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Abstract

Exact inference in large, densely connected probabilistic networks is computa-
tionally intractable, and approximate schemes are therefore of great importance.
One approach is to use mean field theory, in which the exact log-likelihood is
bounded from below using a simpler approximating distribution. In the standard
mean field theory, the approximating distribution is factorial. We propose instead
to use a (tractable) belief network as an approximating distribution. The resulting
compact framework is analogous to standard mean field theory and no additional
bounds are required, in contrast to other recently proposed extensions. We de-
rive mean field equations which provide an efficient iterative algorithm to optimize
the parameters of the approximating belief network. Simulation results indicate a
considerable improvement on previously reported methods.

1 Introduction

Belief networks provide a rich framework for probabilistic modeling and reasoning [1, 2].
Their graphical structure provides an intuitively appealing modularity and is well suited to
the incorporation of prior knowledge. Belief networks often used in a domain with causal
structures, such as speech recognition and medical diagnosis. Thanks to the directed
graphical structure in these models, exact inference requires only local computations, in
contrast to undirected models, such as Boltzmann machines. However, the complexity
of exact inference scales exponentially with the clique size and, as a result, large densely
connected networks are intractable for exact computations. Finding good approximate
techniques for dealing with such models is therefore crucial if their power is to be realised.
Whilst techniques do exist to handle large complex networks, most are based on uncon-
trolled approximations (such as Monte Carlo methods - see, e.g. [3]) and we seek instead
a more rigorous approach.

One such method is to use mean field theory [3] which provides a rigorous lower bound
on the likelihood through the use of a simpler variational approximating distribution. A
lower bound is particularly useful since maximization of the lower bound can be used as a
learning procedure when the true loglikelihood is intractable. Standard mean field theory
resorts to using completely factorized models as approximating distributions. We will
show that this restriction is unnecessary and that mean field techniques can be pushed
much further without incurring much more computational overhead.

The paper is organized as follows. In section 2 we review the standard mean field
theory using factorized models, as proposed by [4]. In section 3 we show how this theory



generalizes in a natural way when belief networks are used and discuss the relation to
other extensions proposed in the literature [5, 6, 3]. In section 4 we apply the method on
a toy benchmark problem [4, 5].

2 Mean Field Theory

Consider a probability model P(S) on T binary valued units, S = {5, 52,..., 57} with
S; € 0/1. (The following exposition is readily generalisable to many-valued discrete units).
We wish to compute the likelihood P(Sy) that the set of visible variables is in state
Sy = Suys- -+ Suy, - This involves the summation over exponentially many states of the H
remaining (hidden) variables, P(Sy) = 2 Sk} P(Sy,Sy). When this summation cannot
be computed efficiently, approximate methods must be introduced. We present here
the mean field theory approximation in some generality before specialising to particular
models in later sections.

Consider the Kullback-Leibler divergence between the conditional hidden unit distri-
bution, P(Sy|Sv) and an approximating distribution Q(Sy),

KL= Q(Su)mQ(Sy)— > Q(Su)In P(Sy|Sy) >0 (1)
{Su} {Su}

Using Bayes rule, P(Sy|Sv) = P(Su,Sv)/P(Sv), we obtain the following bound,

InP(Sy) > — > Q(Sx)mQ(Sk) + Y Q(Sm)In P(Sw, Sv) (2)
{Su} {Su}

The first term in this bound, H(Q) = 2o{Su) Q(Sy)In Q(Sy) is the entropy of the ap-
proximating distribution ). For general probability distributions on the hidden vari-
ables, H(() is not tractable, and we therefore restrict Q(Sy) to be in a class of sim-
pler, tractable models M. Unfortunately, the second term 3 (g, 1 Q(Su)In P(Su, Sv)
may not be tractable, even if the entropy term is. In this case we assume, however,
that the term is also boundable, perhaps with recourse to other variational parameters,

25wy Q@(SH)log P(Sv, Su) > Ev(Q,&). We then write the bound in the general form,

I P(Sv) = Ev(Q,¢) - H(Q) = Fv(@Q,¢) (3)

in which ¢ is a free parameter vector in a domain =. The bound (3) is then made as tight
as possible by maximizing Fy (@), &) with respect to @ € M and £ € =.

2.1 Factorized models

The simplest mean field theory restricts the class M to factorized distributions

Q(Sw) = [ Q(S) (4)

1€H
The entropy H(Q) decomposes nicely into a tractable sum of entropies per site,

2. QUSm)InQ(SH) =3 > Q(S)InQ(S) (5)

{Su} i€H {S:}



Similarly, it would be nice if the energy would decouple in a corresponding way.
Clearly, if the energy factorizes over the sites, [Ticq €ui(Si,€) = €u(Su,§) then this is
possible, so that a general form of “nice” energy functions is given by

M

= 3 llenl$1:6)o) (6)

where f,(z) is a scalar function. The computing time needed for the energy is then linear
in M, which we assume to be at most polynomial in the number of hidden units, H. We
will encounter just such an energy form in relation to the approximation of sigmoid belief
networks, section 4.

