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Abstract

We derive analytical expressions for the connections of large perceptrons, by studying
the fixed points of the perceptron learning rule. If the training set consists of all possible
input vectors, we can calculate (for large systems) the connections as a series expansion
in the system size. The leading term in this expansion turns out to be either the Hebb
rule (for unbiased distributions) or the biased Hebb rule (for biased distributions). The
performance of our asymptotic expressions (and finite size corrections) on small systems is
studied numerically. For the more realistic case of having an extensive training set (patterns
learned with training noise) we derive a self-consistent set of coupled non-linear equations
for the connections. In the limit of zero training noise, the solution of these equations is
shown to give the connections with maximal stability in the Gardner sense.



1 Introduction

One of the simplest (and oldest) models for the evolution in time of connections in neural
systems is the perceptron [1, 2], equipped with the perceptron learning rule. Because of its
simple architecture a perceptron can only perform a restricted set of operations, the so-called
linearly separable functions. Nevertheless, perceptrons are a popular subject of study since the
perceptron learning rule is one of the most transparent models for learning in neural systems
for which a convergence theorem has been proved [2]. If a given task is linearly separable, then
the perceptron learning rule converges in a finite number of iteration steps towards a connection
vector that faithfully performs the task.

Statistical mechanical studies of perceptrons have resulted in a wealth of knowledge about
properties like storage capacity, generalization [3, 4] and in a number of even more efficient
perceptron-like learning rules [5, 6, 7, 8] (with associated convergence theorems). For a more
detailed overview of the literature on perceptrons and their properties we refer to textbooks like
[2, 9, 10] or the recent review by Watkin et al [11]. In particular Opper [12, 13] seems to have
been the first to study analytically the dynamics of Perceptron-like learning rules (he calculated
learning times and the probability density of the embedding strengths of patterns in an optimally
stabilized perceptron). What is still missing in the literature, however, is a method to calculate
analytically the connections which are the outcome of such learning rules. More generally: given
a linearly separable task T" and given a training set 2 of input vectors one would like to calculate
the connection vectors J that will faithfully perform the task T for all vectors in €.

In this paper we address this problem. We try to calculate the connection vectors J that
perform a given task 7 on a given input set @ C {—1, 1}V, by using the fact that such connections
are fixed points of the perceptron learning rule. If the training set consists of all possible input
vectors, @ = {—1,1}", the fixed point equations enable us to calculate the connections as a
series expansion in powers of 1/\/N (N is the number of input units). If, on the other hand, the
training set consists of an extensive number p = aN of prototype patterns 5_7‘ in combination with
small regions €, around these patterns (i.e., training with noise), we find that the connections
satisfy a self-consistent set of nonlinear equations. In the limit of zero training noise the solution
of these equations gives exactly the interactions with maximal stability in the Gardner sense.

2 The Perceptron Fixed-Point Equation

A standard perceptron [1, 2] performs a mapping from {—1,1}" to {—1,1} (N is the number
of binary input units). The state u of the binary output unit depends on the states of the N
binary input units s; € {—1,1}" in the following way:

u(3) = sgn(J - 3) J e RN (1)

Those mappings T : {—1,1} — {—1,1} that can be written in the form (1) are called linearly
separable functions. Given a specific linearly separable function T and a set Q C {—1,1}V
of input vectors, the perceptron problem is: find a vector J € RV of connections such that
u(%) = T(3) for all 5 € Q. The vectors J that solve the problem are the solutions of:

-

sen(J-8) =T(5)  VieQ (2)

This paper tries to calculate the solutions of (2) and to find an analytical expression for the
connections J in terms of the task T on 2.



