
for the solid li nes, a = 0.8 for the dashed lines, and a = 0.6 for the
dash-dotted line s. (a) v =0.1; (b) vy =1; (c) v = 5.

momentum parameters «. In the first case we took the limits » — 0 and a — 1, keeping
v =1n/(1 — a)? constant. Using Van Kampen’s expansion we arrived at evolution equations for
the average weight vector and the fluctuations around this average. These evolution equations
depend (after proper rescaling of time and size of fluctuations) only on this parameter v. In the
second case we kept « constant and again took the limit — 0. We arrived at the conclusion
that learning with learning parameter and momentum parameter « is equivalent to learning
with rescaled learning parameter 7 = 17/(1 —). Note that exactly the same conclusion follows
from the first case in the limit ¥ — 0. Thus, the analysis of the second case shows that the set
of equations (4.9) resulting from the first case can be used not only for momentum parameters
« close to 1, but also for more general values of a.

We tried to answer the question whether incorporation of the momentum parameter really
improves the performance of general on-line learning rules. For learning parameters n < (1—a)?,
we found that the effect of the momentum term is nothing but a rescaling of the learning
parameter. For practical applications, this result is quite disappointing, but in agreement with
the notion that the momentum term is hardly ever used in combination with on-line learning
rules. The important exception is backpropagation. Indeed, it can be argued that incorporation
of the momentum term is helpful for batch-mode backpropagation (see e.g. [71, 72, 60]), but
neither these arguments, nor the results presented in this paper can explain the popularity of
on-line backpropagation with momentum updating. There might be several reasons for this.
Our analysis holds only for small learning parameters and in regions of weight space in the
vicinity of local minima, so, it could be that our analysis is too restricted. Another option is that
the momentum term only helps if the momentum parameter v and learning parameter 7 are

4 Appendix 43

-3

x 10
1 o?
\
<w>E 1 \
\
05 (a) i
I
05| |
I
0
0
0 500 1000 t1500 2000 0 500 1000 t1500 2000
0'2 -
\
N\
0.01 AN
\
I/ N
NN
0.005f |/
/
I
| /
/
O /.
0 50 100 150 200 0 50 100 150 200
t t

Figure 4.2 Oja learning with momentum updating. Means (w)< and
sum of variances ¢? as functions of time t. All 100 000 networks start
from w = (0.3,0.3)7. Momentum parameter a = (for the solid line s,
a = 0.5 for the dashed lines, and @ = 0.9 for the dash-dotted line s.
(a) 7 =0.01; (b) 7 =0.1.

chosen such that v = /(1 —a)? = O(1). Analysis of the evolution equations for linear learning
rules, that can be solved for any finite value of a and 7 and are valid in the whole weight space,
do not show any significant improvement of on-line learning with momentum term if compared
to learning without momentum term (unpublished results). For stronger evidence we will have
to come up with a more general analysis of nonlinear learning with momentum updating and/or
to work towards a better understanding of the nonlinear set of equations (4.9). At this point, we
tend to the conclusion that the popularity of the momentum term in combination with on-line
backpropagation cannot be explained in mathematical terms, but perhaps better in psychological
terms: on-line backpropagators are afraid to choose a large learning parameter themselves.

Acknowledgments

This work was partly supported by a grant (P41RR05969) from the National Institutes of Health
(TH). We thank Karin Krommenhoek and Bert Kappen for stimulating discussions.

4 Appendix

4.A Elimination of fast variables

In this appendix, we will show how to derive the evolution equation (4.24) for P(w,t), starting
from the evolution equation (4.14) for the moment vector Q(w,t). Since we are interested in

44 On-Line Learning with a Momentum Term

P(w,t) = Qo(w,t), we consider the zeroth component of

5, (PQ)o = (HPQ)y (4.A.1)

under the constraints

(1-P)@=0. (4.A.2)

The operator H is defined in (4.15) and (4.16) and the projector P is written as a series expansion
n (4.23). The unknown factors in (4.A.1) and (4.A.2) are not only the elements of the vector
é, but also the components of the corrections P of the projector. The latter ones will be
deduced from the relations P2 = P and HP = PH.

We expand both sides of (4.A.1) to the two lowest orders in 7:

8t Z {POJ + 777’3] +0(i }QJ

S {HHOPO), + FHOPO, + HOPO),} + 06} Q.
7=0
(4.A.3)

where we used that 7{(()2-) = 0 V;. Note that there is a global scale factor 7 on the right hand
side. This global scale factor will later be incorporated in a rescaled time. From (4.16) it follows
that only the first (n 4 1)-th components of the zeroth row of (™) can be nonzero. Therefore

we only need to calculate the first two rows Pé}) and 731(;-), and the first three rows Pé?), 791(?)
(0)
and Py;”.

First, we calculate the components of the unperturbed projector P(®). Using
[pm)r _ plo) and P0)7/(0) — 2/(0)p(0) —

we find that P(©) has components
7?2-(](-)) = v7;5j0

where 7' is the vector satisfying HOF = 0, with the function-valued components

Vg = 1,
v o= fi,
v = (1-a)fe+2aff)/(1+a),

Now we consider the first correction P(1). From P? = P, the first correction P(1) should
satisfy
p) = pO)p() L p)p0)

For the components of P(1) this implies

= Z 772.(]3)%5]'0 + vﬂ)é;))
k=0

which, after some rewriting, yields

Z mPé,lc)Uk =0 and 732.(;) = Uﬂ?é;) for j £0. (4.A.4)

4 Appendix 45

Since P commutes with 7, P() should also obey
HO PO 4 3 Op0) = py () 4 pgy () (4.A.5)

Using the explicit forms of H(®), #(1) and P©), we deduce from (4.A.4) and (4.A.5) that

1 _
Poo™ = 1-a awf] '
o _ __« 0
Po’ = 1—adw’
Pé,lc) =0 for k>2,
1 1 —}— « 1 d
Py = fl f mﬁ_w (1—04)f2—204f12}7
(1 _
Pll - (1 — Ot) fl
Pl(llc) = 0 fork > 2. (4.A.6)

The constraint (4.A.2) gives the relation between the zeroth and the first component of Q:

Q1= fiQu+ O(7) . (4.A.7)

Substitution of the expansions (4.16), (4.A.6) and (4.A.7) for the operator H, the projector P
and the moment vector @), respectively, into the evolution equation (4.A.1) finally leads to

o [.0 7?2 92 a [02 , 9,0 »
aQO‘{‘"aﬁfﬁ?awzm !t~ guh et P+ O

11—«

which, after substitution of Qo(w,t) = P(w,t), is the desired result (4.24).

Chapter 5

The Connections of Large
Perceptrons

Abstract

We derive analytical expressions for the connections of large perceptrons, by studying the
fixed points of the perceptron learning rule. If the training set consists of all possible input
vectors, we can calculate (for large systems) the connections as a series expansion in the
system size. The leading term in this expansion turns out to be either the Hebb rule (for
unbiased distributions) or the biased Hebb rule (for biased distributions). The performance
of our asymptotic expressions (and finite size corrections) on small systems is studied nu-
merically. For the more realistic case of having an extensive training set (patterns learned
with training noise) we derive a self-consistent set of coupled non-linear equations for the
connections. In the limit of zero training noise, the solution of these equations is shown to
give the connections with maximal stability in the Gardner sense.