In order to optimize Fy(Q,¢), we introduce parameters ¢; = Q(.S; = 1). The required
normalization of ) fixes the remaining probability Q(S; = 0) = 1 —¢;. Setting the gradient
of Fv, (3) with respect to the ¢;’s equal to zero yields the mean field equations

g =0 (ViEv(Q,)) (7)

where the gradient V; is with respect to ¢;. The sigmoid function o(z) = 1/(1 4 ¢77)
is the inverse of the gradient of the entropy. Since (e,(SH, f))Q is linear in each of the
parameters g;, computation of the gradient V,;Fy(Q,¢) is straightforward. A fast, two
step iterative procedure to optimize Fy (@), £) with respect to the ¢;’s and &, is proposed
in [4]. In the first step, the ¢;’s are optimized by iteration of the mean field equations (7)
while the ¢ remain fixed. In the second step, £ is optimized directly using Fy (Q, £) while
the ¢;’s remain fixed. The two steps are iterated until convergence is reached.

3 Mean Field Theory using Belief Networks

We now consider the much richer class of belief networks as approximating models, while
using the same general energy Ev(Q, ) as in the previous section. A belief network is
defined by a factorization over conditional probability distributions,

t€H

in which m; denotes the sets of parent nodes of i, see fig(1).
The efficiency of computation in a belief network depends on the underlying graphical
structure of the model and is exponential in the maximal clique size (see, for example [2]).
We now assume that our model class M consists of belief networks with a fixed,
tractable graphical structure. The entropy can then be computed efficiently since it
decouples into a sum of averaged entropies per site ¢ (with the convention that Q(Sx,) =1

if m = ¢),
> QS MQSH) =Y Y Q(S.) Y Q(SiS-) nQ(Si|S,) (9)

{Su} € L5} {8:}
For tractable networks, the energy Fy(Q,¢) (6) is composed of terms

<€#(SH7§)>Q = Z eu(Su,§) H Z eui(Si, §)Q(5:|Sx,)

{Su} i {S;}
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Figure 1: (a) A Belief Network. The parent set of each node i is that set of nodes which point
into node i. (b) Clique graph, containing cliques of size 2 and 3.

which has exactly the same graphical structure as the belief network @ itself, (8). There-
fore, computing the energy is of the same complexity as that for computing with the
approximating belief network Q.

In order to optimize the bound, analogous to the factorized case, we parametrize

() via its conditional probabilities, ¢;(Sr) = Q(Si = 1|S;). The remaining
probability Q(S; = 0|S;,) follows from normalization. We therefore have a set
{qi(Sx)|Sm = (0...0),...,(1...1)} of variational parameters for each node in the graph.

Setting the gradient of Fy with respect to the ¢;(Sr,)’s equal to zero, yields the mean
field equations

(Vis., Bv(Q,6)) + Lis,, ) (10)

@(5) = o ( Q(5;.)

with

Lis, = =>_ ;[V”’” Q(Sx,)] > Q(S;187,) n Q(5;]5x,) (11)

-
J

The gradient Vs is with respect to :(Sr;). The explicit evaluation of the gradients
can be performed efficiently, since all that need to be differentiated are at most scalar
functions of quantities that depend again only linearly on the parameters ¢;(S,). To
optimize the bound, we again use a two step iterative procedure as described in section
2.1. We see therefore, that the application of mean field theory using belief networks
is analogous to that of using factorized models. However, the more powerful class of
approximating distributions described by belief networks should enable a much tighter
bound on the likelihood of the visible units.

3.1 Other methods

In the previous section, we described an approach in which a tractable belief network can
be used, with the whole network of conditional probabilities being available as variational
parameters. We briefly mention a related approach, which can be seen as a subclass of the
more general algorithm previously described, and for which only a subset of the variables
of a tractable distribution are varied. This modified mean field method was developed in

[6].



Figure 2: Graphical structure of the 2-4-6 nodes sigmoid belief network. Open circles: visible
units Sy. Filled circles: hidden units Sz. Maximum clique size: 6.

Here the class of approximating distributions is given by
Q(Su) = —— [T exp(Xi(5:)P(Sm) (12)

in which P(SH) is a tractable belief network which is preset by hand and remains fixed
during optimization. Zg is a normalization factor. The idea is that p(SH) mimics the
original intractable probability distribution P as much as possible. For example, deleting
certain connections in the original model P may render the graph tractable. In order to
compensate for this simplification, the functions X;(.S;) can be varied. Since the freedom
Ai(S;) does not affect the graphical structure, the distributions @ are tractable belief
networks as well. However, in contrast to our approach, only a small subset of tractable
belief networks is explored during the optimization since only the A;’s are varied while
P(SH) remains fixed. In [3] the method is applied in factorial hidden Markov models, in
which P(SH) is a product of Markov Chains.

Recently [5, 3] have proposed to use mixtures of factorized models. Unfortunately,
the entropy term 3" g,3 Q(Sm)In Q(Sm) is not tractable for mixtures, and an additional
bound is needed. This leads to a rather large number of variational parameters, arguably
because the approximating distribution is not faithful to the structure of the original
model.

