Deterministic Generative Models for Fast Feature Discovery

Machiel Westerdijk (machiel@mbfys.kun.nl), David Barber

(barberd@aston.ac.uk) and Wim Wiegerinck (wimw@mbfys.kun.nl)
Department of Medical Physics and Biophysics, University of Nijmegen, The Netherl ands

Abstract. We propose a vector quantisation method which does not only provide a compact
description of data vectors in terms codebook vectors, but also gives an explanation of codebook
vectors as binary combinations of elementary features. This corresponds to the intuitive notion
that, in the real world, patterns can be usefully thought of as being constructed by composi-
tions from simpler features. The model can be understood as a generative model, in which the
codebook vector is generated by a hidden binary state vector. The model is non-probabilistic
in the sense that it assigns each data vector to a single codebook vector. We describe exact
and approximate learning algorithms for learning deterministic feature representations. In con-
trast to probabilistic models, the deterministic approach allows the use of message propagation
algorithms within the learning scheme. These are compared with standard mean-field/Gibbs
sampling learning. We show that Generative Vector Quantisation gives a good performance in
large scale real world tasks like image compression and handwritten digit analysis with up to
400 data dimensions.

Keywords: vector quantisation, feature discovery, generative models, mean-field methods, mes-
sage passing algorithms, handwritten digits analysis, image compression

1. Introduction

Many techniques for data analysis can be regarded as seeking for a description
of data in terms of elementary features. An advantage of a feature representation
is that it reduces redundancy in the input patterns (Barlow, 1989). Furthermore,
a description in terms of features can provide a lucid explanation of objects
(input patterns), which can in addition be helpful in understanding the hidden
data generating process. Areas in which feature representations are particularly
relevant can be found in biological modelling, image processing and data mining,.

Currently, the most widely applied techniques for feature extraction are lin-
ear. Well known examples are principal component and factor analysis. Both
these techniques give a meaningful representation of the data only if the data
are Gaussian distributed around some low dimensional linear subspace. More re-
cent non-Gaussian linear methods include independent component analysis (Bell,
1995) and the sparse coding approach by (Olshausen, 1996). A significant ad-
vantage of linear methods is their speed. In addition, linear models provide an
easily interpretable feature representation of the data, often in terms of the basis
spanning the linear subspace. One important drawback of linear models is that
they can not describe multi-modal distributions.

The most well known and simplest method for finding multi-modal structure in
the data is vector quantisation (VQ) (Gray, 1984). The drawback of vector quanti-
sation, however, is its lack of a feature representation. To overcome this problem,
more advanced non-linear probability models have recently been promoted by
several authors in the context of feature extraction (Sallans, 1998; Ghahramani,
1998; Saul, 1996; Attias, 1999). In contrast to standard vector quantisation,
where a data point is explained in terms of a single codevector, these models
explain a data point in terms of a combination of elementary features. Each such
combination is formed or generated by the state of a set of hidden or latent
variables.

';ﬁ © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.1

The model that we propose in this paper, the Generative Vector Quantizer
(GVQ), is exactly such a generative model, with a binary hidden layer and a
continuous visible layer representing the codebook vectors. Hence, in GVQ a
codebook vector is considered to be composed of a binary combination of fea-
tures in which a given feature is either fully present or fully absent. To provide
an easy data interpretation, GVQ associates only a single codebook vector and
therefore a single feature composition to each data pattern. This is in contrast
with probabilistic models which associate a data pattern with a distribution over
compositions where, in principle, each possible composition has a contribution. In
this sense, one can view the GV(Q model as a special deterministic variant within
the larger class of noisy, probabilistic models.

In addition to interpretability, there is another important advantage of using
a deterministic model. To learn a generative model from a given data set there
exists an accurate and rapidly converging algorithm. This EM-algorithm (Demp-
ster, Laird & Rubin, 1977) iterates between an Expectation step (E-step) and a
Minimisation step (M-step). The E-step determines which hidden states (which
combinations of features) are responsible for generating a given data pattern. If
these states are known then it is computationally straightforward to optimize the
feature values in the M-step. The basic problem in the application of the EM-
algorithm is that there is no efficient way to determine which of the, exponentially
many, states generated the data point. This makes the E-step computationally
intractable. A major issue in developing learning methods for Generative models
is to find accurate and tractable approximate solutions for the E-step. In data-
mining applications, where databases are often large and high dimensional, this
issue becomes particularly important. The deterministic property of the GVQ
model makes the use of a special class of message passing algorithms within
the learning scheme directly relevant. These algorithms (Pearl, 1988) are used
within graphical models to infer marginal probabilities given some evidence. In
the deterministic approach the distribution of a multi-dimensional state space is
given simply by the product of the marginals of this distribution. In other words,
in the deterministic limit, algorithms which estimate marginal 2probabilities well,
will necessarily estimate the full distribution equally well.

Message passing algorithms are interesting alternatives to the methods for
probabilistic models such as the mean-field approximation (Ghahramani, 1995;
Zemel, 1994; Saul, 1996). In this paper we will describe how message passing
algorithms can be used for learning feature representations in the form of a
GVQ model. In addition, we will present an extensive comparison between these
algorithms and the mean-field method for learning deterministic GV(Q models. We
will indicate under which circumstances a specific algorithm should be preferred
over others.

In section (2) and section (3) we present the basic idea of GVQ and its rela-
tionship to standard vector quantisation, along with the GV(Q learning algorithm.
The crucial issue of the tractable implementation of this algorithm is discussed
at some length in section (4).

In order to tune the representation for a particular application there are some
useful types of constraints one can impose on the model. In some applications
one knows that are certain distinct classes present in the data. For example
in handwritten digit analysis the features for constructing 2’s are not used for
constructing 4’s which have their own distinct set of features. Furthermore, to
learn a multiple feature set model it is desirable that the sets compete in a
winner-take-all fashion, so that the sets force each other to specialize on different

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.2

3

structures in the data. We will show in section (5) that in the GVQ model such
a multiple set representation can be built in in a natural way.

High dimensional real world problems, namely handwritten digits and image
compression, are studied in sections 6.1 and 6.2. The relation of this work to
other models is discussed in section (7), along with potential benefits to discrete
optimisation using message passing schemes.

2. Standard Vector Quantisation

The aim of vector quantisation (VQ) is to represent a dataset by a smaller set
of representative vectors. This set can be used to code a data pattern with
a small number of bits. The code of a data pattern is given by the index of
the closest representative vector. For this reason the collection of representative
vectors is called a codebook and the vectors themselves are the codebook vectors.
An example of a data set with its representative codebook vectors is shown in
fig(1) (a).

An important advantage of standard vector quantisation methods is that, for a
given data set, they can quickly construct a set of representative codebook vectors.
For this reason these techniques are widely used in many application domains for
compression or for clustering of data. Standard vector quantisation does not,
however, represent objects as a collection of features. To overcome this deficiency,
we introduce generative vector quantisation, as described in the following section.