Adapted from: W. Wiegerinck and A. Coolen. The connections of large perceptrons, Journal of Physics A,
26: 2535-2548, 1993.

48 The Connections of Large Perceptrons

5.1 Introduction

One of the simplest (and oldest) models for the evolution in time of connections in neural
systems is the perceptron [66, 51], equipped with the perceptron learning rule. Because of its
simple architecture a perceptron can only perform a restricted set of operations, the so-called
linearly separable functions. Nevertheless, perceptrons are a popular subject of study since the
perceptron learning rule is one of the most transparent models for learning in neural systems
for which a convergence theorem has been proved [51]. If a given task is linearly separable, then
the perceptron learning rule converges in a finite number of iteration steps towards a connection
vector that faithfully performs the task.

Statistical mechanical studies of perceptrons have resulted in a wealth of knowledge about
properties like storage capacity, generalization [19, 40] and in a number of even more efficient
perceptron-like learning rules [4, 12, 43] (with associated convergence theorems). For a more
detailed overview of the literature on perceptrons and their properties we refer to textbooks
like [51, 27, 53] or the recent review by Watkin et al [78]. In particular Opper [56, 57] seems
to have been the first to study analytically the dynamics of Perceptron-like learning rules (he
calculated learning times and the probability density of the embedding strengths of patterns
in an optimally stabilized perceptron). What is still missing in the literature, however, is a
method to calculate analytically the connections which are the outcome of such learning rules.
More generally: given a linearly separable task 1" and given a training set € of input vectors
one would like to calculate the connection vectors .J that will faithfully perform the task 7" for
all vectors in €.

In this paper we address this problem. We try to calculate the connection vectors J that
perform a given task 7" on a given input set Q C {—1, 1}V, by using the fact that such connections
are fixed points of the perceptron learning rule. If the training set consists of all possible input
vectors, Q = {—1,1}", the fixed point equations enable us to calculate the connections as a
series expansion in powers of 1/v/N (N is the number of input units). If, on the other hand, the
training set consists of an extensive number p = a/N of prototype patterns é‘ in combination with
small regions €, around these patterns (i.e., training with noise), we find that the connections
satisfy a self-consistent set of nonlinear equations. In the limit of zero training noise the solution
of these equations gives exactly the interactions with maximal stability in the Gardner sense.

5.2 The Perceptron Fixed-Point Equation

A standard perceptron [66, 51] performs a mapping from {—1,1}" to {—1,1} (N is the number
of binary input units). The state u of the binary output unit depends on the states of the N
binary input units s; € {—1,1}" in the following way:

u(3) = sgn(J - 3) JeRN. (5.1)

Those mappings T : {—1,1}N — {—1,1} that can be written in the form (5.1) are called linearly
separable functions. Given a specific linearly separable function 7" and a set Q C {—1,1}" of
input vectors, the perceptron problem is: find a vector J € RN of connections such that
u(8) = T(3) for all € Q. The vectors J that solve the problem are the solutions of:

sgn(J - §) = T(3) V5eQ. (5.2)

This paper tries to calculate the solutions of (5.2) and to find an analytical expression for the
connections .J in terms of the task T on €.

Instead of trying to solve (5.2) directly, we will make use of a specific property of the
perceptron learning rule [66, 51], of which we know that the fixed points are solutions of (5.2).

5.2 The Perceptron Fixed-Point Equation 49

The perceptron learning rule is defined as the modification of connections via the following
stochastic procedure

1) draw at random an input vector § € Q

according to the probability distribution p(3)
L1 .
2) AJ= §e§[T(§) — sgn(J 9] (5.3)
3) return to 1)

where ¢ > 0 is the learning parameter. This procedure was shown [51] to converge in a finite
number of iteration steps towards a solution of (5.2), provided that 7" is indeed linearly separable
(which we assume to be the case). Calculating the fixed points of (5.3) is equivalent to solving
the original problem (5.2). By writing the perceptron learning rule as a master equation, and
expanding the master equation in powers of €, we can separate the macroscopic part (of order
¢®) from the fluctuation part (of order /€) [77]. After a rescaling of time by a factor ¢, the
macroscopic part obeys the deterministic differential equation

47— 5o - o)),

where (-), indicates averaging over the distribution p(5). Whatever the details of the fluctu-
ation part, we know the perceptron rule will evolve towards a fixed-point. Fixed-points of the
(stochastic) rule (5.3) are automatically fixed-points of the above deterministic equation. An
important property of the perceptron learning rule is that the inverse of this statement is found
to be true as well:

-

T(3) = sgn(J -8 VieQ & (5T (5))q = (5sgn(J - §)>Q . (5.4)

It is trivial to prove that the right-hand side of (5.4) follows from the left-hand side. Here we
will only prove the complementary statement. Since 7" is linearly separable on Q (by definition),
there exists a vector B € R", such that T(5) = sgn(B - 5) on Q. This allows us to write:

0 = B-(I()g- B (ssen(J-3))_
= <|§§| [1— sgn(ﬁ-,§’)sgn(.]_’-§)}>Q .

Since |B -3 > 0 (Vs € Q), we must conclude that sgn(é - 8) = sgn(f- 3) (V5 € Q) (which
completes the proof of (5.4)). Note that the fixed point theorem (5.4) is exact for all N, all
Q C {-1,1}"V, all non-zero distributions p(5) on Q and all linearly separable tasks 7.

Theorem (5.4) provides a reduction of the original problem (5.2) of finding the solution of
a set of |Q| coupled inequalities to the problem of finding the solution of a set of N coupled
non-linear equations. The rest of our paper aims at calculating the solutions of these equations:

(S1(&)g = (Fsgn(J-9)) (5.5)

where there is still freedom in choosing any (non-zero) probability distribution on €. We inter-
pret this distribution as defining the probabilities with which individual inputs § € Q are drawn
during the learning process.

50 The Connections of Large Perceptrons

5.3 Homogenous Distributions

In this section we use the fixed-point theorem (5.3) for calculating analytically (as a series
expansion in inverse powers of the system size N) the connections that perform a given task
T, for the simplest case in which the traing set consists of the set of all possible input vectors:
Q = {-1,1}". We study two choices with respect to the probability distribution on this training
set: unbiased (uniform) probabilities and biased probabilities.