Instead of trying to solve (2) directly, we will make use of a specific property of the perceptron
learning rule [1, 2], of which we know that the fixed points are solutions of (2). The perceptron
learning rule is defined as the modification of connections via the following stochastic procedure

1)  draw at random an input vector § €

according to the probability distribution p(3)
L1 .
2)  AJ= §€§[T(§) — sgn(J - )] (3)
3)  return to 1)

where € > 0 is the learning parameter. This procedure was shown [2] to converge in a finite
number of iteration steps towards a solution of (2), provided that T" is indeed linearly separable
(which we assume to be the case). Calculating the fixed points of (3) is equivalent to solving
the original problem (2). By writing the perceptron learning rule as a master equation, and
expanding the master equation in powers of ¢, we can separate the macroscopic part (of order
€®) from the fluctuation part (of order \/€) [14]. After a rescaling of time by a factor e, the
macroscopic part obeys the deterministic differential equation

%J _ %(é’[T(E) — sen(J-9))a

where (---)}q indicates averaging over the distribution p(5). Whatever the details of the fluc-
tuation part, we know the perceptron rule will evolve towards a fixed-point. Fixed-points of
the (stochastic) rule (3) are automatically fixed-points of the above deterministic equation. An
important property of the perceptron learning rule is that the inverse of this statement is found
to be true as well:

T(5) = sgn(J-5) V5eQ & (5T(3))q = (5sgu(J - 5))q (4)

It is trivial to prove that the right-hand side of (4) follows from the left-hand side. Here we will
only prove the complementary statement. Since 7' is linearly separable on Q (by definition),
there exists a vector B € RV, such that T(3) = sgn(B - 8) on Q. This allows us to write:

0 = B-(5T(3))q— B (ssgu(J -3
= (B3 [1 - sgn(B - 5)sen(J - 9)])a

Since | B-3] > 0 (V5 € Q), we must conclude that sgn(B-5) = sgn(.J-3) (V5 € Q) (which completes
the proof of (4)). Note that the fixed point theorem (4) is exact for all N, all @ C {—1,1}", all
non-zero distributions p(§) on Q and all linearly separable tasks 7.

Theorem (4) provides a reduction of the original problem (2) of finding the solution of a set
of |Q] coupled inequalities to the problem of finding the solution of a set of N coupled non-linear
equations. The rest of our paper aims at calculating the solutions of these equations:

(ST(5)a = (Fsgn(J - ))a (5)

where there is still freedom in choosing any (non-zero) probability distribution on . We inter-
pret this distribution as defining the probabilities with which individual inputs 5 € Q are drawn
during the learning process.



3 Homogenous Distributions

In this section we use the fixed-point theorem (3) for calculating analytically (as a series ex-
pansion in inverse powers of the system size N) the connections that perform a given task
T, for the simplest case in which the traing set consists of the set of all possible input vectors:
Q = {-1,1}". We study two choices with respect to the probability distribution on this training
set: unbiased (uniform) probabilities and biased probabilities.

3.1 Unbiased Homogeneous Distribution

The first case we study is Q@ = {—1, 1}, p(5) = 27 (the uniform distribution). In this case the
right-hand side of (5) can be calculated exactly (including all orders of N). First we rewrite:

= 00 J;
(sisgn(J - 8))q = /_OO dzP;(z)sgn[J; + z] = 2/0 dzPy(z) (6)
where

Fi(z) = (¢

=) Jij] )9
J#

Note that the inversion symmetry p(5) = p(—5) of the uniform distribution implies that P;(z) =
P;(—z). In Appendix A we analyse probability distributions P(z) of the above form. In terms
of the variables at hand the result is

n>2

Ki= [SJ2 = |J]]y1- 2 (Ji = T/ |17]])
J#L

The functions H(z) are the Hermite polynomials. The coefficients D;,(.J) are given by

Din(j)E E (k-l—l' E E (San,[ m1ka+1Q2m1(j)Q2mk+1(j)]

kSn/?—l ME41=2

where

where €, and Q;,(.J) are defined as:

2n—1/92n __
C, = 2 (2 L)\ Bz (B : Bernoulli numbers [15])
n(2n)!
Qin = Ejfn [1 - jz2]_n € [071]
J#1

Using (7) we can now perform the integral in (6). The equation from which the solution of the
fundamental problem (5) must be calculated thereby becomes:

7
s$;T(8 = ef | ———
2

—ex Din( j ) Hop—q
" p[ —J?LZ;Q (\f\h—ﬂ) (

8)



So far no approximation has been made. Eq. (8) is completely equivalent to (5), including finite
size effects. However, Eq.(8) is much more suitable for calculating the solution J as a series in
powers of N than the original equation (5).