3. Generative Vector Quantisation

In Generative Vector Quantisation (GVQ) the objective is similar to that of VQ,
namely to find a codebook representation of the data. In contrast to standard
vector quantisation, GVQ reduces the number of representative vectors by using
a smaller set of basic feature vectors {f',... f"} which exist in the same d-
dimensional space as the data. Each codebook vector is then formed by some
binary combination of these feature vectors,

n .
Z s;,f' = Fs
i=1

where the feature matrix F = [f1f2...f"], and the state vector s € {0,1}". There
are therefore M = 2™ possible codebook vectors Fs!,... , FsM,

An example of a set of codebook vectors generated by 3 features in a 2-
dimensional space is shown in fig(1) (b). To contrast this approach with the
standard approach, the data used for GVQ is the same as in fig(1) (a). In fig(1)b),
the circles represent the generated codebook vectors which correspond to the 8
states (000), (100), ..., (111). The features are given by the codebook vectors
corresponding to the unary state vectors (100), (010) and (001) etc. The zero
state vector is the origin of the representation. The remaining codebook vectors
are then ‘generated’ by combinations of these basic codebook vectors, or features.
For example, the codebook vector corresponding to state (011) is given by adding
the features corresponding to state (010) and (001), see fig(1) (b).

Note that in GVQ the number of features n is not related to the dimensionality
of the data space. Hence, there may be more or less basic feature vectors than
there are dimensions in the data space.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.3

B - TR0

. 3:
" QicLon)

"ooo)

a)

Figure 1. a) A codebook vector representation by standard vector quantisation. b) In GVQ
the codebook vectors (circles) are generated by a small set of basic features fi, f> and f3, which
correspond to the states (100), (010) and (001), respectively. The codebook vector corresponding
to the state (011), for example, is given by the sum of the vectors corresponding to the two states
(001) and 010 (see broken lines).

3.1. THE GV(Q LEARNING ALGORITHM

In GVQ, as in standard VQ, each data point x* is associated with a particular
codebook vector, indexed by c,. Typically, this association is made such that x*
is assigned to the closest codebook vector, in the Euclidian sense. The squared
Euclidian distance between the whole data set D = {x*|p=1,...,P} and its
codebook representation, { Fs%|y =1,... ,P}, is

P
B =Y |x* - Fs|2 1)
p=1

The task is, therefore, to find both the optimal associations of data points to
codebook vectors, and the best feature vectors in order to minimize F. Since
the associations between data points and codebook vectors will change if the
feature matrix F' is changed, minimising (1) directly with respect to F' and the
associations is not practical. For this reason we make use of a two-step iteration
procedure.

After initialisation of the features F' the GV(Q learning algorithm iterates be-
tween an association step 1 which finds, for each data-point, the most nearby
codebook vector and a minimisation step 2 which finds the optimal feature
configuration for the given association:

1. Forp=1,...,P

¢y < argmin||x* — Fs/||?, (2)
J
2.
F + argminz |xH — Fs|? (3)
Foou

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.4

5

The second step only involves the mean (x), of each group of data associated
with a single codebook vector k since,

min ¥ Y [kt = Fs? =

ueC
min 5, Y [[[Fs|? - 2xFs| =
r ueCy
min Yy, Z [||Fsc’“||2 - 2x“Fsc’°] + Np(x), > =
F ueCh
min 3y, Ni[|(x), — Fs%|, (4)

where Cj, represents the set of all data points associated with the state s®* and
where Ny, is the number of data points in cluster k. The expectation value (-), is
taken over the data in cluster Ci. The additive constant does not depend on F'.
The objective function (4) can be minimized efficiently by use of Singular Value
Decomposition (see for example Press, 1992, chapter 14.3).

The first step, (2), is computationally more difficult since, in principle, it
involves a search through all 2" binary states s. In section (4) we will discuss and
compare different approximate algorithms which can reduce this computational
overhead.

4. Approximate association

In the association step (2) we want, for a given fixed data point x, to minimize
the error function'

B(s,x) = lIx - Y fisil (5)

with respect to s. Since there is an exponential number of binary states s, an ex-
haustive search over all these states rapidly becomes computationally intractable
for even a moderate number of features.

In this section we will compare two types of approach for finding the optimal
state s* which minimizes (5)?, drawing heavily on the terminology of graphical
models (Pearl, 1988; Neal, 1998). In doing so we make a distinction between
two types of methods. The first class of methods only considers relations, im-
plicitly given by (5), between the binary variables® S;. As will be explained the
relationships between the binary variables can, in that case, be represented by
an undirected graph. In section (4.1) we will present a number of specialized
approximating algorithms for undirected graphical structures.

The second class of methods considers explicitly the relations between binary
variables S; and visible variables X;. The corresponding graphical dependency
structure is then directed. Section (4.2) discusses an algorithm which exploits this
graphical structure.

! In this section we refer, for notational convenience, directly to a specific binary state s and
omit the upper indices used in section (3.1). Furthermore, we do the association for a single data
point x. It is clear that the problem is the same if we instead use the cluster means (x) of (4).

? Note, that the minimizing state s* need not be unique. Here we do not specify a prior
preference i.e. we regard each solution to be equally valid.

3 Note, that we use capitals to refer to variables and lowercase letters to refer to their values.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.5

In section (4.3) we shall give an experimental comparison between these meth-
ods for a range of GVQ architectures.

4.1. UNDIRECTED GRAPH METHODS

Since we are interested in finding the state s which minimizes the error function
E(s,x) for a given x, we can define a new error function which contains only
dependencies on s. First note that,

E(X, S) =x? — QXZ fisi + z f; - ijiSj

(2)
= x? —2XZ fisi—f—Zf,?S?-l-?ZZfi'fjsisja (6)
% %

1 j>1

and that s; = s?. The new s-dependent error Fx(s) is defined as

EX(S) = Z {hisi + Z Zwijsisj}, (7)

i 1 j>1

where w;; = 2f; - f;, h; = —2f; - x + f?. The s that minimizes Ex(s) is equal to
the s that minimizes E(s, x). Note that this error function contains only pairwise
and symmetric dependencies between the variables s;. This dependency structure,
given by the weight matrix w;;, can be represented as an undirected graph. An
example of a fully connected graph, i.e. all weights w;; are non-zero, is shown in
fig(2).

The following subsections discuss three different algorithms which make use of
this undirected graph structure.

4.1.1. Belief Propagation (BP)
The error function (7) can be used to define a probability distribution px(s) on
the set of binary states s,

1

pel) = 5o (~5 5 Bx(6)), Q

where Zx is a normalization constant. In this formulation the state s* = argminFx(s)
S

with the smallest error in (7) now corresponds to the state with the largest prob-
ability in the distribution px(-). In the case that the noise o in (8) is decreased,
s* will start to dominate the distribution. In the limit ¢ — 0 the corresponding
probability px(s*) saturates to the value 1. It is easy to see that the marginal
probabilities px(s;), i.e. probabilities of individual units, also saturate to the values
0 or 1. A useful property of the zero noise limit is that the single unit states s; for
which py(sf) — 1 together form the global objective state s* = (s}, s3,...,s})
of the whole graph. Hence, by computing the marginals px(s;) from (8) we can,
by reducing o in (8), find the minimising state s*. However, computation of the
marginals px(s;) has the same computational complexity as the original minimi-
sation problem (7) since it involves a summation over all combinations of the
states of all the other units j # 1.

The belief propagation algorithm (Pearl, 1988) provides a computationally
inexpensive approximate method to compute the marginals px(s;). The basic idea
of this method is to decompose the summation into a sequence of local operations
which take place at the individual nodes. In appendix (A) we will present this

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.6

7

method and give an example for a simple network. The computational complexity
of this algorithm scales quadratically @(n?) with the number of binary nodes n.