5.3.1 Unbiased Homogeneous Distribution

The first case we study is Q = {—1, 1}V, p(5) = 27V (the uniform distribution). In this case the
right-hand side of (5.5) can be calculated exactly (including all orders of N). First we rewrite:

where

<82' sgn(J - §)>Q = /_ZOO dzP;(z) sgn[J; + z] = 2 /OJi dzPi(z) (5.6)
Pi(z) = <5 |:z = Jjs;

J#t >Q

Note that the inversion symmetry p(§) = p(—=§) of the uniform distribution implies that P;(z) =
P;(—z). In Appendix 5.A we analyse probability distributions P(z) of the above form. In terms

of the variables at hand the result is

exp [—m] |:1 - %Uin(j)(_l)HQ_nHm <\/§Kz>] (5.7)

Ki= [o= |i-d2 (=gl
J#

The functions H(z) are the Hermite polynomials. The coefficients D;,(J) are given by

Din(J) = (1) L
() = Z (k+1)! Z .me:=2[n’Zmi

k<n/2-1 my=2
X Cony v ooy Qi (1) + - Qi (j)]

N

Pi(2) = [2r K]

where

where (), and Qm(j) are defined as:
22n—1(22n _ 1)|B2n|
n(2n)!

Qi = S JP[1-J} " e
i

Ch (B : Bernoulli numbers [22])

Using (5.7) we can now perform the integral in (5.6). The equation from which the solution of
the fundamental problem (5.5) must be calculated thereby becomes:

Ji
s;T(5 = etf | ———
D [ﬂ\/ﬁ}

2 -]? o a—n ” j¢
+\/—F exp l—ﬁl %DM(J)Q (—1) H2n—1 (m) . (58)

5.3 Homogenous Distributions 51

So far no approximation has been made. Eq. (5.8) is completely equivalent to (5.5), including
finite size effects. However, Eq.(5.8) is much more suitable for calculating the solution .J as a
series in powers of N than the original equation (5.5).

If, for instance, we assume that J; = O (N_l/z) (motivated by ij = 1), we can expand
Eq.(5.8) in powers of N='/2 up to any desired order:

(51 (@ = 20+ 0 (v37) =2

where we have used D;, = O (N1="). Since J,i=0 (N_1/2) for all 7, we expand the solution J
of (5.9) in powers of N~'/2, Substitution of this expansion into Eq. (5.9) yields:

Ji = \/g (iT(3))g + O (N72) (5.10)

= ST,

where (s;1(5))q, is found to be of order N™'/2, Equations (5.10,5.11) show that, if for the
training set we choose = {—1,1}"V with uniform probabilities and if the task vector B and

thus the vector ./ have components such that J; = O (N_l/z), then (in first order in N~1/2)

+0 (N7%2) (5.9)

7 Loy 1. 74

1- % (s:T(3))g + ’I—;Z (5;T()a

J

+0 (N5

(5.11)

we find the connections J to be proportional to the ones obtained by applying the Hopfield [34]
version of Hebb’s [26] rule to the full set {—1,1}" of input vectors. This result agrees with
the findings of Vallet [73] who showed that for large systems (N — o) and for a specific type
of task vectors B (which satisfy our condition) Hebb’s rule learns and generalizes well if the
number p of examples (drawn from a uniform distribution) diverges sufficiently fast (p/N — oo
as N — 00). The second order (N~3/2) in Eq. (5.11) can be interpreted as finite size corrections
to Hebb’s rule.

5.3.2 Biased Homogeneous Distribution: The Gaussian Approach

The next case we will study is the biased homogeneous distribution of input vectors: Q =
{=1,1}N, p(3) = pi(s1) .. .py(sn) (the variables {s;} are still independent). The individual
probabilities are written as:

pi(s) =

DN | —

. 1
(1+ (Zi)()s’] + 5(1 — (177)53’_] -1« a; < 1.
We will also allow for a threshold, both in the definition of the task
T(35) = sgn(g -5+ By)

and in the perceptron itself (e.g. by adding a dummy input variable sy = —1). According to the
fixed point theorem (5.4) the solutions of the perceptron problem are the solutions (J;.Jg) of

(1) = (Fsen(J-5+4)),
(T = (senlJ-F+0)), -

To simplify algebra we will now assume that for large N the terms > ;.J;s; have a Gaussian

probability distribution (in Appendix 5.B we analyse the conditions to be imposed on B and

52 The Connections of Large Perceptrons

J for this assumption to be justified). In doing so we will no longer be able to calculate finite
size corrections to the N — oo result (in contrast to the approach followed in the previous
subsection). After some algebra we now obtain:

(T@)g = (1 +a)erf [m -)E] g a]

(5.12)

1 Ji(l+a)—Jo—J @
+ 5(1—a¢)erf[](R a]

V20
(T(8), = erf [7-‘] (5.13)

in which g = Y7, J?(1—a?) and o} = 0§ —J7 (1 —a?). Since }; J;s; has a Gaussian distribution

we may use the fact that .J; < 1 to expand (5.12,5.13)

(siT'(8)q = aerf l%]
=) e l_wl + 0 ()
(1(@q = o [%]

where Jy = Jo/J and Z = 2J7%*0%. We can now invert these relations and find for N — oo in
leading order:

i = ol (s @ e (@) (5.14)

gy = ﬁ[erf*«T@»Q)
- S (- a) T@)gexp [er = (T 5.15)

Since a rescaling of both J and Jy does not affect the mapping performed by the perceptron
(J;Ju), there is in principle no need to calculate the factor 7 explicitly. If one puts a; = @ and
if the thresholds By and .Jy are choosen to be zero, then (5.15) reduces to

Ji= 3 ((s —)T (@) (5.16)

where Z' is a proper normalization factor. Finally one can verify that for @ = 0 one recovers the
first order of (5.10).

The final result of this section, Eqns.(5.14,5.15,5.16) shows that (in leading order in the
system size N) the connections f, expressed in terms of biased statistics of the binary input
variables s;, are found to be proportional to the ones obtained by applying the biased Hebbian
rule of [3] to the full set {=1,1}" of input vectors. The biased Hebbian rule of [3] seems to
make use of global information; since the Perceptro_)n learning rule is nonlocal (because of the

appearance of the crucial global term T'(3) — sgn(J - §)) the resulting interactions are indeed
allowed to depend on nonlocal quantities. The condition on the task vectors B for our analysis

5.4 Inhomogeneous Distributions: Patterns 53

to apply is that for large N the inner product B -5 must have a Gaussian probability distribution.
In addition we have found an expression for the threshold .Jy. In Appendix 5.B we show that
the assumption of a Gaussian distribution is justified with probability one if the task vectors B
are drawn at random from, for instance, a spherically symmetric distribution or a hypercube in

RN .

5.3.3 Numerical Results

The performance in finite systems of our asymptotic (N — oo) expressions for the connections
is studied numerically. We calculate over a given ensemble P of linearly separable tasks the
average overlap Qn between the task function 7'(5) = sgn(B - §) and the perceptron mapping

upon choosing for the connections J(B) either the truncated expansions (5.10,5.11) or the result
(5.16) obtained with the Gaussian approach:

— -

Oy = /dé P(B) (sen [B 5] sen [J(B) - 5]) (5.17)

S

with

Fe{-1,1}¥

If Qn = 1 then, with probability one, the mappings performed by B and f(g) will be identical
for tasks drawn from P. For the ensemble P(é) of tasks we took the uniform probability distri-
bution over the N-dimensional hypercube. The integral in (5.17) is estimated numerically from
100 samples of randomly drawn task vectors vectors B. The average over the input vector dis-
tribution is calculated exactly: since this average involves 2V input vectors §, we have restricted
the range of our experiments to N < 20.

