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Abstract

Exact inference in large, detailed probabilistic models for medical diagnosis is typ-
ically computationally infeasible, and approximate schemes are therefore of great
importance. In this paper, we consider variational methods, which provide bounds
on the probabilities of interest. We sketch some characteristics of a typical broad
and detailed probabilistic model (BDPM) for medical diagnosis and describe how
recently developed variational techniques can be applied for approximate inference
in such a model. Currently we are developing a BDPM to study the practical
feasibility and the usefulness of a system based on such a model in medical practice.

1 Introduction

Computer-based diagnostic systems can play many roles in decision support and other
areas of medical practice. Most systems are designed to produce a differential diagnosis
using a set of input findings entered by the user (as opposed to textbooks that tend to
do the reverse - taking individual diseases and listing the associated findings). At present
several systems are available such as Meditel [1], Quick Medical Reference (QMR) [2],
DXplain [3], and Tliad [4].

The different systems that have been developed so-far use a variety of modelling ap-
proaches which can be roughly divided into two categories: rule-based approaches with or
without uncertainty and probabilistic methods. The rule based approach can be viewed
as an attempt to simplify the probabilistic approach in order to reduce computational
complexity. The probabilistic approach, however, has the advantage of mathematical
consistency and correctness. In particular belief networks (see e.g. [5, 6]) provide a pow-
erful and conceptual transparent formalism for probabilistic modelling. The progress that



has been made during the last decade in exact computation in belief networks makes the
argument in favour of rule based approaches less and less persuasive. Indeed, most modern
approaches for medical diagnosis are based on the probabilistic approach.

The inadequacies of the current systems [7, 8] are therefore not due to the method
used, but rather due to the scope and level of detail at which the disease areas are
modelled. Either the system is based on detailed modelling of a restricted medical sub-
domain [9, 10], or the system covers a large domain, at the expense of the level of detail at
which the disease areas are modelled [11]. The reason for this restriction is that standard
belief networks become intractable for exact computation if a large medical area would
be modelled in detail.

To proceed one has to rely on approximate computations. Recently, variational meth-
ods for approximation are becoming increasingly popular [12, 13, 14, 15, 16]. An advantage
of variational methods techniques is that they provide guaranteed bounds on the level of
approximations in contrast to stochastic sampling methods [15], which may yield unreli-
able results due to finite sampling times. Until now, variational approximations have been
less widely applied than Monte Carlo methods, arguably since their use is not universally
so straightforward. In this paper, however, we will argue that variational methods are
indeed applicable to large, detailed belief networks for medical diagnosis constructed by
human experts. In particular we will argue that such models will typically have a bipartite
structure that is intractable for exact inference.

The paper is organised as follows. In section 2 we discuss the bipartite structure of
a broad and detailed probabilistic model for medical diagnosis constructed by human
experts. In section 3 we describe bipartite networks in mathematical terms. In section
4 we show how variational methods can provide lower and upper bounds on quantities
of interest in bipartite networks. In section 5 we give a short description of a demo of
a medical system based on the methods described in this paper. We conclude with a
discussion in section 6.

2 Modelling and network structure

We here outline how the structure of a broad and detailed belief network constructed by
human experts will typically look like, based on an extrapolation of the current modelling
experiences of the physicians in our group. Details of the medical domain, the choice
of variables, the inclusion of pathophysiological hidden variables, the transformation of
continuous variables into binary variables, the assessment of probabilities etc. are beyond
the scope of this paper and will be discussed elsewhere.

Medical experts tend to subdivide knowledge concerning a medical domain, e.g. anae-
mia, into sub-domains with a relatively small overlap. As a result, the network that
models the full domain will typically have a modular structure (cf. fig. 1). Each module
represents knowledge about a sub-domain and is modelled by a reasonably small belief
network in which the nodes have only a small number of parents. The interconnectivity
between the sub-domains is also small. There are two types of variables outside the
sub-domains which link the many sub-domains together. One such type are variables like
"age’ or ’sex’, which determine prior probabilities of diseases. These variables are common
ancestors of a large number of sub-domains. The other type of variables are influenced by
causes in many sub-domains. An example is the variable ‘hemoglobin level’ (Hb) in the
domain of anaemia. There are many sub-domains within anaemia, each impacting on Hb.
That is, variables like Hb are common children of a large number of sub-domains. Since
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(a) Modular structure (b) Graphical structure