Our implementation of belief propagation starts with a large noise value o.
While running Belief Propagation, in an attempt to avoid local minima, the noise
o is slowly reduced to zero. The corresponding state s* for which all px(s}) =1
is then taken as the solution for our minimisation problem.

4.1.2. Belief Revision (BR)

Belief Revision (Pearl, 1988) is an algorithm for directly tackling the minimisation
problem ming Fx(s). Again, the trick is to carefully exploit the graphical structure
of the problem, given by the weights w;;, in order to decompose the minimisation
problem into local operations. In fact, it can be shown that the belief propagation
algorithm is equivalent to Belief revision by taking the limit o — 0. We refer to
appendix (B) for a derivation of the Belief Revision algorithm and a description
of our implementation of the algorithm for the GVQ model. The computational
complexity of this algorithm is O(n?).

4.1.3. Mean-Field (MF)

The basic idea of variational algorithms (of which the mean-field method is a
special case) is to replace the intractable objective function with a tractable
approximation to it, so that the optimization of the approximate objective func-
tion can be carried out efficiently, see for example (Saul, 1996). Based on this
principle we derive a mean-field variational algorithm in appendix (C) to find the
minimising s* state of the objective function (7). The complexity of the mean-field
algorithm is O(n?).

4.2. APPROXIMATION IN THE DIRECTED GRAPH

Instead of representing only the relation in each pair ¢j of binary variables S;
and S; as in the previous section, we can also form a graphical representation
of the relation in each pair of all the variables i.e. binary variables S; as well
as continuous variables X;. The most efficient way to do this is to represent the
relations with a directed graph.

To explain this we represent our GVQ model as a joint probability model p(x, s)
of binary states s and visible states x. The prior distribution of the binary units
p(s) is constant, i.e. p(s;) = 3 and p(s) = 3 . The joint probability distribution
can be constructed as follows:

d
2

plx,s) = pls)p(xls) = 27 (2m0?) " exp {—%E(s, x)}, 9)
where F(s,x) is our original objective function (5). An example, of the graphical
representation of (9) is shown in fig(2). As can be seen, there are no direct links
between binary hidden units reflecting the fact that the prior distribution p(s)
is factorized, i.e. p(s) = [[p(si). The arrows reflect the relation between hidden
states s and visible states x given by p(x[s) o« exp {—(x - fisi)2/202} so that
the set of arrows expanding from unit S; correspond to feature f;.

4.2.1. Belief Propagation in the Directed Graph (DBP)

In appendix (D) we present a belief propagation algorithm which explicitly takes
the directed graphical structure into account by passing messages from hidden
units to visible units and vice versa. Using the same noise reduction process

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.7

Figure 2. a) Undirected graph representation. b)Directed Graphical structure of GVQ

o — 0 as in section (4.1.1), the desired state s* can be inferred by computing
the conditional probabilities p(s;|x) from (9). Again, in the limit ¢ — 0 the
marginal probabilities p(s}|x) — 1 together form our desired objective state s* =
(s7,85,...,s%). For general probability distributions with bi-partite structures as
in fig(2) the computational complexity of this algorithm scales exponentially with
the number of connections between a visible unit X; and hidden units S, that is,
the algorithm is exponentially complex in the number of parents of the visible
units. However, for the special case of our GVQ model, which has a quadratic
dependence between binary states s and visible states x, we can reduce this
complexity to O(n? x d), by introducing an integral transform. However, this is
potentially at the cost of decreased accuracy?.

4.2.2. Belief Revision in the Directed Graph (DBR)

In section (4.1.2) we transformed the probabilistic belief propagation algorithm
into a noiseless algorithm by taking the limit ¢ — 0. The same operation can
be applied on the DBP algorithm for the directed graph of section (4.2.1). The
resulting belief revision algorithm still takes the directed graphical structure into
account. However, in contrast to the probabilistic algorithm, the complexity of
the algorithm can no longer be reduced to polynomial. It remains exponential
in the number k of connections that each visible unit has with the binary units
i.e. the overall complexity is O(n x d x 2¥). We refer to appendix (E) for a more
technical discussion of this approach.

4.3. EXPERIMENTAL COMPARISON

So far we have not characterized the type of problems for which we can find a
sensible GVQ representation. In practice we can expect a large range of situations
where we want to find a feature representation. For example, some situations
require a large number of features in a low dimensional data space (over-complete
basis) or, in the opposite case, they require a few nearly orthogonal features in a
high dimensional space. The purpose of this section is to determine under which
circumstances the approximating algorithms are most suitable.

4.3.1. Influence of connectivity structure

In this sub-section we monitor the performance of the algorithms if we gradually
increase the complexity of the graphical structure of the GVQ model. To do this,
we generated a number of artificial problems. In each experiment we sampled a
fixed number n = 12 hidden units of d = 4 dimensional features (visible units).

4 As explained in appendix (D).

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.8

Figure 8. a) GVQ networks with n = 12 features and d = 4 visible units. a) Each visible unit
X; is connected with only two binary parent units (k = 2). b) Fully connected network (k = n).

15

E(s,X)

BP

L{\LH
.

I

t-1

0.5

1
d/n

15

b)

Figure 4. Comparison of the Belief Propagation (BP, dotted lines), the Belief Revision (BR,
dashed lines), Mean-Field (MF, solid lines) and the Belief Revision in the Directed graph (DBR,
dot-dash lines) algorithm. a) The error E(s,x) as a function of the number of parent connections
k (given as a fraction k/n of the total number of parents n). b) The error E(s,x) as a function
of the number of input dimensions d (given as a fraction d/n of the total number of parents n).

The features f; are chosen such that each visible node X; has at most k& connections
with the binary layer, see fig(3). The connections are selected randomly. The
feature values f;; that determine the strength of these connections are sampled
according to fi; ~ N(2,1), a Gaussian distribution with mean 2 and variance 1.
We chose a non-zero mean to avoid non-realistic symmetries in the generated data.
Together with each feature set we randomly chose a binary state s*, according to
p(s}) = 0.5. Then for fixed f; and s* we generated an input pattern x using x =
> i fis; + €, where € is adding a small amount of random noise. The components
of € are sampled from N (0, %) Given the input pattern x, each method was
used to recover the generating state s*. We then computed the error £ which
is defined here as the average absolute error per input ° dimension i.e. E =
é > [zi — 32, fijs;] which is directly related to (5). Note that the minimum error
is €. This procedure was repeated 100 times for each connectivity number k.
Fig(4) (a) shows the average of these results as a function of the number of
connections k. For each method the error clearly increases with increasing number

5 We look at the input space and not at errors in the binary latent space since we are interested
in the reconstruction errors of data examples. Two codebook vectors with the same distance to
data point x but with a large distance to each other in the binary latent space binary space are
considered equally valid.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.9

10

of connections k. If the number of connections is small (k/n < 0.6) the error of
the directed belief revision algorithm is close to the minimum error € i.e. it is close
to the exact solution. In this region DBR outperforms all undirected algorithms.
At a certain point (k/n ~ 0.65) the error of DBR starts to rise quickly. This is
expected since the loops are shorter in denser networks. The transition point is
somewhat dependent on the imposed noise e. For smaller values of € the point
shifts to the right. In the extreme case e = 0 DBR does not make errors anymore,
i.e. E(s,x) =0 for ¢ = 0 (which is not true for the other methods). However, for
the value of € we used here the DBR algorithm performs poorly for fully connected
networks. In that case we should use the mean-field algorithm.