In figure 5.1 we show the values of (@5 thus obtained upon choosing for J_‘(B‘) the leading
order in N for unbiased distributions (the Hebb rule) as given by (5.10) (‘+’), the first two
leading orders in N for unbiased distributions (the Hebb rule corrected for finite size effects)
as given by (5.11) (‘+’) and the leading order in N for biased distributions (the biased Hebb
rule), for @ = 0.5, as given by (5.16) (‘0’). For unbiased distributions we find that the asymptotic
expressions (5.10,5.11) are such that the corresponding perceptron mappings are almost identical
to the task to be learned, even for relatively small system sizes. Including the second order in
N (‘«’) indeed improves performance by correcting for finite size effects. The fact that even
the leading term (‘+’) performs perfectly for N < 4 can be proved analytically. For biased
distributions (‘0’) we find that finite size effects play a considerably more important role.

5.4 Inhomogeneous Distributions: Patterns

In this section we use the fixed-point theorem (5.3) for calculating analytically the connections
that perform a given task T for the more realistic case in which the training set consists of a
union of clusters around p = aN patterns & (training noise): Q@ = J,Q, # {-1, 1NV, We
show that the asymptotic (N — oo) connections are given by the solutions of a set of coupled
non-linear equations.

5.4.1 Training with Noise

We consider the case of having to classify a given set of p = a/V input patterns {M e {-1,1}V
(for N — 00) using a perceptron without a threshold. To obtain a classification which is stable

54 The Connections of Large Perceptrons

1.02
0.98r
0.96r
0.94r
0.92r

0.9r

0.88 : ‘ ‘ ‘
0 5 10 15 20

N
Figure 5.1 The average performance Qp as a function of the system
size N. The connections are defined by the leading order in Eq. (5.10)
(the Hebb rule for unbiased input distributions) (’+’), the two leading
orders in of Eq. (5.11) (the Hebb rule plus finite size corrections) (’'+’)
and the leading order in Eq. (5.16) (the biased Hebb rule for biased input
distributions) with bias a = 0.5 (’0’).

against input noise, the task is defined on small, equally large, disjunct neighborhoods €2, around
the pattern g“:
TR =T(") VvieQq,.

The set Q is the union of the p subsets: Q ={J, Q. According to our fixed-point theorem (5.4),
applied to the present situation, the connections performing the task 7" on € are the solutions

of’:
P

> (Fsen(- ‘§)>m . (5.18)

p=1

S| =

> T(E) (@, =

To simplify analysis we replace the hard constraint (restricting the training vectors to the union
of the p discrete subsets €,) by a soft constraint, in which training vectors have a probability
of occurrence which is strongly peaked near the patterns g“:

{Q=U9u, p(-‘?):---} — {Q={—1,1}N, p(-‘?):ézm«?)}

with 1 1
ﬁ#«(g’) = H [5(1 + a)(SSi’&ZH + 5(1 - (I,)(SSZ.’_;H]

in which a is chosen close to one. Formally the task corresponding to the soft constraint is not
necessarily linearly separable and hence solutions of the correponding fixed point equations need
not exist. However, for ¢ — 1 and N — oo, the overlap between the individual distributions
P, becomes arbitrarily small, so that one can expect solutions to exist. These solutions then
correspond to the connections of a perceptron which is trained with noise, as studied by Wong

5.4 Inhomogeneous Distributions: Patterns 55

and Sherrington [84]. Replacing the hard constraint by the soft one in the way described above,
we obtain instead of (5.18) the problem (5.19):

~N " rEnér =

n=1

> <qun > - (5.19)

n=1

S| =

a
p
)€, in terms of which (due to the
) =1 (Yu). We can readily perform

To simplify notation we introduce the vectors C“ =T
absence of a threshold) the task 7" can be written as: 7'(
the remaining averages in (5.19), with the result:

1 af-f“
#Z:IC# = Z [ag”ferf <72(1 a2))

p=1

o 2(1 — a?) exp (_ (aj-@))z)

3
¢t

- 21— a2 +0(J}) .

In leading order we may therefore write:

o {5 ()

For convenience we introduce the parameter A = Ja?/(1 — a%) (so A — 0o as @ — 1) and the

stability parameters v, = J - 5“. Assuming that a solution J of (5.20) exists with v, > 0 for all
i, we can use the asymptotic expansion of erf(z),

erf(z) =1— exp(—z?) + ...

1
L
and obtain ~
> Chyrtexp(—=Ay2)

>, exp (—A72)

Note that (5.21) guarantees that any solution J will indeed be properly normalized (providing
a nice self-consistency test, since normalization has not explicitly been put in):

J=

(5.21)

o Y, d Gy exp(—Av?)

2 _
= >, exp (—A'yg) =

By taking in (5.21) the inner products with the vectors 5“, we obtain equations in terms of
stability parameters only:

15, Cuyy texp(=Avy)
o % >, exp (—A'yg)

Vo= ;>0 (5.22)

in which the correlation matrices €', are defined by

-

zci

56 The Connections of Large Perceptrons

Eqn. (5.22) is the main result of this section. The solution of (5.22), inserted into (5.21), yields
the solution of our original problem: the connections J.

Restoring the original variables according to 5“ = g“T(f“), we find that the connections
(5.21) are written in the form of a weighted Hebb rule with embedding strengths {w),}:

.1 Soa 1 47" exp(=Av)
J=— E w,T(E*)EF with w, = ——2~ v, (5.23)
N < a %Zp exp (—A’yg)

These equations give interesting relations between stability parameters and embedding strengths.
The relations (5.23), in combination with

Yo=Y Crytw, (5.24)

are equivalent to the equations (5.21,5.22). A trivial example for which (5.23,5.24) is solvable,
is the case of orthogonal patterns C'y, = 4, for which one finds v, = ﬁ and the connections

are given by a normalized Hebb-rule.