4 Application to Sigmoid Belief Networks

We applied mean field theory using belief networks on a toy benchmark problem to com-
pare its performance with previously reported methods. Following [4, 5] we consider a
problem in a three layer (2-4-6 nodes) sigmoid belief network in which the last 6 nodes are
visible, fig. 2. In a sigmoid belief network [7] with binary units (S; = 0/1) the conditional
probability that the variable S; = 1 given its parents Sy, is

P(S;, =115;,) = o(z) (13)

with z; = 37, Ji;5; + hi. The weights J;; (with J;; = 0 for j & m;) and biases h; are the
parameters of the network. In attempting to compute the lower bound, (2), unfortunately,
the average of P(Sy,Sy) is not tractable, since (In[l 4+ ¢”]) does not decouple into a
polynomial number of single site averages. We make use instead of the further bound
proposed by [4]

(Infl +€7) < €(z) +In (et 4 £0797) (14)

We can then define the energy function
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(a) disconnected (‘standard mean field’) b) chain - 19 parameters, mean:
- 16 parameters, mean: 0.01571(5). Max. 0.01529(5). Max. clique size: 2
clique size: 1
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c) trees - 20 parameters, mean: d) network - 28 parameters, mean:
0.0089(1). Max. clique size: 2 0.00183(1). Max. clique size: 3

Figure 3: Graphical structures of the approximating distributions on Sy (cf. fig. 2 ). For each
structure, histograms of the relative error between the true log likelihood and the lower bound
is plotted. The horizontal scale has been fixed to [0,0.05] in all plots. The maximum clique size
refers to the complexity of computation for each approximation, which is exponential in this
quantity.

Ev(@,€) = 3 Jij (Sii)g + 2 (hi = D &5750) (Sig
- £ n {6z L 1=&)=
Dohit = Yln (e g 090 - (15)

where the variational parameters £ € [0,1]. Note that this is of the class of energy
functions defined by (6).

In order to test our method numerically, we generated 500 networks with parameters
{Jij, h;} drawn randomly from the uniform distribution over [—1,1]. The lower bounds
Fy for several approximating structures (including ‘standard mean field’, section 2.1) are
compared with the true log likelihood, using the relative error £ = Fy /In P(Sy) — 1,
fig. 3. These show that considerable improvements can be obtained when belief networks
are used. Note that a 5 component mixture model (&~ 80 variational parameters) yields
& = 0.01139 on this problem [5]. These results suggest therefore that exploiting knowledge
of the graphical structure of the model is useful in practice. For instance, the chain
(fig. 3(b)) with no graphical overlap with the original graph shows hardly any improvement
over the standard mean field approximation. On the other hand, the tree model (fig. 3(c)),
which has about the same number of parameters, but a larger overlap with the original
graph, does improve considerably over the mean field approximation (and even over the
5 component mixture model). By increasing the overlap, as in fig. 3(d), the improvement
gained is even greater.

5 Discussion

The use of tractable belief networks fits well in mean field theory. In contrast to a
previous mean field theory using constrained substructures [6], we search in the whole,
unconstrained space defined by the graphical structure of the approximating model. Since



factorized models and constrained belief networks are both subsets of unconstrained be-
lief networks, the latter class of models is guaranteed to give the tighter bound on the
likelihood.

In conclusion, we have described a general approach that functions with simple, or
complex approximating distributions, depending on the computational resources of the
user. We believe that this approach will prove beneficial for learning and inference in
large real-world belief networks [8].

Acknowledgements

This research is supported by the Technology Foundation STW, applied science division of NWO
and the technology programme of the Ministry of Economic Affairs

References

[1] J. Pearl. Probabilistic Reasoning in Intelligent systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Inc., 1988.

[2] E. Castillo, J. M. Gutierrez, and A. S. Hadi. Fzpert Systems and Probabilistic Network
Models. Springer, 1997.

[3] M. L. Jordan, editor. Learning in Graphical Models, volume 89 of NATO ASI, Series D:
Behavioural and Social Sciences. Kluwer, 1998.

[4] L.K. Saul, T. Jaakkola, and M.I. Jordan. Mean field theory for sigmoid belief networks.
Journal of Artificial Intelligence Research, 4:61-76, 1996.

[5] C.M. Bishop, N. Lawrence, T. Jaakkola, and M. I. Jordan. Approximating posterior distribu-
tions in belief networks using mixtures. In M.I. Jordan, M.J. Kearns, and S.A. Solla, editors,
Advances in Neural Information Processing Systems, volume 10, pages 416-422. MIT Press,
1998.

[6] L. K.Saul and M. L. Jordan. Exploiting Tractable Substructures in Intractable Networks. In
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information
Processing Systems, volume 8. MI'T Press, 1996.

[7] R. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56:71-113, 1992.

[8] W. Wiegerinck et. al. Variational approximations in a broad and detailed probabilistic model
for medical diagnosis. In Tenth Netherlands/Belgium Conference on Artificial Intelligence
(NAIC’98). CWI, 1998. in press.