In fig(4) we do not include the performance of DBP. To obtain comparable
performance to DBR, we found that we needed to anneal o to such a small
level that retaining accuracy of the integral transform became computationally
burdensome.

As can be seen from fig(4), the error of BP is in all cases larger than the BR
error. To get a BP error closer to BR we need to anneal to even smaller values of
0. The anticipated positive effect of avoiding local minima was not present.

In fig(4) (b) we show the result for fully connected networks (n = 15, f;; ~
N(0,1)) where we increase the number of input dimensions d. For the fully
connected case we omitted the DBR and DBP methods since we know, from
the previous experiment, that their performances will be poor. We see that for
these fully connected GVQ networks mean-field outperforms the other methods
over the whole region. For large values of d/n the thresholds h; will dominate
the contributions given by the interactions w;; in the error function (7). Hence,
effectively the units S; will become more independent in which case all methods
perform better explaining the decreasing errors in fig(4) (a).

In the experiments with the BR method we made an interesting observation.
In all the trials where the messages converged to a stationary value the final
error was equal to the minimum error e. The BR error in fig(4) comes from the
remaining non-converging trials. This indicates that by looking at the convergence
behaviour of BR we are able to determine whether the final answer is correct. If
it does not converge we can always do the association with MF instead.

4.3.2. Performance as a function of the similarity between the features

In the experiments above the features were sampled from zero mean normal
distributions. This may not be particularly representative of features in real-world
problems. A crude attempt to address this issue is given by generating features
which have a degree of similarity. Here we do this by drawing the features from a
Gaussian with non-zero mean. The feature values f;; are sampled from a normal
distribution with mean +y, that is fi; ~ AN (v,1). Hence, the larger v the more
the features f; ‘point in the same direction’. The result is shown in fig(5). We see
that if v > 4.5 the message passing methods BR and DBP both outperform MF.
In the previous experiments, the mean-field method performed better for fully
connected architectures. However, the results in fig(5) indicate that under certain
circumstances message passing algorithms may outperform mean-field also for
fully connected networks.

5. Imposing constraints on the basic model

In some applications one has a priori knowledge about the probability distribu-
tion which generated the data. In that case it can be of great help to impose

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.10

11

Figure 5. Comparison of the Belief Propagation (BP, dotted line), the Belief Revision (BR,
dashed line) and Mean-Field algorithm (MF, solid line). The error is shown E(s, x) as a function
of the similarity v between the features (d = 4;n = 10). The error bars indicate the variation in
the mean.

constraints on the basic GVQ model which incorporate this knowledge. In this
section we propose three constraining methods which we believe to be useful for
a large class of applications. The first two of these methods impose constraints
on the distribution of the hidden states s. The third represents a constraint on
the distribution of values of the input patterns x.

5.1. MULTIPLE FEATURE SETS AND MULTI-VALUED FEATURES

In many real world problems we can expect that there are different unrelated
groups of patterns. In each of these groups the patterns are built up out of features
from a set which is specific for the group. It is easy to adjust the GVQ learning
algorithm for learning multiple feature sets by simply constraining the set of
allowable states. Fig(6) shows the result of learning two sets of 3 features from a
data set of 300 samples. Features corresponding to one set can only be combined
with features from the same set. The origins of the different sets, indicated with
the dashed lines in fig(6), which are considered as constant ‘on’ features for that
set, are also determined by the optimization process. For a given data point there
is only one feature set responsible for generating the closest code vector. In this
sense we can interpret the multiple set model as a winner-take-all configuration
of multiple GVQ’s.

Allowing multiple sets makes it possible to find different groups of objects, i.e.
each GVQ within the winner-take-all configuration learns to represent a certain
class of objects in an un-supervised manner. An example of this is given in section
6.1 in which handwritten 3’s and 5’s are separated in an un-supervised manner
using multiple feature sets. Note that in the extreme case of using one feature
per set, GVQ is equivalent to standard vector quantisation.

5.2. PENALTY CONSTRAINTS

Another way of biasing the solution to those consistent with prior beliefs is given
by adding an extra penalty term to the energy function (1). For example, one can
bias the final representation to be sparse, i.e. each object is composed of a small
number of features from a large set, by adding for example the term As”'s to the
energy function.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.11

12

Figure 6. Result of learning two sets of 3 features using a data set of 300 samples from a mixture
of 10 randomly distributed Gaussian clusters . The ‘origin’ features are represented by the dashed
lines which come together in the origin.

5.3. BINARY FEATURES FOR BINARY DATA

In the case that the elements of the data are binary, it is desirable that the feature
combinations result in values close to 1 and 0. Experiments with the original
error function (1) on this type of data, however, result in feature combinations
with smoothly varying values, i.e. the reconstructed data patterns are not binary
patterns but have values between the binary states.

Better results are obtained by using sigmoid squashing functions so that the
codebook vectors are forced to have values close to 0 and 1. For this reason we use
a sigmoid function to ‘squash’ the combination of features. For ease of interpre-
tation, it is also advantageous that the features themselves are constrained to be
binary. This can be implemented in a ‘soft’ manner by defining the constrained

features as F' = o(F') such that we can minimize the error function with respect
to the unconstrained matrix F. Our error function for binary data is thus

P
E=3"|x"—op(o(F)s*)|? (10)
p=1

in which

and

op(y) = o(B(y — 1/2)),

where [is a parameter which controls the steepness of the squashing function. In
our implementation (10) is minimized with respect to F' using the scaled conjugate
gradient method (Press, 1992).

After incorporating the squashing functions, the model becomes more closely
related to other models such as sigmoid belief networks (Neal, 1991) and the “mul-
tiple cause mixture” representation proposed by (Saund, 1995). Note, however,
that the deterministic approach, see section (7.1), and the learning procedure,
discussed in section (4), of GVQ sets it apart from these methods.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.12

13

5FS35F3 4
33353338
385 355d5
S3353355H
SS58533353
SS333585 7S,

Figure 7. A random sample of 48 handwritten ‘threes’ and ‘fives’ from the CEDAR CDROM.
Each image consists of 20 x 20 bits.

6. Results on Real-World Data

In this section we demonstrate the application of GVQ in two practical situations.
First we extract features of handwritten digits. Using a small number of basic
features GVQ can find nice reconstructions of the original digits. Finding a feature
representation can for example be useful as a pre-processing step in a classifier.
In the second application we demonstrate the advantage of GVQ over standard
vector quantization in image compression. We show that when using a feature
representation images can be compressed into an even smaller number of data
bits.

6.1. HANDWRITTEN DIGITS

We randomly selected 400 training images of handwritten ‘threes’ and ‘fives’ from
the CEDAR CDROM 1 database (Hull, 1994). Since the original images contain
different numbers of pixels, we rescaled all images to 20 x 20 pixels. A typical
sample of these images is shown in fig(7).