5.4.2 The Limit of Zero Training Noise

In this subsection we show that the solution(s) of the self consistency equations (5.22), in the
limit of zero training noise (A — o), are identical with the optimal connections in the Gardner
sense. It has been demonstrated previously [4, 56] that in characterizing the optimal connections
one can distinguish two subsets of patterns. Patterns in the so-called active set have positive
embedding strengths w,,; the optimal connections are given by the pseudo-inverse rule, restricted
to the patterns in the active set. Patterns which are not in the active set have zero embedding
strengths; their stability parameters, however, are larger than the stability parameters of the
patterns in the active set.
We assume that, for large A, the stability parameters depend analytically on A~!:

Yo = Z ')/unA_n .
n>0

Insertion into (5.22) gives the identity:

Yuo =

o 12 G [+ O] ™ exp [=A (1) + 23007 A~ + O(A2))]
A—=oo ;—? Zp exp [—A(')/go + 27907911_1 + O(A—Z))}

We now introduce ymin = min, y,0, with which we can write

Yuo =
o 120 G [0 + O] ™ exp [=A (120 — Jmin) = 230701 + O(A™H]
oo 5 2p €XP [—A(vio — Voin) = 2700%p1 + (’)(A-l)]

(5.25)

By taking the limit A — oo, those exponents vanish for which 4,0 > Ymin (by construction there
is at least one index g with v,0 = Ymin). We define the index set

K ={u| 740 = Ymin} -

5.5 Discussion 57

For A — oo we obtain from (5.25):

o = 1 ZuE}C Cuz/)/r;iln €Xp [_27min7u1]
0o— .
g @ Zl_, ZpE}C exp [_QVmin')/pl]

This means that the A — oo embedding strengths w,, defined in (5.23), will obey

0, = L TminOXP-2minya] e
g a %Zpe}C exp[_Q’Ymin')/p]

w, = 0 Vu g K

Apparently the embedding strengths corresponding to indices in the index set K satisfy:

VH ek Ymin = Z C,uuwu
vek

hence, if we denote by C'(K) the correlation matrix C, restricted to the indices in the set K, the
embedding strengths w, are given by

Wy = Ymin E C(IC);Z,I neK
veK
w, = 0 péEK.

These are exactly the embedding strengths corresponding to the optimal perceptron, described
in the introduction of this subsection. One immediately recognises the structure of a pseudo-
inverse applied to a active pattern set (our index set K). A pattern outside the active set has
zero embedding strength. On the other hand, its stability parameter is larger than the minimal
stability parameter (7,0 > Ymin for g €).

This a posteriori justifies our assumption that, for large A (small amount of training noise),
the hard constraint on the training set could be replaced by a soft one. Our solution is also
in agreement with the work by Wong and Sherrington [84], who studied the learning of noisy
patterns and found that for infinitesimally small amounts of noise one obtains the maximally
stable connections.

5.4.3 Numerical Results

Apart from proving that in the limit of zero training noise A — oo the solutions of the set
of equations (5.22) become identical to the optimal interactions in the Gardner sense, one can
of course also simply solve the set (5.22) numerically. The result, presented in the form of
the familiar distribution p(7) of stabilities, shows how for finite A one approaches the analytical
expression for p(7) as found by Abbott and Kepler [39]. Figure 5.2 shows such a result, obtained
by solving (5.22) numerically for p = 600 randomly drawn patterns in an N = 400 network with
a level of training noise given by A = 16. The distribution p(vy) [39] of Gardner’s optimal
interactions [19] for a = 1.5 is plotted as a reference.

5.5 Discussion

The aim of this paper was to find analytical expressions for the connections of large perceptrons.
We tried to calculate the connection vectors .J that perform a given task T on a given input
set Q C {—1,1}V, by using the fact that such connections are fixed points of the perceptron
learning rule. For small values of the learning parameter this rule can be split into a macroscopic

58 The Connections of Large Perceptrons

2.5 3

Figure 5.2 Distribution p(7y) of stabilities {7,} obtained by solving
numerically the set of equations (5.22) for randomly drawn patterns
(N = 400, p = 600, A = 16). The result is averaged over 10 pattern
realizations. Dashed line: distribution of stability parameters for Gard-

ner’s optimal connections (according to [39]) if & = 1.5.

differential equation describing deterministic evolution and a part describing fluctuations. By
proving that the fixed-points of the deterministic equation are identical to the fixed-points of
the full stochastic rule, we obtain a reduction of the original problem (finding the solution of
a set of |Q| coupled inequalities) to the problem of finding the solution of a set of N coupled
non-linear equations.

For the simplest case in which the training set consists of all possible input vectors, Q =
{=1,1}" the fixed point equations enable us to calculate the connections as a series expansion
in powers of 1/v/N. The leading term in this expansion turns out to be either the Hebb rule (for
unbiased distributions) or the biased Hebb rule (for biased distributions). The performance of
our asymptotic expressions (and finite size corrections) on small systems is studied numerically.
If, on the other hand, the training set consists of an extensive number p = aN of prototype
patterns 5’” in combination with small regions €, around these patterns (i.e., training with
noise), we find that the connections satisfy a self-consistent, physically transparent set of non-
linear equations. In the limit of zero training noise the solution of these equations is shown to
correspond exactly to the interactions with maximal stability in the Gardner sense.

Most statistical mechanical studies of (maximally stable) perceptrons concentrate on study-
ing properties of trained systems [78] (storage capacity, average training error, average gener-
alization error, nature of phase transitions, etc.). In order to obtain these results one has to
average the quantities of interest (or, equivalently, the free energy from which such quantities
can be obtained by differentiation) over the distribution from which the training set is choosen.
We believe that our approach may be complementary to such studies, in that we focus on the
explicit construction of the connections of trained perceptrons. Furthermore, in the case of
having an extensive (p = aN) training set, the embedding strengths are formulated, through
Eqns. (5.22,5.23), directly in terms of the pattern correlation matrix; no averaging over the
distribution of input vectors is involved.

5 Appendix 59

Acknowledgements

WW would like to thank the British Council for financial support and the University of Oxford
for hospitality.

5 Appendix

5.A The Distribution P(z)

In this appendix we calculate for any given vector K € RY the probability distribution P(z)
(in the spirit of the Edgeworth series [16]), defined by

P(z) = <5 (z - K. §)>g

where § € {—1,1}"V and p(5) = 2=N. Using the integral representation of the é-function we find:

P(z) = K /dkexp

where K = ||K|| and K = K~'K. We now expand log cos(z) in a power series [22]:

—+ Zlog cos(kK;) (5.A.1)

2271—1(2271 _ 1)|B2n|
n(2n)!

log cos(z) = ——ac =) Cuz® with O, =

n>2

The coefficients By, are the Bernoulli numbers [22] (By = 1, By = —1/2, By = 1/6, etc.). This
expansion enables us to write (5.A.1) as

1 1 ik
P(s) = 5 / dk exp [—5k2 ’RZ Zc On(K W] (5.A.2)

where Q,(K) = > Igf” € [0,1]. If we also make the expansion

exp |:— Z CnQn(Ig')kQ”:| =1- Z D, (K)k*™

n>2 n>2

we can perform the integration over the variable £ in (5.A.2) and arrive at the final result:
1

P(z) = ‘Wexp[e { ZD 1)"27"Hy, (k—\/i>] (5.A.3)

where the functions H,,(z) are the Hermite polynomials [15]:

Hon(2) = (1) exp(e?) o oxp(~a?)

The coefficients D, (K) are given by

(, 'Z Z{Z’mi

' m1= =2 mk+1_2

Dy(K) = >

k<n/2-1

X Cony Quuy (K) -+ Co Qo (K]

60 The Connections of Large Perceptrons

5.B Validity of the Gaussian Assumption

In this appendix we briefly discuss the validity of the assumption (often made in the literature)
that the stochastic variable z = Zj\;l Jjs; has a Gaussian probability distribution in the limit
N — oo, where

1
(L+aj)ds1 + 5 (1 = a;)ds,-1,

DN | —

p(3) = [pi(si),pis) =

with
|a;| < |amax| < 1.