If, for instance, we assume that J; = O(N~/2) (motivated by 3 .J? = 1), we can expand

—-1/2

Eq.(8) in powers of N up to any desired order:

2 . _ 2 0. 1. 1.
(s;T(3))q = \/;Jz- +O(N3/%) = \/; {Ji + ng — ZJizj:J;‘

+O(N~%) (9)

where we have used D;, = O(N1="). Since J; = O(N~/2) for all 4, we expand the solution .J
of (9) in powers of N=1/2. Substitution of this expansion into Eq. (9) yields:

Ji = \/;sifr(g)m +O(N3/2) (10)
ST (@ [1 ~ ST+ T (s T(

J

+ O(N/?) (11)

where (5;T(5))q is found to be of order N=1/2, Equations (10,11) show that, if for the training
set we choose Q = {—1,1}" with uniform probabilities and if the task vector B and thus the
vector J have > components such that J; = O(N~2), then (in first order in N=1/2) we find the
connections J to be proportional to the ones obtained by applying the Hopfield [16] version of
Hebb’s [17] rule to the full set {—1, 1}V of input vectors. This result agrees with the findings of
Vallet [18] who showed that for large systems (N — oo) and for a specific type of task vectors B
(which satisfy our condition) Hebb’s rule learns and generalises well if the number p of examples
(drawn from a uniform distribution) diverges sufficiently fast (p/N — oo as N — o0). The
second order (N~3/2) in Eq. (11) can be interpreted as finite size corrections to Hebb’s rule.

3.2 Biased Homogeneous Distribution: The Gaussian Approach
The next case we will study is the biased homogeneous distribution of input vectors: =
{=1,13", p(8) = pi(s1)...pn(sn) (the variables {s;} are still independent). The individual
probabilities are written as:
1 1
pi(s) = 5(1 + a;)ds1 + 5(1 —a;)bs,—1 —-l<a; <1
We will also allow for a threshold, both in the definition of the task
T(3) = sgn(B -5+ By)

and in the perceptron itself (e.g. by adding a dummy input variable s5 = —1). According to
the fixed point theorem (4) the solutions of the perceptron problem are the solutions (.J;.Jg) of

(5T(3)a = <§Sgn(f'§+Jo)>Q
(T())a = (sgn(J -5+ Jo))a

To simplify algebra we will now assume that for large N the terms }_,.J;s; have a Gaussian

probability distribution (in Appendix B we analyse the conditions to be imposed on B and J
for this assumption to be justified). In doing so we will no longer be able to calculate finite



size corrections to the N — oo result (in contrast to the approach followed in the previous
subsection). After some algebra we now obtain:

(siT())a = %(1 + a;) erf [Ji(l —a)+Jo+J- d’]

V20;

1 Ji(l‘}‘ai)_e]o_j"(_i
-|—§(1 —a;)erf [ o, ] (12)

T@a = el [i] (13)

in which o9 = Y, J?(1—a?) and 0} = 0§ — JF(1—a}). Since ), J;s; has a Gaussian distribution
we may use the fact that J; < 1 to expand (12,13)

(siT(5))a = a;erf [w

B (Jo+J - @)
(T(9))e = el liﬁ ]

where Jy = Jo/J and Z = 2J7%20%. We can now invert these relations and find for N — oo in
leading order:

] + Ji(1 - d?) exp l—i(jo+j.6)2] + O(J?)

2
v Z Z

= Vs a)T@aexe [ext (X)) (14)

a;)

[ atd
DO
—~
—

S
[l
N
@
=
=
L
=
Nl
5

VTS (= a)T(aexp [t (T(3)g)] (15)

Since a rescaling of both J and Jy does not affect the mapping performed by the perceptron
(J; Jo), there is in principle no need to calculate the factor Z explicitly. If one puts a; = a and
if the thresholds By and Jy are choosen to be zero, then (15) reduces to

I = {5 = T (16)

where Z' is a proper normalization factor. Finally one can verify that for « = 0 one recovers the
first order of (10).