We decided to fit a GV(Q model consisting of 4 mutually exclusive sets of 5
features (including in each set an origin feature), see section (5.1). For this appli-
cation we made use of the binary feature binary data version of GVQ as discussed
in section (5.3) with 8 = 4.5. The features, which were obtained, are shown in
fig(8). Each row in the figure corresponds to a feature set and the last feature on
the right hand side in each row corresponds to the origin feature of the set. By
inspection it is clear that the first two sets (top two rows) specialize on ‘threes’
whereas the last set (last row) specializes on constructing ‘fives’. The third set
can construct both ‘fives’ and ‘threes’. These properties become more clear if we
look at fig(9) where 37 of the most representative feature combinations (codebook
vectors) are shown. By most representative we mean those feature combinations
(codebook vectors) which account for most of the data. The codebook vectors
in the left sub-figure of fig(9) are combinations of features from the first set in
fig(8), which clearly are all ‘threes’. As we see from the second sub-figure in fig(9),
the second feature set, although primarily concerned with modeling ‘threes’, is
nevertheless able to construct a ‘five’. This is even more apparent in the third
sub-figure in fig(9) containing both ‘threes’ and ‘fives’. The reconstructions in this
set show that there is a class of handwritten digits containing ‘threes’ and ‘fives’
which share at least one feature, namely the origin feature. This origin feature
can be supplemented with an additional feature to become either a ‘three’ or a
‘five’.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.13

14

2 3335
e R R
55 7S
» $ 5 ¢

Figure 8. Features that were obtained after learning from a database of 400 handwritten ‘threes’
and ‘fives’. Each of the 4 rows represents an independent set which consists of 4 features and an
‘origin’ feature (most right in each row).

5353 $55S
3333 3333 3533 5555
553 93 IS8 5§55

Figure 9. The 37 most representative feature combinations. Each group corresponds to
reconstructions using features from the same set, given by the rows in fig(8).

6.2. IMAGE COMPRESSION

A well known application of vector quantisation is in image compression. In this
section we demonstrate the additional advantage for image compression gained
by describing codebook vectors in terms of a small number of features.

As an example, we used GVQ to compress the image in fig(10)a)® and com-
pared the result with standard vector quantisation. The original image consists
of 768 x 704 pixels with 256 possible gray levels for each pixel which corresponds
to 865 kbits of information. The image was split into P = 2112 segments of
16 x 16 pixels. We used standard VQ to construct 16 codebook vectors to repre-
sent this set of P segments. We then reconstructed the image using the closest
codebook vector to each image segment. The result is shown in fig(10)-b. We also
applied standard GVQ using n = 8 features (plus an additional origin feature)
to construct a representative set of codebook vectors for the image segments.
Fig(10)-c shows the reconstructed image. The superior performance of GVQ over
VQ in representational accuracy is given by the codebook flexibility. In standard
VQ only 16 codebook vectors can be used, compared to 28 = 256 codebook
vectors in GVQ. Despite there being more codebook vectors available in GVQ,
the information required to define the compressed image using GVQ is less than
that in VQ, as we show in the following section (section (6.2.1)).

The features, which were learned to construct codebook vectors representing
the segments of the Vermeer image, are shown in fig(11). Interestingly, the final
features can be seen to be slightly biased to modeling variation around the vertical
direction, which is plausible given the large number of almost vertical shadows in
the original image.

 The Girl with a Pearl Earring (1665) by Johannes Vermeer, Mauritshuis, The Hague (The
Netherlands)

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.14

15

Figure 10. a) The Vermeer image prior to compression consists of 865 kbits. After compression:
b) With standard vector quantisation I, = 74 kbits, c) with GVQ using 1 set of 8 features (see
ﬁg(ll)) Igvg = 56 kbits.

Figure 11. Features which were learned for representing the 2112-16 x 16 bit segments
constituting the Vermeer image. The lower-right feature is the origin feature, which is
always on.

6.2.1. Information Requirements

Since a codebook vector in GVQ is constructed out of a set of n features, we
need at most n bits to specify a feature combination vector. If the data have
a clustered structure, the number of bits needed will be smaller than n since
some combinations will never be used. Therefore, if the number of used feature
combinations is Ng,, we also need log Ny,q < n bits to specify a codebook vector
in GVQ. Similarly, in standard vector quantisation we need log N, bits to specify
a codebook vector if N, is the number of learned codebook vectors.

Consider the case that the image to be compressed is unique, in the sense
that we can not use features (or codebook vectors) which were used to encode
previously encountered images. In order to compare the compression efficiencies,
we need to take into account the information to describe the codebook vectors in
VQ and the information in the features in GVQ. This information is proportional
to the number of pixels n;, used in an image segment, and the information required
to determine the gray value of a pixel I,. Hence, if the original image is split into
P segments, each made up of n, pixels, the information Iy g in the compressed
image using VQ is

Iyg = IynpNyg + Plog Ny,
and the information Igy g in the compressed image using GVQ is

Igyg = Ignyn + Plog Nyyq.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.15

16

If there is a moderately number of segments P, which is the case if we compress a
single specific image, then for a given compression quality” the difference between
Iyg and Igy g is determined mainly by the difference between N,, and n. Since
we can construct a large number of codebook vectors with a small number of
features it is expected that n < N4, especially if the distribution of the image
segments has a structured multi-modal form.

The image in fig(10)(b), obtained after compression with standard VQ, consists
of Iyyg = 74 kbits. In contrast, if we apply our GVQ algorithm using n = 8 features
the compressed image, fig(10)(c), consists of Iy = 56 kbits. While containing
18 kbits less of information, the GV(Q compressed image gives without doubt a
superior representation of the original image.

7. Relation of GVQ to other models

A large number of data modeling techniques can be seen as special cases of using
Gaussian mixture models. Although not necessary for the motivation for GVQ,
in this section we describe how GV(Q can be seen as part of an ongoing tradition
by relating it to the framework of Gaussian mixture models. This will enable us
to clarify the relation of our model to other recently proposed techniques and
approximations to them.

In the present context, a Gaussian mixture model can be conveniently con-
sidered as a layer of hidden or latent variables s = (sj...s,) connected to a
layer of visible variables x = (z1 ...z y). Each data point then corresponds to an
instantiation of the visible units. The distribution on the visible units is obtained
from the marginal of the joint distribution over the hidden and visible units,

p(x) =) p(x|s)p(s), (11)

where the likelihood term is given by

p(x[s) = (2%02) _d/ge—%%IIX—g(s)

P

(12)

For convenience, we write the prior distribution of the hidden states p(s) in terms
of an energy function ¢(s),

A
pls) = 5o), (13
where Z is the normalizing constant for the prior. Within this model, each hidden
state s corresponds to a uniquely located Gaussian distribution in the visible layer
with mean g(s) with a prior belief that each Gaussian is responsible for the visible
variable given by the prior p(s).

In this section we discuss how various aspects of the GVQ model can be related
to different choices of the mean function ¢(s) and prior p(s) in the limit that o
goes to zero.