It is clear that P(z) will not always be Gaussian, since one can easily construct counter-examples:
Jp=k! ar =0 (k=1...N). (5.B.4)

For this specific example one finds:

2 4
/N . 2\ _ T . a\ 117
(2 =(s") =0 N15HOO<Z>_ 6 Nlﬁnoo<z>_ 180
So the distribution of z tends not to a (Gaussian, since even in the limit N — oo one finds

(z*) # 3 <22>2. Starting from the central limit theorem [16], it is straightforward to show that
the condition on the normalized vector J for arriving at a Gaussian distribution for z = 22 Jisgs

1S N N
A;i_rgozlo [JJ- - ekzl J,f] =0 Ve > 0 (5.B.5)
_’): =

in which #[z] is the step function. One can check that if (5.B.5) holds, all the non-Gaussian
contributions in the probability distribution (5.A.3) will vanish in the limit N — oco. The
condition (5.B.5) is clearly violated by the counter-example (5.B.4). If the vector .J is drawn
from a spherically symmetric distribution, or from a hypercube with uniform distribution, then
one can show that condition (5.B.5) is satisfied with probability one.

Bibliography

[1] T. Aleksander and J. Taylor, editors. I[CANN’92: Proceedings of the International Confer-
ence on Artificial Neural Networks, Brighton, UK, Amsterdam, 1993. North-Holland.

[2] S. Amari. A theory of adaptive pattern classifiers. IEEFE Transactions on Flectronic Com-
puters, 16:299-307, 1967.

[3] D. Amit, H. Gutfreund, and H. Sompolinsky. Information storage in neural networks with
low levels of activity. Physical Review A, 23:2293-2303, 1987.

[4] J. Anlauf and M. Biehl. AdaTron: and adaptive perceptron algorithm. Furophysics Letters,
10:687-692, 1989.

[5] E. Barakova and R. Venema. personal communication, 1994.

[6] E. Barnard. Optimization for training neural nets. IEEFE Transactions on Neural Networks,
3:232-240, 1992.

[7] D. Bedeaux, K. Lakatos-Lindenberg, and K. Shuler. On the relation between master equa-
tions and random walks and their solutions. Journal of Mathematical Physics, 12:2116-2123,
1971.

[8] A. Benviste, M. Metivier, and P. Priouret. Adaptive algorithms and stochastic approzima-
tions. Springer-Verlag, Berlin, 1987.

[9] S. Brunak, J. Engelbrecht, and S. Knudsen. Cleaning up gene databases. Nature, 343:123,
1990.

[10] C. Cachin. Pedagogical pattern selection strategies. Neural Networks, 7:175-181, 1994.

[11] P. Churchland and J. Sejnowski. The Computational Brain. The MIT press, Cambridge,
Massachusetts, 1992.

[12] S. Diederich and M. Opper. Learning of correlated patterns in spin-glass networks by local
learning rules. Physical Review Letters, 58:949-952, 1987.

[13] Neural computing applications portfolio. DTI’s Neural Computing Technology Transfer
Programme, 1993.

[14] Best practice guidelines for developing neural computing applications. DTI’s Neural Com-
puting Technology Transfer Programme, 1994.

[15] W. Feller. An Introduction to Probability and its Applications, volume 1. Wiley, New York,
1966.

[16] W. Feller. An Introduction to Probability and its Applications. Wiley, New York, 1966.

62 Bibliography

[17] W. Finnoff. Diffusion approximations for the constant learning rate backpropagation algo-
rithm and resistance to local minima. Neural Computation, 6:285-295, 1994.

[18] C. Gardiner. Handbook of Stochastic Methods. Springer, Berlin, second edition, 1985.

[19] E. Gardner. The space of interactions in neural network models. Journal of Physics A,

21:257-270, 1988.
[20] S. Gasiorowicz. Quantum Physics. Wiley, New York, 1974.

[21] E. Goldberg. Genetic algorithms in search, optimization, and machine learning. Addison-
Wesley, Reading, 1989.

[22] 1. Gradsteyn and 1. Ryzhik. Table of Integrals, Series and Products. Academic Press, San
Diego, 1980.

[23] H. Haken. Synergetics, An Introduction. Springer, New York, 1978.

[24] L. Hansen, R. Pathria, and P. Salamon. Stochastic dynamics of supervised learning. Journal
of Physics A, 26:63-71, 1993.

[25] S. Haykin. Neural Networks, A Comprehensive Foundation. MacMillan, Hamilton, Ontario,
1994.

[26] D. Hebb. The organization of behaviour. Wiley, New York, 1949.

[27] J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural Computation.
Addison-Wesley, Redwood City, 1991.

[28] T. Heskes. On Fokker-Planck approximations of on-line learning processes. Journal of

Physics A, 27:5145-5160, 1994.

[29] T. Heskes and B. Kappen. Learning processes in neural networks. Physical Review A,
44:2718-2726, 1991.

[30] T. Heskes and B. Kappen. Learning-parameter adjustment in neural networks. Physical
Review A, 45:8885-8893, 1992.

[31] T. Heskes and B. Kappen. On-line learning processes in artificial neural networks. In
J. Taylor, editor, Mathematical Foundations of Neural Networks, pages 199-233. Elsevier,
Amsterdam, 1993.

[32] T. Heskes and W. Wiegerinck. A theoretical comparison of batch-mode, on-line, cyclic, and
almost cyclic learning. IEFFE Transactions on Neural Networks, 1995. Accepted.

[33] T. Hondou and Y. Sawada. Analysis of learning processes of chaotic time series by neural
networks. Progress of Theoretical Physics, 91:397-402, 1994.

[34] J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences of the United States of America,
79:2554-2558, 1982.

[35] R. Hoptroff. The principles and practice of time series forecasting and business modelling
using neural nets. Neural Computing and Applications, 1:59-66, 1993.

Bibliography 63

[36] D. Hush, B. Horne, and J. Salas. Error surfaces for multilayer perceptrons. IEFEFE Trans-
actions on Systems, Man, and Cybernetics, 22:1152-1161, 1992.

[37] B Kappen and S. Gielen, editors. Neural Networks: Artificial Intelligence and Industrial
Applications. Proceedings of the Third Annual SNN Symposium on Neural Networks, Ni-
jmegen, The Netherlands, 14-15 September 1995, London, 1995. Springer.

[38] H. Kappen and C. Gielen, editors. I[CANN’93: Proceedings of the International Conference
on Artificial Neural Networks, Amsterdam, London, 1993. Springer-Verlag.

[39] T. Kepler and L. Abbot. Domains of attraction in neural networks. Journal de Physique,
49:1657-1662, 1988.

[40] W. Kinzel. In L. Garrido, editor, Statistical Mechanics of Neural Networks, Berlin, 1990.
Springer.