The final result of this section, Eqns.(14,15,16) shows that (in leading order in the system
size N) the connections f, expressed in terms of biased statistics of the binary input variables
si, are found to be proportional to the ones obtained by applying the biased Hebbian rule of [19]
to the full set {—1,1}" of input vectors. The biased Hebbian rule of [19] seems to make use of
global information; since the Perceptron learning rule is nonlocal (because of the appearance of
the crucial global term T(8) — sgn(.J - §)) the resulting interactions are indeed allowed to depend
on nonlocal quantities. The condition on the task vectors B for our analysis to apply is that
for large N the inner product B - § must have a Gaussian probability distribution. In addition
we have found an expression for the threshold Jy. In Appendix B we show that the assumption
of a Gaussian distribution is justified with probability one if the task vectors B are drawn at
random from, for instance, a spherically symmetric distribution or a hypercube in RV .



3.3 Numerical Results

The performance in finite systems of our asymptotic (N — oo) expressions for the connections
is studied numerically. We calculate over a given ensemble P of linearly separable tasks the

—
—

average overlap Qn between the task function 7(8) = sgn(B - §) and the perceptron mapping
upon choosing for the connections J(B) either the truncated expansions (10,11) or the result
(16) obtained with the Gaussian approach:

Qn = /dé P(B) (sgn [B -] su [7(B) - 5])s (17)
with

se{-11}N

If Qn = 1 then, with probability one, the mappings performed by B and f(ﬁ) will be identical
for tasks drawn from P. For the ensemble 73(5) of tasks we took the uniform probability distri-
bution over the N-dimensional hypercube. The integral in (17) is estimated numerically from
100 samples of randomly drawn task vectors vectors B. The average over the input vector dis-
tribution is calculated exactly; since this average involves 2V input vectors 5, we have restricted
the range of our experiments to N < 20.

In figure 1 we show the values of @)y thus obtained upon choosing for f(ﬁ) the leading order
in N for unbiased distributions (the Hebb rule) as given by (10) (‘+”), the first two leading orders
in N for unbiased distributions (the Hebb rule corrected for finite size effects) as given by (11)
(‘+47) and the leading order in N for biased distributions (the biased Hebb rule), for ¢ = 0.5, as
given by (16) (‘o’). For unbiased distributions we find that the asymptotic expressions (10,11)
are such that the corresponding perceptron mappings are almost identical to the task to be
learned, even for relatively small system sizes. Including the second order in N (‘+’) indeed
improves performance by correcting for finite size effects. The fact that even the leading term
(‘“4+7) performs perfectly for N < 4 can be proved analytically. For biased distributions (‘o’) we
find that finite size effects play a considerably more important role.

4 Inhomogeneous Distributions: Patterns

In this section we use the fixed-point theorem (3) for calculating analytically the connections
that perform a given task T for the more notorious case in which the training set consists of
a union of clusters around p = aN patterns &* (training noise): @ =, 02, # {1, 1N, We
show that the asymptotic (N — oo) connections are given by the solutions of a set of coupled
non-linear equations.

4.1 Training with Noise

We consider the case of having to classify a given set of p = aN input patterns E“ e {-1,1}V
(for N — o0) using a perceptron without a threshold. To obtain a classification which is stable
against input noise, the task is defined on small, equally large, disjunct neighbourhoods €2,
around the pattern g“:

—

T(5) = T(E") VseQ,

The set Q is the union of the p subsets: @ =J,Q,. According to our fixed-point theorem (4),
applied to the present situation, the connections performing the task T on Q are the solutions
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Figure 1: The average performance Qp as a function of the system size N. The connections are
defined by the leading order in Eq. (10) (the Hebb rule for unbiased input distributions) (’+’),
the two leading orders in of Eq. (11) (the Hebb rule plus finite size corrections) (’+’) and the
leading order in Eq. (16) (the biased Hebb rule for biased input distributions) with bias ¢ = 0.5
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of:
1,5 1 .
LY@ 0, = 5 Yo (Sl - Do, (19
jJ4=1 lu,:l
To simplify analysis we replace the hard constraint (restricting the training vectors to the union
of the p discrete subsets Q,) by a soft constraint, in which training vectors have a probability
of occurrence which is strongly peaked near the patterns {?“:

{Q:UQM p(g):} — {Q:{_lal}Na p(§):

with

)

»

5@ =TT [51+ @ g + 50— b, ]

K3
in which a is chosen close to one. Formally the task corresponding to the soft constraint is
not neccessarily linearly separable and hence solutions of the correponding fixed point equations
need not exist. However, fora — 1 and N — oo, the overlap between the individual distributions
P, becomes arbitrarily small, so that one can expect solutions to exist. These solutions then
correspond to the connections of a perceptron which is trained with noise, as studied by Wong



and Sherrington [20]. Replacing the hard constraint by the soft one in the way described above,
we obtain instead of (18) the problem (19):

ZEE:

P
Z gsgn(J - 8));, (19)

%IP—‘

a
r,

)€, in terms of which (due to the
) =1 (Vp). We can readily perform

To simplify notation we introduce the vectors 5“ = T(
absence of a threshold) the task 7' can be written as: T'(
the remaining averages in (19), with the result:

a & p_ 1 u 4 G . [2(1—a?) (af - C*)?
;;Q T p E [a(i erf( 2(1—@2)) + i T exp (_ 2(1—02))

n=1

%
¢t

+O(J?)

In leading order we may therefore write:

) 2ouCH 1= erf LC};
/= 2(1—612) E[GXP< g‘(f—cg%) ))] =

For convenience we introduce the parameter A = 1a?/(1 — a*) (so A — oo as a — 1) and the

stability parameters v, = J - 5“. Assuming that a solution J of (20) exists with v, > 0 for all
i, we can use the asymptotic expansion of erf(z),

erf(z)=1-

\/;m eXp(—xQ) + ...
and obtain .
> Gyt exp(=A7})

2, €XP (—Av,?)
Note that (21) guarantees that any solution J will indeed be properly normalised (providing a
nice selfconsistency test, since normalisation has not explicitely been put in):

2 _ S - (Mt exp(=Ag2)
>, exp (—A’yg)

J=

(21)

=1

By taking in (21) the inner products with the vectors 5“, we obtain equations in terms of stability
parameters only:

1352, Cuvyy " exp(—Avyy A

Yu = a 1 . ( 5 ) Yu > 0 C ¢ (22)

72, €XP (—A7p>

Eqn. (22) is the main result of this section. The solution of (22), inserted into (21), yields the
solution of our original problem: the connections .J.
Restoring the original variables according to ¢# = T (&), we find that the connections (21)

are written in the form of a weighted Hebb rule with embedding strengths {w,}:

- Py £ 1oy texp(=AY))
J = ZwM (& )er wy, = a lE exp (—A’y2> (23)
p Lep P



These equations give interesting relations between stability parameters and embedding strengths.
The relations (23), in combination with

Tu= Z Cw, (24)

are equivalent to the equations (21,22). A trivial example for which (23,24) is solvable, is the
case of orthogonal patterns C,, = é,,, for which one finds 7, = ﬁ and the connections are

given by a normalized Hebb-rule.

4.2 The Limit of Zero Training Noise

In this subsection we show that the solution(s) of the self consistency equations (22), in the
limit of zero training noise (A — o), are identical with the optimal connections in the Gardner
sense. It has been demonstrated previously [5, 12] that in characterizing the optimal connections
one can distinguish two subsets of patterns. Patterns in the so-called active set have positive
embedding strengths w,; the optimal connections are given by the pseudo-inverse rule, restricted
to the patterns in the active set. Patterns which are not in the active set have zero embedding
strengths; their stability parameters, however, are larger than the stability parameters of the
patterns in the active set.
We assume that, for large A, the stability parameters depend analytically on A=':