" By compression quality we mean the similarity between the compressed image and the
original image.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.16

17
7.1. THE DETERMINISTIC VS THE NOISY APPROACH

Taking the zero ¢ limit in the Gaussian mixture model provides a hard assign-
ment of data points x to closest Gaussian centers. The resulting ¢ — 0 model
corresponds to standard vector quantisation in which the codebook vectors are
the cluster centers g(s). In GVQ the additional constraint is that the codebook
vectors are generated by binary combinations of vectors. This corresponds to the
choice g(s) = >, f;s; for the mean function, where the hidden states are now
coded as binary vectors s € {0,1}". As discussed in section (4.2) the finite noise
model corresponding to GVQ is given by

-
2

p(s,x) = p(s) (270%) * exp {—;7||x - menQ}, (14)

where, in the basic approach of section (3.1), the prior probability of a feature
combination is the same for each combination i.e. p(s) in (14) is constant. This
finite noise model is closely related to the Cooperative Vector Quantizer proposed
in (Zemel, 1994) which was further investigated in the context of mean-field learn-
ing in (Ghahramani, 1995). GVQ corresponds to (14) with ¢ — 0. This implies
that the posterior probabilities p(s|x) reduce to p(s|x) = §(s* — s) in which s* is
the unique binary state that is associated with x. Since 6(s* —s) =[], d(s; — s4),
in the zero noise limit the multi-dimensional distribution of the hidden binary
states s is given by the product of its marginals. For this reason the message
passing algorithms, described in section (4), which infer marginal probabilities
p(si) become directly relevant in the zero noise limit. As we saw in section (4.3)
there are indeed situations where these message passing algorithms outperform
the variational algorithms for finite noise models.

In summary, GVQ forces a solution in which each data point is explained by a
single process - that is, there is a unique explanation for each data point, found by
a competitive process subject to this requirement. On the other hand, in a finite
o model, each data point is associated with each Gaussian center with a certain
probability. If one attempts to interpret each data point in terms of features one
would then need to evaluate the contribution of each Gaussian to the explanation
for the data point in some manner. In applications where clusters have strong
overlap, these contributions are important. Otherwise, a finite ¢ model would
make interpretation unnecessary complicated. Another motivation for considering
the zero noise limit is that taking the most probable explanation (nearest Gaussian
center) in the finite o models may not give rise to a satisfactory interpretation
since the competition between Gaussian centers for the single best explanation
for each data point has not been optimized during learning.

GVQ is most appropriate in cases in which one believes that any data point is
well explained by a single process (codebook vector).

7.2. ALTERNATIVE CHOICES FOR THE PRIOR DISTRIBUTION

Within the probabilistic framework, some interesting connections can be made to
the sparse coding work of (Olshausen, 1996) and the independent factor analysis
(IFA) work of (Attias, 1999). The main difference between these models and our
model is in the assumption for the hidden state distribution p(s). Both authors
consider hidden state variables with continuous values, that is s € R™. In IFA
Attias (Attias, 1999) considers a product of Gaussian mixture distributions (in-
dependent factors) for the hidden states s. If, within IFA, the number of mixtures

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.17

18

for each hidden state variable s; is set to 2 (bi-modal distribution), the distribution
of the visible patterns can be regarded as a noisy version of the binary feature
combinations in GVQ.

In contrast to the multi-modal assumption of IFA and the binary assumption of
GVQ, Olshausen and Field (Olshausen, 1996) consider a sharply peaked unimodal
distribution for continuous hidden variables s. This choice encourages a sparse
representation of the data patterns since the hidden variables s; will be in the
‘off” state most of the time. In this case an individual pattern will be constructed
as a combination of only a small number of features out of a large, typically
over-complete, set of features. As discussed in section (5.1), a similar property
can be incorporated in our method by replacing the basic constant GV(Q prior
in (13) with a soft prior ¢(s) = s”s. Note, however, that when this penalty term
becomes too large, only a single feature will be used to represent a pattern. In
other words GVQ will tend to standard vector quantisation as the solution is
strongly encouraged to be sparse.

7.3. BINARY LATTICE VECTOR QUANTISATION

In another context, research has been done on Binary Lattice Vector Quantizers or
Direct Sum Quantizers. In fact, the binary codebook representation of GV(Q model
is formally equivalent to the representation of a Binary Lattice Vector Quantizer.
These representations have been studied for the purpose of data transmission
across noisy channels. The main objective there is to transmit coded data such
that the reconstruction error is minimal. An important sub-problem within that
objective is the ‘Index Assignment Problem’ which is to find an optimal binary
index assignment to codebook vectors as to minimize the mean-squared error
caused by channel errors, see (McLaughlin, 1995) and (Knagenhjelm, 1996).

For ‘direct sum quantizers’, an alternative method for the association step
is studied in (Barnes, 1993). This method is a heuristic compromise between
component wise optimization and exhaustive search where the association is done
in multiple stages bringing the codebook closer to the data-point at each stage.
Whether this method is more accurate and efficient than the methods studied in
section (4) remains to be investigated.

To our knowledge binary lattice vector quantizers have, however, not been
studied for the purpose of feature extraction and clustering of non-homogeneous
data, which has been the purpose of the present paper.

8. Conclusion

Generative Vector Quantisation is a method, which performs salient feature ex-
traction at modest computational expense. The simplicity of GVQ, which searches
for descriptions in terms of binary feature combinations, may lead to a lucid data
representation, which is important in many data exploration tasks. A central
thesis of the GV(Q model is that data points are explained by a single generating
process. Unlike a probabilistic model, GV(Q constructs a competition between
alternative explanations for a data point, in which there can be only one winning
explanation. This winner-take-all process provides the basis for a clear feature
representation. The deterministic nature of GVQ allows the use of a larger class
of (approximate) association methods, such as Belief Revision, within the learning
scheme. However, in the case that the data cannot be expected to be explained by
a winner-take-all process, a probabilistic approach may be a more appropriate.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.18

19

GVQ is potentially a powerful tool for exploring and representing data in a
deterministic manner. Ultimately, the strength of GVQ lies in it’s transparent
simplicity, being based on the intuitive notion that, although data may appear
complex, it’s construction may be well understood in terms of a small number of
elementary building blocks.

References

Attias, H. Independent factor analysis. Neural Computation, 11(4):803-851, 1999.

Barlow, H. B. Unsupervised learning. Neural Computation, 1(3):295-311, 1989.

Barnes, C.F. and Frost, R.L. Vector Quantizers with Direct Sum Codebooks. IEEFE Transactions
on Information Theory, 36(2):565-580, 1993.

Bell, A. J. and Sejnowski, T.J. An information-maximization approach to blind separation and
blind deconvolution. Neural Computation, 7(6):1129-1159, 1995.

Dempster, A.P. ; Laird, N.M. and Rubin, D.B. Maximum likelihood from incomplete data via
the EM algorithm. J. Royal Statistical Society Series B, 39:1-38, 1977.

Ghahramani, Z. Factorial Learning and the EM algorithm In Advances in Neural Information
Processing Systems, volume 7. The MIT Press, 1995.

Ghahramani, Z. and Hinton, G.E. Hierarchical non-linear factor analysis and topographic maps.
In Advances in Neural Information Processing Systems, volume 10. The MIT Press, 1998.

Gray, R.M. Vector quantisation. IEEE ASSP Magazine, pages 4-29, 1984.

Hull, J.J. A database for handwritten text recognition research. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 16(5):550-554, 1997.

Knagenhjelm, P., and Agrell., E. The Hadamard transform—a tool for index assignment. IEEE
Transaction on Information Theory, 42(4):1139-1151, 1996.