[41] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science,
220:671-680, 1983.

[42] T. Kohonen. Self-organized formation of topologically correct feature maps. Biological
Cybernetics, 43:59—69, 1982.

[43] W. Krauth and Mézard M. Learning algorithms with optimal stability in neural networks.
Journal of Physics A, 20:1.745-1.752, 1987.

[44] C. Kuan and H. White. Artificial neural networks: an econometric perspective. Fconometric
Reviews, 1993. in press.

[45] S. Kuffler and J. Nicholls. From neuron to brain. Sinauer Associates, Sunderland, Mas-
sachusetts, 1977.

[46] A. Lapedes and R. Farber. How neural networks work. In D. Anderson, editor, Neural
Information Processing Systems, pages 442-456, New York, 1988. American Institute of
Physics.

[47] Y. Lee, S. Oh, and M. Kim. The effect of initial weights on premature saturation in
backpropagation learning. In International Joint Conference on Neural Networks, pages
765-770. IEEE, 1991.

[48] T. Leen and J. Moody. Weight space probability densities in stochastic learning: 1. Dy-
namics and equilibria. In S. Hanson, J. Cowan, and L. Giles, editors, Advances in Neural
Information Processing Systems 5, pages 451-458, San Mateo, 1992. Morgan Kaufmann.

[49] J. Ludik and I. Cloete. Incremental increased complexity training. In M. Verleysen, editor,
Proceedings of the Furopean Symposium on Artificial Neural Networks 94, pages 161-165,
Brussels, 1994. D facto publications.

[50] M. Marinaro and G. Morasso, editors. ICANN’94: Proceedings of the International Con-
ference on Artificial Neural Networks,Sorrento, [taly, L.ondon, 1994. Springer-Verlag.

[51] M. Minsky and S. Papert. Perceptrons. The MIT press, Cambridge, Massachusetts, 1969.

[52] G. Mpitsos and M. Burton. Convergence and divergence in neural networks: processing of
chaos and biological analogy. Neural Networks, 5:605-625, 1992.

64 Bibliography

[53] B. Mueller and J. Reinhardt. Neural Networks. Springer, Berlin, 1990.

[54] P. Munro. Repeat until bored: A pattern selection strategy. In J. Moody, S. Hanson,
and R. Lippman, editors, Advances in Neural Information Processing Systems J, pages
1001-1008, San Mateo, 1992. Morgan Kaufmann.

[55] E. Oja. A simplified neuron model as a principal component analyzer. Journal of Mathe-
matical Biology, 15:267-273, 1982.

[56] M. Opper. Learning times of neural networks: exact solution for a perceptron algorithm.
Physical Review A, 38:3824-3826, 1988.

[57] M. Opper. Learning in neural networks: solvable dynamics. Furophysics Letters, 8:389-392,
1989.

[68] G. Orr and T. Leen. Weight space probability densities in stochastic learning: II. Transients
and basin hopping times. In S. Hanson, J. Cowan, and L. Giles, editors, Advances in Neural
Information Processing Systems 5, pages 507-514, San Mateo, 1992. Morgan Kaufmann.

[59] G. Orr and T. Leen. Momentum and optimal stochastic search. In M. Mozer, P. Somlensky,
D. Touretzky, J. Elman, and A. Weigend, editors, Proceedings of the 1993 Connectionist
Models Summer School. Erlbaum, 1993.

[60] B. Pearlmutter. Gradient descent: second-order momentum and saturating error. In
J. Moody, S. Hanson, and R. Lippmann, editors, Advances in Neural Information Pro-
cessing Systems 4, pages 887—894, San Mateo, 1991. Morgan Kaufmann.

[61] W. Penney, A. Coolen, and D. Sherrington. Coupled dynamics of fast spins and slow
interactions in neural networks and spin systems. Journal of Physics A, 26:3681-3695,

1993.

[62] W. Press, B. Flannery, A. Teukolsky, and W. Vettering. Numerical Recipes in C. Cambridge
University Press, 1989.

[63] G. Radons. On stochastic dynamics of supervised learning. Journal of Physics A, 26:3455—
3461, 1993.

[64] H. Ritter and K. Schulten. Convergence properties of Kohonen’s topology conserving maps:
fluctuations, stability, and dimension selection. Biological Cybernetics, 60:59-71, 1988.

[65] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organi-
zation in the brain. Psychological Review, 65:386—-408, 1958.

[66] F. Rosenblatt. Principles of Neurodynamics. Spartan, New York, 1960.

[67] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-propagating
errors. Nature, 323:533-536, 1986.

[68] D. Rumelhart, J. McClelland, and the PDP Research Group. Parallel Distributed Process-
ing: Fxplorations in the Microstructure of Cognition. MI'T' Press, 1986.

[69] H. Schuster. Deterministic Chaos. VCH, Weinheim, second revised edition, 1989.

[70] H. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning from examples.
Physical Review A, 45:6056-6091, 1992.

Bibliography 65

[71] J. Shynk and S. Roy. The LMS algorithm with momentum updating. In Proceedings of the
IEEE International Symposium on Circuits and Systems, pages 2651-2654, 1988.

[72] M. Tugay and Y. Tanik. Properties of the momentum LMS algorithm. Signal Processing,
18:117-127, 1989.

[73] F. Vallet. The Hebb rule for learning linearly separable Boolean functions: learning and
generalization. Furophysics Letters, 8:747-751, 1989.

[74] F. Vallet and J.-G. Cailton. Recognition rates of the Hebb rule for learning Boolean func-
tions. Physical Review A, 41:3059-3065, 1990.

[75] P. van der Smagt. Minimisation methods for training feed-forward networks. Neural Net-
works, 7(1):1-11, 1994.

[76] N. van Kampen. Elimination of fast variables. Physics Reports, 124:69-160, 1985.

[77] N. van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland, Amster-
dam, 1992.

[78] T. Watkin, A. Rau, and M. Biehl. The statistical mechanics of learning a rule. Reviews of
Modern Physics, 65:499-556, 1993.

[79] A. Weigend and N. Gershenfeld, editors. Predicting the Future and Understanding the Past:
A Comparison of Approaches. Addison-Wesley, 1993.

[80] A. Weigend, B. Huberman, and D. Rumelhart. Predicting the future: a connectionist
approach. International Journal of Neural Systems, 1:193-209, 1990.

[81] P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences. PhD) thesis, Harvard University, 1974.

[82] H. White. Some asymptotic results for learning in single hidden-layer feedforward network
models. Jour. Amer. Stat. Ass., 84:1003-1013, 1989.

[83] F. Wong. Time series forecasting using backpropagation networks. Neurocomputing, pages

147-159, 1991.

[84] K. Wong and D. Sherrington. Training noise adaptation in attractor neural networks.
Journal of Physics A, 23:175-182, 1990.

66

Bibliography

Samenvatting

Stochastische Dynamica van On-Line Leren in Neurale Netwerken.