Figure 1: Modular and graphical network structure. Left: modular structure of the network.
A, B, C ... represent (overlapping) sub-domains. Each sub-domain is modelled by a number
of nodes (cf. right figure) representing variables that are relevant in that domain. The upper
nodes, e.g. ‘sex’ and ‘age’ represent common ancestors of nodes in several sub-domains. The
lower nodes, e.g. ‘Hb’ represent common children of nodes in several sub-domains (e.g. related
to anaemia). Right: underlying bipartite graphical structure of same network. Filled circles:
nodes in sub-domains and their common ancestors. Open circles: common children

these nodes then have parents in many sub-domains, modelling using explicit probability
tables is not feasible (the sizes of the tables grow exponentially in the number of parents).
Fortunately, it is not necessary to define these large tables explicitly, since medical experts
are likely to have in mind a more compact functional relation between these variables and
their direct parents. Such a compact relationship is typically a noisy-OR [5] or a similar
parametrised relationship.

2.1 Inference

The inference problem is to compute probabilities in the model, given evidence. If a net-
work includes only a few medical sub-domains, exact inference using standard algorithms
is feasible. However, in a detailed and broad network, such as described in the previous
section, exact inference is infeasible due to the connectivity between the modules via the
shared variables such as Hb. For instance, exact inference involves a summation over all
the parent-states of the variable Hb and this exponentially large summation cannot be
performed efficiently.

3 Biparite networks

The considerations of the previous section motivates us to consider a bipartite ! network
N. A bipartite network consists of two parts (see fig. 1(b) ). One part, which we call the
parent network N parent, 15 @ conventional belief network (black nodes). The only restriction
for this parent network is that it is assumed to be tractable. Nodes of the parent network
are connected (via noisy-OR gates [5]) to the common children in a second network, which
we call the child network NMaig (white nodes in fig. 1(b) ). Conditioned on the state of the
parent network, the nodes in Nuq are independent. One may view a bipartite network

as a generalisation of the bipartite network of the QMR-DT database [11, 13, 17]. The

!Note that our definition of bipartite networks differs from the usual definition in graph theory



difference is that the upper network in QMR-DT consists merely of disconnected nodes,
while in our case the upper layer is a belief network with a non-trivial graphical structure.

In a bipartite network the probability of a state S = (Si,...,S5,) therefore assumes
the following factorised form,

P(5) = I;IP(SICISM)HTLOR(&'ISM) (1)

3

with ¢ € Mg and k& € Nparent. We denote S;, for the state of the parent set m; of
the node k. All the parents are in Nparent. For convenience we focus in this treatment
on binary variables S; € {0,1}, representing the presence or absence of a disease or a
finding. We will use shorthand notation S7 for S; = 0, S for S; = 1. The noisy-OR
gates nOR(S;|Sx,) are defined such that the probability for S; is

nOR(S7[Sx,) = (1= a0) [T (1 = ai)™ (2)
JET;
and nOR(S7|Sy,) = 1 —nOR(S7|Sx,). The parameter gy is the so-called leak probability.
This is the probability of a positive finding S; if all its parents are 0. The parameter g;;
can be interpreted as the probability on S; if only the parent S; = 1, while the others
are 0 (if there was no leak probability).

Since Nparent is assumed to be tractable, exact computation is efficient if the nodes
in Nepia are not observed. Also negative findings S can be dealt with in linear time,
since nOR(S;|Sy,) factorises over the parents (see (1) ). The problem in this network is
that exact computation is inefficient for positive nodes S} in the child network[13, 17],
since the computational costs of inference involving these nodes scales exponentially in the
number of parent states. In the next section we will propose variational approximations
to deal with this problem.

4 Variational methods for bipartite networks

The starting point of variational methods is to transform the inference problem into an
equivalent optimisation problem. The optimisation problem has a simpler structure than
the original inference problem, but there are unknown parameters involved. If one is
able to find the optimal set of these parameters, one has solved the inference problem.
Of course, to find the optimal set of parameter is just as hard, or even harder than the
inference problem itself. The trick in the variational methods is to restrict the param-
eter space so that the optimisation problem becomes feasible. Although the solution of
the restricted optimisation problem does not lead to the exact solution of the inference
problem, it is guaranteed to bound the exact solution.

In the following subsections, we show that upper and lower bounds of marginal likeli-
hoods can be computed. The way that these bounds are derived are similar to the upper
bounds for the bipartite QMR-DT network derived in [13, 17] and the lower bounds for
sigmoid belief networks derived in [12]. The difference with these previous papers, how-
ever, is that we are able to exploit more fully the graphical structure of the parent network,
as in [18, 19], leading to a better approximation algorithm.