McEliece, R., Rodemich, E., and Cheng, J. The Turbo Decision Algorithm. Proc. 33rd Allerton
Conference on Communications, Control and Computing, 366-379, 1995.

McLaughlin, S.W., Neuhoff, D.L., and Ashley, J.J. Optimal binary index assignments for a class
of equiprobable scalar and vector quantizers. IEEE Transactions on Information Theory,
41(6):2031-2037, 1995.

Mehes, A. and, Zeger, K. Binary lattice vector quantisation with linear block codes and affine
index assignments. IEEE Transactions on Information Theory, 44(1):79-94, 1998.

Neal, R. M. Connectionist learning of belief networks. Artificial Intelligence, 56:71-113, 1991.

Neal, R.M. and Hinton, G. E. Learning in Graphical Models, chapter A view of the EM algorithm
that justifies incremental, sparse, and other variants, pages 355-368. Kluwer Academic
Publishers, 1998.

Olshausen, B. A. and Field, D. J. Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381:607—609, 1996.

Pearl, J. Probabilistic Reasoning in Intelligent systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, Inc., 1988.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B.P. Numerical Recipes in C:
The Art of Scientific Computing. Cambridge University Press, Cambridge, 2 edition, 1992.

Sallans, B., Hinton, G.E., and Ghahramani,Z. A hierarchical community of experts. In C. M.
Bishop, editor, Neural Networks and Machine Learning, NATO ASI Series F, pages 269-284.
Springer-Verlag, 1998.

Saul, L.K., Jaakkola, T., and, Jordan, M.I. Mean Field Theory for Sigmoid Belief Networks.
Journal of Artificial Intelligence Research, 4:61-76, 1996.

Saund, E. A multiple cause mixture model for unsupervised learning. Neural Computation,
7(1):51-71, 1995.

Weiss, Y. Belief Propagation and Revision in Networks with Loops. Technical report, MIT-
AlLab, AIM-1616,1997.

Zemel, R.S. A minimum description length framework for unsupervised learning. Technical
report, University of Toronto, CRG-TR-93-2, 1994.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.19

20

/@\

&) S)
S-S TB. GRS / b

Figure 12. Pairwise graphical model with (a) a chain structure (b) loops

Appendix
A. Belief Propagation

An efficient technique to find an approximate solution to the marginal py(s;) of (8)
is to decompose the global summation operation into distributed local operations,
reducing the exponential summation to quadratic time.

For expositional clarity, consider an energy function Ey(s), with weights w;;
defined to give a chain structure as shown in figure 12(a) (technically, the weight
matrix has zeros everywhere except for entries along the first diagonals adjacent to
the main diagonal). For the chain structure in fig(12)(b) the marginal probability
that unit 1 is in state sp is

p(31)o< Z e(h1s1—|—s1w1282+h252+szw2353+h333+33w34s4+h454) (15)

§2,83,84

which can be decomposed into local operations as follows

p(81) . eu[h151] Z (eu[hzsz+szw1281] Z (eu[h353+szw2353] (Z eu[h454+53w34s4]> >>

ED) 83 S4
(16)
1

where v = ——5 and . Distributing the marginalization in this manner results in
a summation over a number of states that scales only linearly with the network
size instead of over an exponentially scaling number of states in (15). To write
this in a more general form we define the message that node S; sends to S; as

Xij(si) = aZe”[hij“Lsiw”Si'] (H /\jk(Sj)) , (17)

S5 kECj\i

where C; is the set of all nodes connected to node j. Combining the incoming
messages \;; into node S; gives the marginal probability distribution of that node

p(s;) x ehisi H)\ij(si). (18)
j

The recurrent marginalization procedure defined by (17) and (18) will give an
exact solution for all connection weights w;; that define singly connected graphs
i.e. graphs without loops.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.20

21

For graphs with loops, for example fig(12)(b), which corresponds to the energy
function

EX(S) =h1s1 + s1wi282 + hosg + Sowozs3 +
+ h3s3 + S3w34S4 + haS4 + S1W1484 + SowosS4 (19)

the method is still applicable although no longer guaranteed to find the optimal
solution. Nevertheless, there is experimental evidence (McEliece, 1995; Weiss,
1997) that for large classes of graphs with loops the belief propagation algorithm
gives good solutions.

In our implementation the messages are initialized as Aij(si) = a 3=, eVlhisitsiwijs;]
with v = —1/(2(0.1)?) = —50. After initialisation an iteration in the procedure
is as follows:

— A random ordering of the nodes is chosen, which are then sequentially visited
in that order.

— For each node, all messages coming into the node are updated according to
the rule (17) and the state of node 7 is updated to

s7 = argmax (e"hisi I1 /\ij(si)).
si

— The variance o2 is halved in v = 1/(20?).

This iterative process is repeated until o = 10~*. We then choose that state s
which in the iterations had the lowest energy Fy(s).

B. Belief revision

The inference problem that we need to solve is to find a single hypothesis or
explanation s for each observed state x.
The minimisation problem for the chain in fig(12)(a) is

E* = . glzllsI; o (h181 + s1wi282 + hoSy + Sow9o3S3 + hyss + S3wseS4 + h484) (20)

which can in analogy with (16) be decomposed into local operations as follows

E* = n}in (h131 + nslin (31w1232 + hosy + ngin (52102333 + hass + msin (sswsss4 + h434)>)>.
1 2 3 4
(21)
Note that (21) has the same de-componential structure as (16) except that the
summation operator is changed into a minimisation operator and the messages
are combined as a summation instead of as a product.

In a more general form, we define the consider the message \;;(s;) that node
S; sends to S; as

Aij(si) = min (Sz’wim +hisi+ Y /\jk(sa’)>) (22)
! keC;\i

where C; is the set of all nodes connected to node j. With this definition we
see from (21) that the minimisation problem for the network in fig(12) can be

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.21

22

rewritten in the following recurrent form

E* = nﬁn (Z /\1j(81) + h181) . (23)

JEC;\1

The recurrent minimisation procedure defined by (22) and (23) will give an
exact solution for all connection weights w;; that define singly connected graphs
i.e. graphs without loops. Nevertheless, there is experimental evidence (McEliece,
1995; Weiss, 1997) that for large classes of graphs with loops the belief propagation
algorithm gives good solutions.

In our implementation, the messages are initialized as \i;j(s;) = ming; (s;wi;s; + hisi).
After initialisation an iteration in the procedure is as follows:

— A random ordering of the nodes is chosen, which are then sequentially visited
in that order.

— For each node, all messages coming into the node are updated according to
the rule (22) and the state of node 7 is updated to
sf = argmin{hisi + Xjeci\i)\ij(si)}.
85
This iterative process is repeated until the messages converge. If they do
not converge, the iterations are stopped after a predefined maximum number
of iterations. We then choose that state s which in the iterations had the lowest
energy.
The computational complexity of this algorithm is quadratic in the number of
nodes since, for each of the n nodes, there are n messages, in the fully connected
case.

C. Mean Field

The basic idea of variational algorithms (of which the mean-field method is a
special case) is to replace the intractable objective function with a tractable ap-
proximation to it, so that the optimization of the approximate objective function
can be carried out efficiently.

To explain the mean-field approximation for the association step in GVQ
learning we first formulate the model as a probability distribution with finite
noise o.