Yo = Z Yun A"

n>0
Insertion into (22) gives the identity:

1%, Cuw [rwo + O] ™ exp [~A (o + 23007 A7 + O(A72))]
* b Lp OXP [‘A(V’ﬁo + 29,071 A7 + 0(A—2))]

= lim
Tuo A—oo

we now introduce ymin = min, y,0, with which we can write

1 Zu C;w [71/0 + O(A_l)] - €Xp [_A(%%O B A/Enin) B 27»071/1 + O(A_l)]

Yuo = lim —
e zl?zp exp [—A(7§0 — Toin) = 27,0701 + O(A—l)]

(25)

By taking the limit A — oo, those exponents vanish for which 7,0 > Ymin (by construction there
is at least one index g with 7,0 = Ymin). We define the index set

K= {Hl Yuo = ’Ymin}

For A — oo we obtain from (25):

Tuo = 12 ek C v Vet €XP [~ 2Ymin7u1]
8 a ]lg ZpE}C exp [_27min7p1]

This means that the A — oo embedding strengths w,,, defined in (23), will obey

e
1 pe

@ EpE)C exp[—2Ymin",]

w, = 0 Y ¢ K
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Apparently the embedding strengths corresponding to indices in the index set K satisfy:

\V/,M ek Ymin = Z Cﬁwwl/
veK

hence, if we denote by C'(K) the correlation matrix C, restricted to the indices in the set &, the
embedding strengths w, are given by

Wy = Ymin Z C(IC)'L} weK
vek
w, = 0 uégK

These are exactly the embedding strengths corresponding to the optimal perceptron, described
in the introduction of this subsection. One immediately recognises the structure of a pseudo-
inverse applied to a active pattern set (our index set K). A pattern outside the active set has
zero embedding strength. On the other hand, its stability parameter is larger than the minimal
stability parameter (7,0 > Ymin for p € K).

This a posteriori justifies our assumption that, for large A (small amount of training noise),
the hard constraint on the training set could be replaced by a soft one. Our solution is also
in agreement with the work by Wong and Sherrington [20], who studied the learning of noisy
patterns and found that for infinitesimally small amounts of noise one obtains the maximally
stable connections.

4.3 Numerical Results

Apart from proving that in the limit of zero training noise A — oo the solutions of the set
of equations (22) become identical to the optimal interactions in the Gardner sense, one can of
course also simply solve the set (22) numerically. The result, presented in the form of the familiar
distribution p(7) of stabilities, shows how for finite A one approaches the analytical expression
for p(7) as found by Abbott and Kepler [21]. Figure 2 shows such a result, obtained by solving
(22) numerically for p = 600 randomly drawn patterns in an N = 400 network with a level of
training noise given by A = 16. The distribution p(7) [21] of Gardner’s optimal interactions [3]
for @ = 1.5 is plotted as a reference.

5 Discussion

The aim of this paper was to find analytical expressions for the connections of large perceptrons.
We tried to calculate the connection vectors J that perform a given task T on a given input
set @ C {—1,1}", by using the fact that such connections are fixed points of the perceptron
learning rule. For small values of the learning parameter this rule can be split into a macroscopic
differential equation describing deterministic evolution and a part describing fluctuations. By
proving that the fixed-points of the deterministic equation are identical to the fixed-points of
the full stochastic rule, we obtain a reduction of the original problem (finding the solution of
a set of |Q] coupled inequalities) to the problem of finding the solution of a set of N coupled
non-linear equations.

For the simplest case in which the training set consists of all possible input vectors, =
{—1,1}", the fixed point equations enable us to calculate the connections as a series expansion
in powers of 1/v/N. The leading term in this expansion turns out to be either the Hebb rule (for
unbiased distributions) or the biased Hebb rule (for biased distributions). The performance of
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Figure 2: Distribution p(7) of stabilities {v,} obtained by solving numerically the set of equa-
tions (22) for randomly drawn patterns (N = 400, p = 600, A = 16). The result is averaged over
10 pattern realisations. Dashed line: distribution of stability parameters for Gardner’s optimal
connections (according to [21]) if & = 1.5.

our asymptotic expressions (and finite size corrections) on small systems is studied numerically.
If, on the other hand, the training set consists of an extensive number p = aN of prototype
patterns E“ in combination with small regions €, around these patterns (i.e., training with
noise), we find that the connections satisfy a self-consistent, physically transparant set of non-
linear equations. In the limit of zero training noise the solution of these equations is shown to
correspond exactly to the interactions with maximal stability in the Gardner sense.