Once upper and lower bounds of marginals are computed, bounds on conditional
probabilities can be obtained by taking fractions of the marginal bounds, see [13, 17] for
more details. Techniques to combine approximate and exact combinations can also be
found in these references.



4.1 Upper bound

Before we proceed, it is convenient to re-express the noisy-OR gates (2) using an expo-

nential notation with parameters 6;; = —log(1 — qz-j)
nOR(S7|Sx,) = exp(—bio — Y 0:;5;)
jEm;
= exp(—z;) (3)

in which with z; = 37, 0:;S; + ;0. The upper bound of the marginal likelihood is based

on the following inequality,

In(1 —e™?) < €z — F*(§) (4)
in which F*(§) = —¢Iné + (1 + &) In(1 + £). For given z, this inequality is valid for
each value of the variational parameter £. If the right-hand-side of (4) is minimised with
respect to &, the inequality becomes an equality (for given z).

Applying inequality (4) to the bipartite network (1) we obtain the following bound
on the marginal likelihood P(Sy) of the ‘visible’ variables V' = {Viaent; Venita} C

{Nparenty Nchild}y
PSS 8 TIPS ep(E oz = F(6) = L) (5)

{SHparent}

As before, nodes with indices k are in Nparent. Nodes with indices it/ € Vg have pos-
itive/negative findings. Spgparent are undetermined (hidden) states in the parent network.
Note that this bound is tractable, since the product over child nodes is log-linear in the
parent states S;. The graphical structure of the parent states is therefore not affected, and
remains tractable. To get the bound as tight as possible, we optimise the right-hand-side
of (5) with respect to the &;+’s, using some numerical procedure.

4.2 Lower bound

Recently it has been proposed to use variational techniques to obtain a lower bound of
the marginal likelihood in sigmoid belief networks [12, 18, 19]. Similar methods can be
applied to the bipartite networks considered in this paper. To derive the lower bound
for a network with noisy-OR gates, we use the following expansion of the exponential
function [17]

o0

1 —exp(—=z) = H(l + exp(—=2"z))~"

xk=0
from which we deduce, usings Jensen’s inequality,

((1 = exp(=2)))g = = 3 ({1 +exp(~2%2))g).

Using this bound, combined with the general theory of variational lower bounds of the
likelihood we obtian,

In P(Sv) > FviQ] = Z <hlP(Sk|STrk>Q - Z <Zi_>Q

+ Z: ij:oln(l + <exp(—2”zi+)>Q)

- {Z} Q(Sr)InQ(Sw) (6)



which is valid for any approximating distribution Q(Sy). As before, k € Nparent and
i € Nenilas 2i = > 4i;S; + by and <>Q is the average with respect to the so-called mean
field distribution Q(Sg). Sg are again the undetermined states in the parent network.
Since this inequality holds for any (), one can make the bound as tight as possible by
optimising Fy @] with respect to ). Recently, it has been shown that if tractable belief
networks are used for the mean field distribution Q(Sg), then the optimisation of can
be performed efficiently using mean field equations [18, 19]. The same studies noted
the increase in precision of the bound if the structure of the mean field distribution had
more overlap with the structure of the network that was to be approximated. In the
the bipartite networks considered in this paper, a natural structure for the mean field
distribution Q(Sg) is a belief network with the same structure as Nparent.

5 Demo

In this paper, we have laid the theoretical foundations of a BDPM based on a bipartite
network. In order to examine its usefulness to support medical practice, we are currently
developing such a system for the domain of anaemia. In the near future, the system will be
evaluated in a clinically realistic setting. Performance will be assessed not only in terms of
diagnostic accuracy, but more importantly how the system influences the performance of
physicians using the system, and to what extent the users are satisfied with the system [7].

The BDPM engine is connected to a user friendly interface. In addition to a differen-
tial diagnosis based on the available patient information, the interface will also provide
information, such as abstracts and references to relevant literature, explanatory functions
to motivate the conclusions of the system, and advice for further action. It is our aim to
use this demo both in a clinical and an educational setting.

6 Discussion

The development of an automated system for comprehensive medical diagnosis in internal
medicine represents a great challenge for Al. A broad and detailed probabilistic network is
intractable for exact inference in this context, although recent developments in variational
methods may provide a practical solution for approximate inference. Building on the
theoretical foundations established here, 1t is a topic of vital importance to assess their
performance in a real world situation.
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