Pz (s) ox exp {—21—2Ez(s)} (24)
o

Finding the most probable state s of p,(s) is equivalent to minimising F,(s),
and in the limit ¢ — 0, the distribution p,(s) becomes deterministic. That is,
the mean state s is equal to the most probable state. We can therefore use an
algorithm that attempts to approximate the mean of p,(s) for finite o and, in the
limit that ¢ — 0, this will become an approximation for the most probable state.
One way to find an approximation to the mean of the variables of an in-
tractable distribution is to use a simpler, tractable approximating distribution.
Specifically, in the variational method the objective is to find an approximating
Q. (s) distribution to the state distribution P, (s) with which the associations can
be tractably computed. The optimal approximating Q(s) is found by minimising

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.22

23

the Kullback-Leibler divergence between the two distributions

Qs(s)
Py(s) =0 (25)

with respect to the parameters of @, (s). Note that the Kullback-Leibler diver-
gence is a positive measure of the difference between two distributions.

In its most basic form, the variational approximating distribution Q(s) is
factorial. This is known as the mean-field assumption for Q,(s)

Q(slx) = [Lastss) = TL w1 —)~ (26)

KL= Z Qz(s) log

where p; € [0,1] are called the mean-field parameters. Substitution of Q);(s) into
KL gives (up to a constant):

1
KL'= =% pilogpi + (1 — pi)log(1 — i) — 252 (Z > mipgw+) W”) :
i 1>l i
(27)

To find a solution for the u;, we set the derivatives w.r.t. to mean-field pa-
rameters u; equal to zero, which leads to the following mean-field fixed point

equations,
) 1
i =sig| 5 > wwi +hi |, (28)
i %

where sig(z) = (1 — exp(—z))~". In the limit ¢ — 0 these equations become

pi=© (Z piwi; + hi) ; (29)

1#£i

where O(z) = 0 for z < 0 and ©(z) = 1 for z > 0. Hence, the solutions for p;
become binary and there no longer exists a distinction between state values s;
and state probabilities p;. For a given input x (29) defines an iterative procedure
to find an associated state s.

In our implementation, the mean-field parameters are initialized as u; = % +¢,
where € is small random noise and o is initialized as ¢ = 100. After initialisation
an iteration in the procedure is as follows:

— A random ordering of the nodes is chosen, which are then sequentially visited
in that order.

— Each node, is then updated according to equation (28).
— The noise o is then reduced according to o < o/a.

The noise reduction parameter o is chosen such that ¢ = 10~* at the final
iteration.

C.0.1. Gibbs Sampling
Another well known optimization technique for stochastic models is Gibbs sam-
pling. In Gibbs sampling the state of a unit is updated according to the probability

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.23

24

a) YR RN

p(si|s_;), where s_; contains the values of all units besides unit i. This conditional
probability for the model (28) is

. 1 1
p(si|s—_;) = sig (ﬁ{g spwy; + 92’}2<3i — 5)) : (30)

In the GVQ limit ¢ — 0 this equation defines an iterative scheme which is the
same as that for the mean-field method. Hence, in the limit ¢ — 0 the mean-field
method and the Gibbs sampling method are equivalent.

Figure 18. Graphical structure of GVQ

D. Belief Propagation in the Directed Graph

Our goal is to compute marginal probabilities p(s;|x) in a directed graphical model
with a structure as shown in fig(13)a). For graphs with tree like structures one can,
analogous to the undirected case, decompose the summation into local operations.
For a complete treatment of how this is done we refer to (Pearl, 1988), here we
simply state the results. For a directed network there are two types of messages,
namely p-messages that are send in the direction of the arrows from parent nodes
(binary units S;) to child nodes (visible units X;) and A-messages that are sent
in the opposite direction. The following recursive procedure is guaranteed to give
the exact solution for directed graphs without cycles such as shown in fig(13)b):

— The message that visible unit X; sends to hidden unit S; is given by

)\XiSj (Sj) = Z p(:vi‘Sj,S’) H pSkXi(S;C)’ (31)

s'e{Pa(x:)\s;} SrePa(xi)\s;

where Pa(X;)\S; is the set of parent units of unit X; excluding unit S;. The
set of states s’ of this set is notated as {Pa(X;)\S;}.

— Message from hidden unit S}, to visible unit X;

psix;(se) ocm(se) I Axysn(sw), (32)
X ECh(Sk)\Xl

where Ch(Sk) is the set of child units of binary node Sj.

The marginal probabilities p(s;) are given by

p(s) ocm(si) [T Axpsi(s0) (33)
X,eCh(s;)

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.24

25

As for the undirected methods it is not guaranteed that this method gives the
exact result for p(s;|x) if the network contains cycles. There is evidence (Weiss,
1997), however, that for certain structures, even with loops, the message passing
scheme presented above may give good results. In contrast to the undirected
algorithm, the computation of A messages, (31), involves a summation over an
exponentially large set of states. Hence, straightforward application of the algo-
rithm results in a method which scales exponentially with the with the number
of parents of single visible nodes Xj;. For the case of the GV(Q model, the special

1 (g s]?
form of the conditional probabilities, p(z;|s) = e~ 507 [T~ 2 Fiksi] , allows us to

use a ‘trick’ with which the summation Eq.(31) can be computed tractably. The
trick is to remove the quadratic interactions in the exponent using the identity

\/fefﬂ/ww = [ayemert (34)
a —o0

where i = y/—1 is the unit imaginary number. Application of (34) in (31) results
in the following expression for the A messages

oo) .
)\Xisj (Sj) X / dy H {pSkXi (Sk = O) + P, X; (Sk = l)ezyfki/a}e_y2+ly(zi_fj5j)/a'
— i
(35)

The integration can be done efficiently with Gaussian quadratures and its com-
plexity scales (only) linearly with the number of parents connected to node
X;.

Our implementation starts with the initialisation of A and p messages. Then a
single iteration of the algorithm consists of the following steps:

1. For each parent node S; compute the incoming Ax;s; messages from all visible
nodes X; with (35);

2. For each child node X;, compute the incoming px;s, messages from all the
connected parent nodes Sy with (32);

3. Reduce the noise according to ¢ + o/a.

In our experiments we use o = 2.

E. Belief Revision in the Directed Graph

Instead of slowly reducing the noise ¢ while running the belief propagation algo-
rithm of appendix (D) we now formulate the algorithm directly for infinitesimal
0. In the limit 0 — 0 a single state will start to dominate the summation (31).
Hence, in the limit ¢ — 0 the expression for the A messages are

Ax;s; (s5) max p(zils;,s’) [psexi(sk)- (36)
J s’E{Pa(Xi)\Sj} SkePa(Xi)\Sj k

In this case we can no longer apply the integral ‘trick’ as in (35) since max-

imization can not be interchanged with integration. Hence, the computational
complexity of (36) scales exponentially with number of parents in Pa(X;).

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.25

26

The update equations (32) for the p-messages do not change in the limit o — 0.
Finally, the belief revision solution for the minimising state s* of (5) is

s; = argmax H Ax,s; (i) (37)
5 XkECh(Sq,)

Note that this solution does not depend on the parameter o in p(z;|s;,s’). In the
implementation we use o = 1.

westerdijk.GVQ.tex; 16/08/2000; 10:12; p.26