Most statistical mechanical studies of (maximally stable) perceptrons concentrate on study-
ing properties of trained systems [11] (storage capacity, average training error, average gener-
alisation error, nature of phase tramsitions, etc.). In order to obtain these results one has to
average the quantities of interest (or, equivalently, the free energy from which such quantities
can be obtained by differentiation) over the distribution from which the training set is choosen.
We believe that our approach may be complementary to such studies, in that we focus on the
explicit construction of the connections of trained perceptrons. Furthermore, in the case of hav-
ing an extensive (p = aN) training set, the embedding strengths are formulated, through Eqns.
(22,23), directly in terms of the pattern correlation matrix; no averaging over the distribution
of input vectors is involved.
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A The Distribution P(z)

In this appendix we calculate for any given vector K € RY the probability distribution P(z)
(in the spirit of the Edgeworth series [22]), defined by

P(z)= (6 (2= K -7))s

where € {—1,1}" and p(s) = 2-N_ Using the integral representation of the §-function we find:

P(z) = e /dk‘ exp [— + Zlog cos(kK; )] (26)

where K = HI;H and K = K~'K. We now expand log cos(x) in a power series [15]:
B 22n—1(22n _ 1)|B2n
log cos(z) = ——x - 7;0 & C, = (@]

The coefficients By are the Bernoulli numbers [15] (By = 1, By = —1/2, By = 1/6, etc.). This
expansion enables us to write (26) as:

P(z) =

- (27)
21 K ">

/dkexp [——k2 + Zk—z =S CLQu(R)E

where Q,(K) = > fxf” € [0,1]. If we also make the expansion

exp | = Y Cr@Qu(K)E*™| =13 Do(K)k*"
n>2 n>2
we can perform the integration over the variable k in (27) and arrive at the final result:

S DR =1y (m)] (28)

n>2

1
P(z) = ex
= Vo l w]
where the functions H,,(z) are the Hermite polynomials [15]:

H,u(2) = (~1)" exp(e?) o exp(~a?)

The coefficients D, (K) are given by

Duf)= Y (;H, > e Y b [Con @ () oy @, ()

k<n/2-1 my=2 mk+1—2
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B Validity of the Gaussian Assumption

In this appendix we briefly discuss the validity of the assumption (often made in the literature)
that the stochastic variable z = Z;V=1 J;s; has a Gaussian probability distribution in the limit
N — oo, where

o 1 1
p(3) = Hpj(s]-) pi(s) = 5(1 +a;)és1 + 5(1 — a;)8s,—1 la;| < |amax| < 1
J

It is clear that P(z) will not always be Gaussian, since one can easily construct counter-examples:
J = k™1 ap =0 (k=1...N) (29)
For this specific example one finds:

2 4
— [s3\ _ . 2y _ T . 4 _ U7
(2) = () =0 am (0 = im0 = 155

So the distribution of z tends not to a Gaussian, since even in the limit N — oo one finds
(z*) # 3(2%)?. Starting from the central limit theorem [22], it is straightforward to show that
the condition on the normalized vector J for arriving at a Gaussian distribution for z = 7, J;s;,

18:
N

N
lim ) @ [Jj —ey J,f] =0 Ve >0 (30)
=1 k=1

N—o0 4
J

in which #[z] is the step function. One can check that if (30) holds, all the non-Gaussian
contributions in the probability distribution (28) will vanish in the limit N — co. The condition
(30) is clearly violated by the counter-example (29). If the vector J is drawn from a spherically
symmetric distribution, or from a hypercube with uniform distribution, then one can show that
condition (30) is satisfied with probability one.
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