Neurale netwerken zijn informatieverwerkende systemen die voor een belangrijk deel geinspi-
reerd zijn op huidige inzichten in de werking van het brein. Een neuraal netwerk (de naam zegt
het al) bestaat uit een netwerk van onderling verbonden neuronen. De neuronen zijn eenvoudige
rekenelementjes. Door de onderlinge verbindingen kunnen de neuronen gegevens met elkaar uit-
wisselen. Tenslotte zorgen de input en output neuronen ervoor dat het neuraal netwerk met zijn
omgeving kan communiceren. De sterktes van de verbindingen oftewel de gewichten reguleren
de gegevensuitwisseling in het neuraal netwerk. Zodoende bepalen uiteindelijk de gewichten hoe
het neuraal netwerk functioneert.

Neurale netwerken staan erom bekend dat zij kunnen leren. Hierbij is leren het proces waarbij
een neuraal netwerk zijn gewichten volgens een bepaalde leerregel stap voor stap aanpast aan
de hand van voorbeelden uit zijn omgeving. Dit kunnen bijvoorbeeld gewenste input-output
relaties zijn. Leren heeft als groot voordeel dat de gewichten van een neuraal netwerk niet
precies door een programmeur ingesteld hoeven te worden.

Een zeer natuurlijke vorm van leren is het zogenaamde on-line leren. In on-line leren worden
er in de omgeving voortdurend — en in het algemeen met een zekere willekeur — voorbeelden
gegenereerd en één voor één aan het neuraal netwerk aangeboden. Na ieder voorbeeld maakt
het neuraal netwerk onmiddellijk een leerstap. (In het zogenaamde batch-mode leren moet er
eerst een set voorbeelden verzameld worden. Vervolgens kan er worden geleerd. Hierbij wordt
iedere leerstap gemaakt op basis van de totale set voorbeelden.) Vaak bestaat bij on-line leren
het leerproces uit vele kleine leerstapjes. Dit is om ervoor te zorgen dat het neuraal netwerk
een goede representatie van de omgeving krijgt en zich niet bij elke leerstap teveel instelt op het
voorbeeld dat toevallig op dat moment wordt aangeboden.

On-line leren in neurale netwerken kan op een wiskundige manier worden gemodelleerd en
bestudeerd. Het toeval in de gepresenteerde voorbeelden maakt het leren tot een stochastisch
(= toevals)proces. Om dit proces te analyseren zijn er een groot aantal technieken uit de
kansrekening en de theorie van stochastische processen beschikbaar.

Er is al veel onderzoek gedaan aan de theorie van on-line leren. In één van de onderzoeks-
richtingen wordt er uitgegaan van een algemeen, niet nader beschreven neuraal netwerk met
een algemene, niet nader beschreven leerregel die de leerstap definieert. Deze algemene aanpak
heeft als voordeel dat de resultaten geldig zijn voor een groot aantal soorten neurale netwerken
waaronder het meerlaags perceptron met de bekende backpropagation leerregel in on-line mode
en de topologisch geordende kaart met de zelforganiserende leerregel van Kohonen. De belang-
rijkste aanname in deze theorie is dat de leerstappen schalen met een zogenaamde leerparameter
die klein verondersteld mag worden. Uit deze theorie volgt dat het leerproces goed beschreven
wordt door een trend — het gemiddelde van veel kleine leerstappen — en fluctuaties hierop. Deze
fluctuaties worden veroorzaakt door de afwijkingen van individuele leerstappen ten opzichte van
de trend.

68 Samenvatting

Binnen dit algemene theoretische kader wordt er in het grootste gedeelte van dit proefschrift
gekeken naar leerprocessen waarbij opeenvolgende leerstappen gecorreleerd zijn, m.a.w. meer
(of wellicht juist minder) op elkaar lijken dan op grond van puur toeval verwacht zou mogen
worden. De analyse van leren met gecorreleerde leerstappen heeft als extra complicatie dat als je
de kans op het maken van een leerstap op een bepaald tijdstip ¢ wilt berekenen, je het verleden
véor ¢ niet buiten beschouwing kunt laten. Correlaties tussen de opeenvolgende leerstappen
kunnen verschillende oorzaken hebben. Zij kunnen bijvoorbeeld simpelweg het directe gevolg
zijn van correlaties tussen de aangeboden voorbeelden. Er zijn ook leeralgoritmes waarbij bewust
correlaties tussen de leerstappen zijn aangebracht. De bekendste hiervan is het leren met een
momentum term. Ken momentum term zorgt ervoor dat opeenvolgende leerstappen op elkaar
lijken met als bedoeling om de (ongewenste) fluctuaties die optreden in het leerproces te dempen.
Dit proefschrift richt zich in het bijzonder op deze twee gevallen. Vragen die worden gesteld zijn
bijvoorbeeld: Hebben correlaties tussen de voorbeelden invloed op de trend en de fluctuaties
in het leerproces? In hoeverre helpt een momentum term om fluctuaties in het leerproces te
dempen?

Het blijkt dat correlaties tussen voorbeelden geen invloed hebben op de trend in het leer-
proces. Hier is alleen de gemiddelde kans om een voorbeeld aan te treffen van belang. Op
de fluctuaties hebben zij wel degelijk invloed. Dit is als volgt samen te vatten: hoe groter de
kans dat twee opeenvolgende voorbeelden door de onderlinge correlaties op elkaar lijken, des te
groter zijn de fluctuaties in het leerproces. Een ander resultaat in dit proefschrift is de quantita-
tieve verklaring waarom neurale netwerken sommige taken wel kunnen leren met gecorreleerde
voorbeelden die ze met ongecorreleerde voorbeelden niet of veel moeilijker kunnen leren. Het
blijkt dat er in zo’n situatie sprake is van een ‘plateau in het foutenlandschap’, waardoor het
leerproces vrijwel stil komt te liggen. De correlaties tussen de voorbeelden zorgen voor een klein
additioneel effect dat in reguliere situaties niet van belang is, maar in geval van een plateau net
het leerproces weer aan de gang kan helpen. Tenslotte blijkt het toevoegen van een momentum
term in on-line leren niet of nauwelijks zin te hebben. Het toevoegen van een momentum term
komt in het algemeen effectief slechts neer op een herschaling van de leerparameter.

Tenslotte is er in één hoofdstuk wel naar een specifiek neuraal netwerk met een specifieke
leerregel gekeken. Voor grote een-laags perceptrons met de bekende perceptron leerregel is onder-
zocht wat het resultaat van het leerproces is. Als de trainingset uit alle mogelijke inputvectoren
bestaat blijkt dit resultaat in laagste orde door de regel van Hebb beschreven te worden. Als de
trainingset bestaat uit clusters van op elkaar lijkende voorbeelden, waarbij het aantal clusters
schaalt met de grootte van het perceptron, dan kan er een zelf-consistent stelsel vergelijkingen
voor de gewichten worden afgeleid. In de limiet waarin de groottes van de clusters naar nul
gaat, worden de oplossingen van dit stelsel gegeven door de gewichten met maximale stabiliteit.

